# Properties

 Label 1344.2.q.u Level $1344$ Weight $2$ Character orbit 1344.q Analytic conductor $10.732$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1344 = 2^{6} \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1344.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$10.7318940317$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 672) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - \zeta_{6} ) q^{3} + 3 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} +O(q^{10})$$ $$q + ( 1 - \zeta_{6} ) q^{3} + 3 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} + ( -1 + \zeta_{6} ) q^{11} + 4 q^{13} + 3 q^{15} + ( -4 + 4 \zeta_{6} ) q^{17} + ( 2 + \zeta_{6} ) q^{21} -8 \zeta_{6} q^{23} + ( -4 + 4 \zeta_{6} ) q^{25} - q^{27} + 7 q^{29} + ( -11 + 11 \zeta_{6} ) q^{31} + \zeta_{6} q^{33} + ( -9 + 6 \zeta_{6} ) q^{35} + 4 \zeta_{6} q^{37} + ( 4 - 4 \zeta_{6} ) q^{39} -4 q^{41} + 2 q^{43} + ( 3 - 3 \zeta_{6} ) q^{45} + 2 \zeta_{6} q^{47} + ( -8 + 3 \zeta_{6} ) q^{49} + 4 \zeta_{6} q^{51} + ( -11 + 11 \zeta_{6} ) q^{53} -3 q^{55} + ( 7 - 7 \zeta_{6} ) q^{59} + 10 \zeta_{6} q^{61} + ( 3 - 2 \zeta_{6} ) q^{63} + 12 \zeta_{6} q^{65} + ( 10 - 10 \zeta_{6} ) q^{67} -8 q^{69} + 6 q^{71} + ( 6 - 6 \zeta_{6} ) q^{73} + 4 \zeta_{6} q^{75} + ( -2 - \zeta_{6} ) q^{77} -11 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -11 q^{83} -12 q^{85} + ( 7 - 7 \zeta_{6} ) q^{87} -6 \zeta_{6} q^{89} + ( -4 + 12 \zeta_{6} ) q^{91} + 11 \zeta_{6} q^{93} + 7 q^{97} + q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{3} + 3q^{5} + q^{7} - q^{9} + O(q^{10})$$ $$2q + q^{3} + 3q^{5} + q^{7} - q^{9} - q^{11} + 8q^{13} + 6q^{15} - 4q^{17} + 5q^{21} - 8q^{23} - 4q^{25} - 2q^{27} + 14q^{29} - 11q^{31} + q^{33} - 12q^{35} + 4q^{37} + 4q^{39} - 8q^{41} + 4q^{43} + 3q^{45} + 2q^{47} - 13q^{49} + 4q^{51} - 11q^{53} - 6q^{55} + 7q^{59} + 10q^{61} + 4q^{63} + 12q^{65} + 10q^{67} - 16q^{69} + 12q^{71} + 6q^{73} + 4q^{75} - 5q^{77} - 11q^{79} - q^{81} - 22q^{83} - 24q^{85} + 7q^{87} - 6q^{89} + 4q^{91} + 11q^{93} + 14q^{97} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$449$$ $$577$$ $$1093$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
193.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0.500000 0.866025i 0 1.50000 + 2.59808i 0 0.500000 + 2.59808i 0 −0.500000 0.866025i 0
961.1 0 0.500000 + 0.866025i 0 1.50000 2.59808i 0 0.500000 2.59808i 0 −0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.2.q.u 2
4.b odd 2 1 1344.2.q.k 2
7.c even 3 1 inner 1344.2.q.u 2
7.c even 3 1 9408.2.a.e 1
7.d odd 6 1 9408.2.a.dc 1
8.b even 2 1 672.2.q.a 2
8.d odd 2 1 672.2.q.f yes 2
24.f even 2 1 2016.2.s.k 2
24.h odd 2 1 2016.2.s.n 2
28.f even 6 1 9408.2.a.bl 1
28.g odd 6 1 1344.2.q.k 2
28.g odd 6 1 9408.2.a.bt 1
56.j odd 6 1 4704.2.a.b 1
56.k odd 6 1 672.2.q.f yes 2
56.k odd 6 1 4704.2.a.o 1
56.m even 6 1 4704.2.a.s 1
56.p even 6 1 672.2.q.a 2
56.p even 6 1 4704.2.a.bf 1
168.s odd 6 1 2016.2.s.n 2
168.v even 6 1 2016.2.s.k 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.a 2 8.b even 2 1
672.2.q.a 2 56.p even 6 1
672.2.q.f yes 2 8.d odd 2 1
672.2.q.f yes 2 56.k odd 6 1
1344.2.q.k 2 4.b odd 2 1
1344.2.q.k 2 28.g odd 6 1
1344.2.q.u 2 1.a even 1 1 trivial
1344.2.q.u 2 7.c even 3 1 inner
2016.2.s.k 2 24.f even 2 1
2016.2.s.k 2 168.v even 6 1
2016.2.s.n 2 24.h odd 2 1
2016.2.s.n 2 168.s odd 6 1
4704.2.a.b 1 56.j odd 6 1
4704.2.a.o 1 56.k odd 6 1
4704.2.a.s 1 56.m even 6 1
4704.2.a.bf 1 56.p even 6 1
9408.2.a.e 1 7.c even 3 1
9408.2.a.bl 1 28.f even 6 1
9408.2.a.bt 1 28.g odd 6 1
9408.2.a.dc 1 7.d odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1344, [\chi])$$:

 $$T_{5}^{2} - 3 T_{5} + 9$$ $$T_{11}^{2} + T_{11} + 1$$ $$T_{13} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$9 - 3 T + T^{2}$$
$7$ $$7 - T + T^{2}$$
$11$ $$1 + T + T^{2}$$
$13$ $$( -4 + T )^{2}$$
$17$ $$16 + 4 T + T^{2}$$
$19$ $$T^{2}$$
$23$ $$64 + 8 T + T^{2}$$
$29$ $$( -7 + T )^{2}$$
$31$ $$121 + 11 T + T^{2}$$
$37$ $$16 - 4 T + T^{2}$$
$41$ $$( 4 + T )^{2}$$
$43$ $$( -2 + T )^{2}$$
$47$ $$4 - 2 T + T^{2}$$
$53$ $$121 + 11 T + T^{2}$$
$59$ $$49 - 7 T + T^{2}$$
$61$ $$100 - 10 T + T^{2}$$
$67$ $$100 - 10 T + T^{2}$$
$71$ $$( -6 + T )^{2}$$
$73$ $$36 - 6 T + T^{2}$$
$79$ $$121 + 11 T + T^{2}$$
$83$ $$( 11 + T )^{2}$$
$89$ $$36 + 6 T + T^{2}$$
$97$ $$( -7 + T )^{2}$$