Properties

Label 1344.2.q.j
Level $1344$
Weight $2$
Character orbit 1344.q
Analytic conductor $10.732$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,2,Mod(193,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7318940317\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + 3 \zeta_{6} q^{5} + (\zeta_{6} - 3) q^{7} - \zeta_{6} q^{9} + (3 \zeta_{6} - 3) q^{11} + 4 q^{13} - 3 q^{15} + 4 \zeta_{6} q^{19} + ( - 3 \zeta_{6} + 2) q^{21} + (4 \zeta_{6} - 4) q^{25} + \cdots + 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 3 q^{5} - 5 q^{7} - q^{9} - 3 q^{11} + 8 q^{13} - 6 q^{15} + 4 q^{19} + q^{21} - 4 q^{25} + 2 q^{27} - 18 q^{29} - q^{31} - 3 q^{33} - 12 q^{35} + 8 q^{37} - 4 q^{39} - 20 q^{43} + 3 q^{45}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 1.50000 + 2.59808i 0 −2.50000 + 0.866025i 0 −0.500000 0.866025i 0
961.1 0 −0.500000 0.866025i 0 1.50000 2.59808i 0 −2.50000 0.866025i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.2.q.j 2
4.b odd 2 1 1344.2.q.v 2
7.c even 3 1 inner 1344.2.q.j 2
7.c even 3 1 9408.2.a.bu 1
7.d odd 6 1 9408.2.a.bm 1
8.b even 2 1 336.2.q.d 2
8.d odd 2 1 42.2.e.b 2
24.f even 2 1 126.2.g.b 2
24.h odd 2 1 1008.2.s.n 2
28.f even 6 1 9408.2.a.db 1
28.g odd 6 1 1344.2.q.v 2
28.g odd 6 1 9408.2.a.d 1
40.e odd 2 1 1050.2.i.e 2
40.k even 4 2 1050.2.o.b 4
56.e even 2 1 294.2.e.f 2
56.h odd 2 1 2352.2.q.m 2
56.j odd 6 1 2352.2.a.n 1
56.j odd 6 1 2352.2.q.m 2
56.k odd 6 1 42.2.e.b 2
56.k odd 6 1 294.2.a.d 1
56.m even 6 1 294.2.a.a 1
56.m even 6 1 294.2.e.f 2
56.p even 6 1 336.2.q.d 2
56.p even 6 1 2352.2.a.m 1
72.l even 6 1 1134.2.e.p 2
72.l even 6 1 1134.2.h.a 2
72.p odd 6 1 1134.2.e.a 2
72.p odd 6 1 1134.2.h.p 2
168.e odd 2 1 882.2.g.b 2
168.s odd 6 1 1008.2.s.n 2
168.s odd 6 1 7056.2.a.g 1
168.v even 6 1 126.2.g.b 2
168.v even 6 1 882.2.a.g 1
168.ba even 6 1 7056.2.a.bz 1
168.be odd 6 1 882.2.a.k 1
168.be odd 6 1 882.2.g.b 2
280.ba even 6 1 7350.2.a.cw 1
280.bi odd 6 1 1050.2.i.e 2
280.bi odd 6 1 7350.2.a.ce 1
280.br even 12 2 1050.2.o.b 4
504.ba odd 6 1 1134.2.e.a 2
504.bt even 6 1 1134.2.h.a 2
504.ce odd 6 1 1134.2.h.p 2
504.cy even 6 1 1134.2.e.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.b 2 8.d odd 2 1
42.2.e.b 2 56.k odd 6 1
126.2.g.b 2 24.f even 2 1
126.2.g.b 2 168.v even 6 1
294.2.a.a 1 56.m even 6 1
294.2.a.d 1 56.k odd 6 1
294.2.e.f 2 56.e even 2 1
294.2.e.f 2 56.m even 6 1
336.2.q.d 2 8.b even 2 1
336.2.q.d 2 56.p even 6 1
882.2.a.g 1 168.v even 6 1
882.2.a.k 1 168.be odd 6 1
882.2.g.b 2 168.e odd 2 1
882.2.g.b 2 168.be odd 6 1
1008.2.s.n 2 24.h odd 2 1
1008.2.s.n 2 168.s odd 6 1
1050.2.i.e 2 40.e odd 2 1
1050.2.i.e 2 280.bi odd 6 1
1050.2.o.b 4 40.k even 4 2
1050.2.o.b 4 280.br even 12 2
1134.2.e.a 2 72.p odd 6 1
1134.2.e.a 2 504.ba odd 6 1
1134.2.e.p 2 72.l even 6 1
1134.2.e.p 2 504.cy even 6 1
1134.2.h.a 2 72.l even 6 1
1134.2.h.a 2 504.bt even 6 1
1134.2.h.p 2 72.p odd 6 1
1134.2.h.p 2 504.ce odd 6 1
1344.2.q.j 2 1.a even 1 1 trivial
1344.2.q.j 2 7.c even 3 1 inner
1344.2.q.v 2 4.b odd 2 1
1344.2.q.v 2 28.g odd 6 1
2352.2.a.m 1 56.p even 6 1
2352.2.a.n 1 56.j odd 6 1
2352.2.q.m 2 56.h odd 2 1
2352.2.q.m 2 56.j odd 6 1
7056.2.a.g 1 168.s odd 6 1
7056.2.a.bz 1 168.ba even 6 1
7350.2.a.ce 1 280.bi odd 6 1
7350.2.a.cw 1 280.ba even 6 1
9408.2.a.d 1 28.g odd 6 1
9408.2.a.bm 1 7.d odd 6 1
9408.2.a.bu 1 7.c even 3 1
9408.2.a.db 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1344, [\chi])\):

\( T_{5}^{2} - 3T_{5} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$83$ \( (T + 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( (T + 1)^{2} \) Copy content Toggle raw display
show more
show less