Properties

Label 1344.4.bj
Level $1344$
Weight $4$
Character orbit 1344.bj
Rep. character $\chi_{1344}(191,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $376$
Sturm bound $1024$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1024\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1344, [\chi])\).

Total New Old
Modular forms 1584 392 1192
Cusp forms 1488 376 1112
Eisenstein series 96 16 80

Trace form

\( 376q - 2q^{9} + O(q^{10}) \) \( 376q - 2q^{9} + 160q^{13} + 58q^{21} + 4296q^{25} + 106q^{33} - 500q^{37} + 502q^{45} - 8q^{49} - 116q^{57} + 2164q^{61} - 100q^{69} - 4q^{73} + 1230q^{81} + 1016q^{85} + 110q^{93} + 2960q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1344, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)