Defining parameters
Level: | \( N \) | \(=\) | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1344.j (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(1024\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1344, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 792 | 144 | 648 |
Cusp forms | 744 | 144 | 600 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1344, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)