gp: [N,k,chi] = [1344,4,Mod(1,1344)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1344.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,3,0,10,0,7,0,9,0,-52]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1344 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1344)) S 4 n e w ( Γ 0 ( 1 3 4 4 ) ) :
T 5 − 10 T_{5} - 10 T 5 − 1 0
T5 - 10
T 11 + 52 T_{11} + 52 T 1 1 + 5 2
T11 + 52
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T − 10 T - 10 T − 1 0
T - 10
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T + 52 T + 52 T + 5 2
T + 52
13 13 1 3
T − 10 T - 10 T − 1 0
T - 10
17 17 1 7
T + 54 T + 54 T + 5 4
T + 54
19 19 1 9
T + 52 T + 52 T + 5 2
T + 52
23 23 2 3
T + 48 T + 48 T + 4 8
T + 48
29 29 2 9
T − 186 T - 186 T − 1 8 6
T - 186
31 31 3 1
T + 224 T + 224 T + 2 2 4
T + 224
37 37 3 7
T + 94 T + 94 T + 9 4
T + 94
41 41 4 1
T + 478 T + 478 T + 4 7 8
T + 478
43 43 4 3
T + 316 T + 316 T + 3 1 6
T + 316
47 47 4 7
T + 256 T + 256 T + 2 5 6
T + 256
53 53 5 3
T − 66 T - 66 T − 6 6
T - 66
59 59 5 9
T − 420 T - 420 T − 4 2 0
T - 420
61 61 6 1
T + 342 T + 342 T + 3 4 2
T + 342
67 67 6 7
T − 668 T - 668 T − 6 6 8
T - 668
71 71 7 1
T − 272 T - 272 T − 2 7 2
T - 272
73 73 7 3
T + 86 T + 86 T + 8 6
T + 86
79 79 7 9
T + 1360 T + 1360 T + 1 3 6 0
T + 1360
83 83 8 3
T − 188 T - 188 T − 1 8 8
T - 188
89 89 8 9
T + 366 T + 366 T + 3 6 6
T + 366
97 97 9 7
T − 1554 T - 1554 T − 1 5 5 4
T - 1554
show more
show less