Properties

Label 1344.4.a.l
Level 13441344
Weight 44
Character orbit 1344.a
Self dual yes
Analytic conductor 79.29979.299
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,4,Mod(1,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1344=2637 1344 = 2^{6} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1344.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-3,0,16,0,7,0,9,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 79.298567047779.2985670477
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 168)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q3q3+16q5+7q7+9q9+18q11+54q1348q15128q1752q1921q21202q23+131q2527q27302q29200q3154q33+112q35++162q99+O(q100) q - 3 q^{3} + 16 q^{5} + 7 q^{7} + 9 q^{9} + 18 q^{11} + 54 q^{13} - 48 q^{15} - 128 q^{17} - 52 q^{19} - 21 q^{21} - 202 q^{23} + 131 q^{25} - 27 q^{27} - 302 q^{29} - 200 q^{31} - 54 q^{33} + 112 q^{35}+ \cdots + 162 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −3.00000 0 16.0000 0 7.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.a.l 1
4.b odd 2 1 1344.4.a.z 1
8.b even 2 1 168.4.a.d 1
8.d odd 2 1 336.4.a.a 1
24.f even 2 1 1008.4.a.t 1
24.h odd 2 1 504.4.a.h 1
56.e even 2 1 2352.4.a.bj 1
56.h odd 2 1 1176.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.a.d 1 8.b even 2 1
336.4.a.a 1 8.d odd 2 1
504.4.a.h 1 24.h odd 2 1
1008.4.a.t 1 24.f even 2 1
1176.4.a.h 1 56.h odd 2 1
1344.4.a.l 1 1.a even 1 1 trivial
1344.4.a.z 1 4.b odd 2 1
2352.4.a.bj 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1344))S_{4}^{\mathrm{new}}(\Gamma_0(1344)):

T516 T_{5} - 16 Copy content Toggle raw display
T1118 T_{11} - 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+3 T + 3 Copy content Toggle raw display
55 T16 T - 16 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T18 T - 18 Copy content Toggle raw display
1313 T54 T - 54 Copy content Toggle raw display
1717 T+128 T + 128 Copy content Toggle raw display
1919 T+52 T + 52 Copy content Toggle raw display
2323 T+202 T + 202 Copy content Toggle raw display
2929 T+302 T + 302 Copy content Toggle raw display
3131 T+200 T + 200 Copy content Toggle raw display
3737 T150 T - 150 Copy content Toggle raw display
4141 T172 T - 172 Copy content Toggle raw display
4343 T+164 T + 164 Copy content Toggle raw display
4747 T+460 T + 460 Copy content Toggle raw display
5353 T190 T - 190 Copy content Toggle raw display
5959 T+96 T + 96 Copy content Toggle raw display
6161 T+622 T + 622 Copy content Toggle raw display
6767 T+744 T + 744 Copy content Toggle raw display
7171 T+54 T + 54 Copy content Toggle raw display
7373 T742 T - 742 Copy content Toggle raw display
7979 T+92 T + 92 Copy content Toggle raw display
8383 T228 T - 228 Copy content Toggle raw display
8989 T+116 T + 116 Copy content Toggle raw display
9797 T+554 T + 554 Copy content Toggle raw display
show more
show less