Properties

Label 1344.4.a.w
Level $1344$
Weight $4$
Character orbit 1344.a
Self dual yes
Analytic conductor $79.299$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(79.2985670477\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{3} + 4q^{5} - 7q^{7} + 9q^{9} + O(q^{10}) \) \( q + 3q^{3} + 4q^{5} - 7q^{7} + 9q^{9} - 62q^{11} + 62q^{13} + 12q^{15} + 84q^{17} - 100q^{19} - 21q^{21} - 42q^{23} - 109q^{25} + 27q^{27} + 10q^{29} - 48q^{31} - 186q^{33} - 28q^{35} + 246q^{37} + 186q^{39} - 248q^{41} - 68q^{43} + 36q^{45} + 324q^{47} + 49q^{49} + 252q^{51} - 258q^{53} - 248q^{55} - 300q^{57} - 120q^{59} - 622q^{61} - 63q^{63} + 248q^{65} - 904q^{67} - 126q^{69} - 678q^{71} - 642q^{73} - 327q^{75} + 434q^{77} + 740q^{79} + 81q^{81} - 468q^{83} + 336q^{85} + 30q^{87} + 200q^{89} - 434q^{91} - 144q^{93} - 400q^{95} - 1266q^{97} - 558q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 4.00000 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.a.w 1
4.b odd 2 1 1344.4.a.i 1
8.b even 2 1 21.4.a.b 1
8.d odd 2 1 336.4.a.h 1
24.f even 2 1 1008.4.a.m 1
24.h odd 2 1 63.4.a.a 1
40.f even 2 1 525.4.a.b 1
40.i odd 4 2 525.4.d.b 2
56.e even 2 1 2352.4.a.l 1
56.h odd 2 1 147.4.a.g 1
56.j odd 6 2 147.4.e.b 2
56.p even 6 2 147.4.e.c 2
120.i odd 2 1 1575.4.a.k 1
168.i even 2 1 441.4.a.b 1
168.s odd 6 2 441.4.e.m 2
168.ba even 6 2 441.4.e.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 8.b even 2 1
63.4.a.a 1 24.h odd 2 1
147.4.a.g 1 56.h odd 2 1
147.4.e.b 2 56.j odd 6 2
147.4.e.c 2 56.p even 6 2
336.4.a.h 1 8.d odd 2 1
441.4.a.b 1 168.i even 2 1
441.4.e.m 2 168.s odd 6 2
441.4.e.n 2 168.ba even 6 2
525.4.a.b 1 40.f even 2 1
525.4.d.b 2 40.i odd 4 2
1008.4.a.m 1 24.f even 2 1
1344.4.a.i 1 4.b odd 2 1
1344.4.a.w 1 1.a even 1 1 trivial
1575.4.a.k 1 120.i odd 2 1
2352.4.a.l 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1344))\):

\( T_{5} - 4 \)
\( T_{11} + 62 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -3 + T \)
$5$ \( -4 + T \)
$7$ \( 7 + T \)
$11$ \( 62 + T \)
$13$ \( -62 + T \)
$17$ \( -84 + T \)
$19$ \( 100 + T \)
$23$ \( 42 + T \)
$29$ \( -10 + T \)
$31$ \( 48 + T \)
$37$ \( -246 + T \)
$41$ \( 248 + T \)
$43$ \( 68 + T \)
$47$ \( -324 + T \)
$53$ \( 258 + T \)
$59$ \( 120 + T \)
$61$ \( 622 + T \)
$67$ \( 904 + T \)
$71$ \( 678 + T \)
$73$ \( 642 + T \)
$79$ \( -740 + T \)
$83$ \( 468 + T \)
$89$ \( -200 + T \)
$97$ \( 1266 + T \)
show more
show less