Properties

Label 1344.4.ca
Level $1344$
Weight $4$
Character orbit 1344.ca
Rep. character $\chi_{1344}(271,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $384$
Sturm bound $1024$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.ca (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 112 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1024\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1344, [\chi])\).

Total New Old
Modular forms 3136 384 2752
Cusp forms 3008 384 2624
Eisenstein series 128 0 128

Trace form

\( 384 q + 40 q^{11} - 656 q^{23} - 800 q^{29} - 456 q^{35} + 16 q^{37} + 1616 q^{43} - 752 q^{53} - 4128 q^{59} - 2256 q^{67} + 896 q^{71} + 15552 q^{81} + 3496 q^{91} + 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1344, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)