Properties

Label 1344.2.q.c.193.1
Level $1344$
Weight $2$
Character 1344.193
Analytic conductor $10.732$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.7318940317\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 193.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1344.193
Dual form 1344.2.q.c.961.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{5} +(2.50000 + 0.866025i) q^{7} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{5} +(2.50000 + 0.866025i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(1.00000 - 1.73205i) q^{11} -1.00000 q^{13} +2.00000 q^{15} +(-0.500000 - 0.866025i) q^{19} +(-2.00000 + 1.73205i) q^{21} +(0.500000 - 0.866025i) q^{25} +1.00000 q^{27} -4.00000 q^{29} +(4.50000 - 7.79423i) q^{31} +(1.00000 + 1.73205i) q^{33} +(-1.00000 - 5.19615i) q^{35} +(1.50000 + 2.59808i) q^{37} +(0.500000 - 0.866025i) q^{39} -10.0000 q^{41} +5.00000 q^{43} +(-1.00000 + 1.73205i) q^{45} +(-3.00000 - 5.19615i) q^{47} +(5.50000 + 4.33013i) q^{49} +(6.00000 - 10.3923i) q^{53} -4.00000 q^{55} +1.00000 q^{57} +(6.00000 - 10.3923i) q^{59} +(5.00000 + 8.66025i) q^{61} +(-0.500000 - 2.59808i) q^{63} +(1.00000 + 1.73205i) q^{65} +(2.50000 - 4.33013i) q^{67} +6.00000 q^{71} +(1.50000 - 2.59808i) q^{73} +(0.500000 + 0.866025i) q^{75} +(4.00000 - 3.46410i) q^{77} +(-0.500000 - 0.866025i) q^{79} +(-0.500000 + 0.866025i) q^{81} +6.00000 q^{83} +(2.00000 - 3.46410i) q^{87} +(-8.00000 - 13.8564i) q^{89} +(-2.50000 - 0.866025i) q^{91} +(4.50000 + 7.79423i) q^{93} +(-1.00000 + 1.73205i) q^{95} -6.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - 2q^{5} + 5q^{7} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - 2q^{5} + 5q^{7} - q^{9} + 2q^{11} - 2q^{13} + 4q^{15} - q^{19} - 4q^{21} + q^{25} + 2q^{27} - 8q^{29} + 9q^{31} + 2q^{33} - 2q^{35} + 3q^{37} + q^{39} - 20q^{41} + 10q^{43} - 2q^{45} - 6q^{47} + 11q^{49} + 12q^{53} - 8q^{55} + 2q^{57} + 12q^{59} + 10q^{61} - q^{63} + 2q^{65} + 5q^{67} + 12q^{71} + 3q^{73} + q^{75} + 8q^{77} - q^{79} - q^{81} + 12q^{83} + 4q^{87} - 16q^{89} - 5q^{91} + 9q^{93} - 2q^{95} - 12q^{97} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) −2.00000 + 1.73205i −0.436436 + 0.377964i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 4.50000 7.79423i 0.808224 1.39988i −0.105869 0.994380i \(-0.533762\pi\)
0.914093 0.405505i \(-0.132904\pi\)
\(32\) 0 0
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) 0 0
\(35\) −1.00000 5.19615i −0.169031 0.878310i
\(36\) 0 0
\(37\) 1.50000 + 2.59808i 0.246598 + 0.427121i 0.962580 0.270998i \(-0.0873538\pi\)
−0.715981 + 0.698119i \(0.754020\pi\)
\(38\) 0 0
\(39\) 0.500000 0.866025i 0.0800641 0.138675i
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) −1.00000 + 1.73205i −0.149071 + 0.258199i
\(46\) 0 0
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 10.3923i 0.824163 1.42749i −0.0783936 0.996922i \(-0.524979\pi\)
0.902557 0.430570i \(-0.141688\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) 5.00000 + 8.66025i 0.640184 + 1.10883i 0.985391 + 0.170305i \(0.0544754\pi\)
−0.345207 + 0.938527i \(0.612191\pi\)
\(62\) 0 0
\(63\) −0.500000 2.59808i −0.0629941 0.327327i
\(64\) 0 0
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) 2.50000 4.33013i 0.305424 0.529009i −0.671932 0.740613i \(-0.734535\pi\)
0.977356 + 0.211604i \(0.0678686\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 1.50000 2.59808i 0.175562 0.304082i −0.764794 0.644275i \(-0.777159\pi\)
0.940356 + 0.340193i \(0.110493\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) 4.00000 3.46410i 0.455842 0.394771i
\(78\) 0 0
\(79\) −0.500000 0.866025i −0.0562544 0.0974355i 0.836527 0.547926i \(-0.184582\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 3.46410i 0.214423 0.371391i
\(88\) 0 0
\(89\) −8.00000 13.8564i −0.847998 1.46878i −0.882992 0.469389i \(-0.844474\pi\)
0.0349934 0.999388i \(-0.488859\pi\)
\(90\) 0 0
\(91\) −2.50000 0.866025i −0.262071 0.0907841i
\(92\) 0 0
\(93\) 4.50000 + 7.79423i 0.466628 + 0.808224i
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 1.00000 1.73205i 0.0995037 0.172345i −0.811976 0.583691i \(-0.801608\pi\)
0.911479 + 0.411346i \(0.134941\pi\)
\(102\) 0 0
\(103\) −3.50000 6.06218i −0.344865 0.597324i 0.640464 0.767988i \(-0.278742\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) 5.00000 + 1.73205i 0.487950 + 0.169031i
\(106\) 0 0
\(107\) 4.00000 + 6.92820i 0.386695 + 0.669775i 0.992003 0.126217i \(-0.0402834\pi\)
−0.605308 + 0.795991i \(0.706950\pi\)
\(108\) 0 0
\(109\) 4.50000 7.79423i 0.431022 0.746552i −0.565940 0.824447i \(-0.691487\pi\)
0.996962 + 0.0778949i \(0.0248199\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.500000 + 0.866025i 0.0462250 + 0.0800641i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 5.00000 8.66025i 0.450835 0.780869i
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 15.0000 1.33103 0.665517 0.746382i \(-0.268211\pi\)
0.665517 + 0.746382i \(0.268211\pi\)
\(128\) 0 0
\(129\) −2.50000 + 4.33013i −0.220113 + 0.381246i
\(130\) 0 0
\(131\) 7.00000 + 12.1244i 0.611593 + 1.05931i 0.990972 + 0.134069i \(0.0428042\pi\)
−0.379379 + 0.925241i \(0.623862\pi\)
\(132\) 0 0
\(133\) −0.500000 2.59808i −0.0433555 0.225282i
\(134\) 0 0
\(135\) −1.00000 1.73205i −0.0860663 0.149071i
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) −3.00000 −0.254457 −0.127228 0.991873i \(-0.540608\pi\)
−0.127228 + 0.991873i \(0.540608\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) −1.00000 + 1.73205i −0.0836242 + 0.144841i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) 0 0
\(147\) −6.50000 + 2.59808i −0.536111 + 0.214286i
\(148\) 0 0
\(149\) −6.00000 10.3923i −0.491539 0.851371i 0.508413 0.861113i \(-0.330232\pi\)
−0.999953 + 0.00974235i \(0.996899\pi\)
\(150\) 0 0
\(151\) −8.00000 + 13.8564i −0.651031 + 1.12762i 0.331842 + 0.943335i \(0.392330\pi\)
−0.982873 + 0.184284i \(0.941004\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −18.0000 −1.44579
\(156\) 0 0
\(157\) −7.00000 + 12.1244i −0.558661 + 0.967629i 0.438948 + 0.898513i \(0.355351\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) 0 0
\(159\) 6.00000 + 10.3923i 0.475831 + 0.824163i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.00000 3.46410i −0.156652 0.271329i 0.777007 0.629492i \(-0.216737\pi\)
−0.933659 + 0.358162i \(0.883403\pi\)
\(164\) 0 0
\(165\) 2.00000 3.46410i 0.155700 0.269680i
\(166\) 0 0
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −0.500000 + 0.866025i −0.0382360 + 0.0662266i
\(172\) 0 0
\(173\) 4.00000 + 6.92820i 0.304114 + 0.526742i 0.977064 0.212947i \(-0.0683062\pi\)
−0.672949 + 0.739689i \(0.734973\pi\)
\(174\) 0 0
\(175\) 2.00000 1.73205i 0.151186 0.130931i
\(176\) 0 0
\(177\) 6.00000 + 10.3923i 0.450988 + 0.781133i
\(178\) 0 0
\(179\) −1.00000 + 1.73205i −0.0747435 + 0.129460i −0.900975 0.433872i \(-0.857147\pi\)
0.826231 + 0.563331i \(0.190480\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.50000 + 0.866025i 0.181848 + 0.0629941i
\(190\) 0 0
\(191\) 5.00000 + 8.66025i 0.361787 + 0.626634i 0.988255 0.152813i \(-0.0488333\pi\)
−0.626468 + 0.779447i \(0.715500\pi\)
\(192\) 0 0
\(193\) −5.50000 + 9.52628i −0.395899 + 0.685717i −0.993215 0.116289i \(-0.962900\pi\)
0.597317 + 0.802005i \(0.296234\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −16.0000 −1.13995 −0.569976 0.821661i \(-0.693048\pi\)
−0.569976 + 0.821661i \(0.693048\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 0 0
\(201\) 2.50000 + 4.33013i 0.176336 + 0.305424i
\(202\) 0 0
\(203\) −10.0000 3.46410i −0.701862 0.243132i
\(204\) 0 0
\(205\) 10.0000 + 17.3205i 0.698430 + 1.20972i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) −3.00000 + 5.19615i −0.205557 + 0.356034i
\(214\) 0 0
\(215\) −5.00000 8.66025i −0.340997 0.590624i
\(216\) 0 0
\(217\) 18.0000 15.5885i 1.22192 1.05821i
\(218\) 0 0
\(219\) 1.50000 + 2.59808i 0.101361 + 0.175562i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) −9.50000 16.4545i −0.627778 1.08734i −0.987997 0.154475i \(-0.950631\pi\)
0.360219 0.932868i \(-0.382702\pi\)
\(230\) 0 0
\(231\) 1.00000 + 5.19615i 0.0657952 + 0.341882i
\(232\) 0 0
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 0 0
\(235\) −6.00000 + 10.3923i −0.391397 + 0.677919i
\(236\) 0 0
\(237\) 1.00000 0.0649570
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −7.00000 + 12.1244i −0.450910 + 0.780998i −0.998443 0.0557856i \(-0.982234\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 2.00000 13.8564i 0.127775 0.885253i
\(246\) 0 0
\(247\) 0.500000 + 0.866025i 0.0318142 + 0.0551039i
\(248\) 0 0
\(249\) −3.00000 + 5.19615i −0.190117 + 0.329293i
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.0000 22.5167i −0.810918 1.40455i −0.912222 0.409695i \(-0.865635\pi\)
0.101305 0.994855i \(-0.467698\pi\)
\(258\) 0 0
\(259\) 1.50000 + 7.79423i 0.0932055 + 0.484310i
\(260\) 0 0
\(261\) 2.00000 + 3.46410i 0.123797 + 0.214423i
\(262\) 0 0
\(263\) 2.00000 3.46410i 0.123325 0.213606i −0.797752 0.602986i \(-0.793977\pi\)
0.921077 + 0.389380i \(0.127311\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 0 0
\(267\) 16.0000 0.979184
\(268\) 0 0
\(269\) 3.00000 5.19615i 0.182913 0.316815i −0.759958 0.649972i \(-0.774781\pi\)
0.942871 + 0.333157i \(0.108114\pi\)
\(270\) 0 0
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) 0 0
\(273\) 2.00000 1.73205i 0.121046 0.104828i
\(274\) 0 0
\(275\) −1.00000 1.73205i −0.0603023 0.104447i
\(276\) 0 0
\(277\) 6.50000 11.2583i 0.390547 0.676448i −0.601975 0.798515i \(-0.705619\pi\)
0.992522 + 0.122068i \(0.0389525\pi\)
\(278\) 0 0
\(279\) −9.00000 −0.538816
\(280\) 0 0
\(281\) −4.00000 −0.238620 −0.119310 0.992857i \(-0.538068\pi\)
−0.119310 + 0.992857i \(0.538068\pi\)
\(282\) 0 0
\(283\) 5.50000 9.52628i 0.326941 0.566279i −0.654962 0.755662i \(-0.727315\pi\)
0.981903 + 0.189383i \(0.0606488\pi\)
\(284\) 0 0
\(285\) −1.00000 1.73205i −0.0592349 0.102598i
\(286\) 0 0
\(287\) −25.0000 8.66025i −1.47570 0.511199i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 3.00000 5.19615i 0.175863 0.304604i
\(292\) 0 0
\(293\) −8.00000 −0.467365 −0.233682 0.972313i \(-0.575078\pi\)
−0.233682 + 0.972313i \(0.575078\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 0 0
\(297\) 1.00000 1.73205i 0.0580259 0.100504i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.5000 + 4.33013i 0.720488 + 0.249584i
\(302\) 0 0
\(303\) 1.00000 + 1.73205i 0.0574485 + 0.0995037i
\(304\) 0 0
\(305\) 10.0000 17.3205i 0.572598 0.991769i
\(306\) 0 0
\(307\) −17.0000 −0.970241 −0.485121 0.874447i \(-0.661224\pi\)
−0.485121 + 0.874447i \(0.661224\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) 0 0
\(311\) −3.00000 + 5.19615i −0.170114 + 0.294647i −0.938460 0.345389i \(-0.887747\pi\)
0.768345 + 0.640036i \(0.221080\pi\)
\(312\) 0 0
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) 0 0
\(315\) −4.00000 + 3.46410i −0.225374 + 0.195180i
\(316\) 0 0
\(317\) 12.0000 + 20.7846i 0.673987 + 1.16738i 0.976764 + 0.214318i \(0.0687530\pi\)
−0.302777 + 0.953062i \(0.597914\pi\)
\(318\) 0 0
\(319\) −4.00000 + 6.92820i −0.223957 + 0.387905i
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.500000 + 0.866025i −0.0277350 + 0.0480384i
\(326\) 0 0
\(327\) 4.50000 + 7.79423i 0.248851 + 0.431022i
\(328\) 0 0
\(329\) −3.00000 15.5885i −0.165395 0.859419i
\(330\) 0 0
\(331\) 12.5000 + 21.6506i 0.687062 + 1.19003i 0.972784 + 0.231714i \(0.0744333\pi\)
−0.285722 + 0.958313i \(0.592233\pi\)
\(332\) 0 0
\(333\) 1.50000 2.59808i 0.0821995 0.142374i
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 0 0
\(339\) −5.00000 + 8.66025i −0.271563 + 0.470360i
\(340\) 0 0
\(341\) −9.00000 15.5885i −0.487377 0.844162i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.0000 + 27.7128i −0.858925 + 1.48770i 0.0140303 + 0.999902i \(0.495534\pi\)
−0.872955 + 0.487800i \(0.837799\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −17.0000 + 29.4449i −0.904819 + 1.56719i −0.0836583 + 0.996495i \(0.526660\pi\)
−0.821160 + 0.570697i \(0.806673\pi\)
\(354\) 0 0
\(355\) −6.00000 10.3923i −0.318447 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.0000 + 17.3205i 0.527780 + 0.914141i 0.999476 + 0.0323801i \(0.0103087\pi\)
−0.471696 + 0.881761i \(0.656358\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −4.50000 + 7.79423i −0.234898 + 0.406855i −0.959243 0.282582i \(-0.908809\pi\)
0.724345 + 0.689438i \(0.242142\pi\)
\(368\) 0 0
\(369\) 5.00000 + 8.66025i 0.260290 + 0.450835i
\(370\) 0 0
\(371\) 24.0000 20.7846i 1.24602 1.07908i
\(372\) 0 0
\(373\) 11.5000 + 19.9186i 0.595447 + 1.03135i 0.993484 + 0.113975i \(0.0363585\pi\)
−0.398036 + 0.917370i \(0.630308\pi\)
\(374\) 0 0
\(375\) 6.00000 10.3923i 0.309839 0.536656i
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 3.00000 0.154100 0.0770498 0.997027i \(-0.475450\pi\)
0.0770498 + 0.997027i \(0.475450\pi\)
\(380\) 0 0
\(381\) −7.50000 + 12.9904i −0.384237 + 0.665517i
\(382\) 0 0
\(383\) −6.00000 10.3923i −0.306586 0.531022i 0.671027 0.741433i \(-0.265853\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(384\) 0 0
\(385\) −10.0000 3.46410i −0.509647 0.176547i
\(386\) 0 0
\(387\) −2.50000 4.33013i −0.127082 0.220113i
\(388\) 0 0
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −14.0000 −0.706207
\(394\) 0 0
\(395\) −1.00000 + 1.73205i −0.0503155 + 0.0871489i
\(396\) 0 0
\(397\) −4.50000 7.79423i −0.225849 0.391181i 0.730725 0.682672i \(-0.239182\pi\)
−0.956574 + 0.291491i \(0.905849\pi\)
\(398\) 0 0
\(399\) 2.50000 + 0.866025i 0.125157 + 0.0433555i
\(400\) 0 0
\(401\) 18.0000 + 31.1769i 0.898877 + 1.55690i 0.828932 + 0.559350i \(0.188949\pi\)
0.0699455 + 0.997551i \(0.477717\pi\)
\(402\) 0 0
\(403\) −4.50000 + 7.79423i −0.224161 + 0.388258i
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) 0 0
\(411\) 6.00000 + 10.3923i 0.295958 + 0.512615i
\(412\) 0 0
\(413\) 24.0000 20.7846i 1.18096 1.02274i
\(414\) 0 0
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) 0 0
\(417\) 1.50000 2.59808i 0.0734553 0.127228i
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) 7.00000 0.341159 0.170580 0.985344i \(-0.445436\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(422\) 0 0
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.00000 + 25.9808i 0.241967 + 1.25730i
\(428\) 0 0
\(429\) −1.00000 1.73205i −0.0482805 0.0836242i
\(430\) 0 0
\(431\) −9.00000 + 15.5885i −0.433515 + 0.750870i −0.997173 0.0751385i \(-0.976060\pi\)
0.563658 + 0.826008i \(0.309393\pi\)
\(432\) 0 0
\(433\) 31.0000 1.48976 0.744882 0.667196i \(-0.232506\pi\)
0.744882 + 0.667196i \(0.232506\pi\)
\(434\) 0 0
\(435\) −8.00000 −0.383571
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 1.00000 6.92820i 0.0476190 0.329914i
\(442\) 0 0
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) 0 0
\(445\) −16.0000 + 27.7128i −0.758473 + 1.31371i
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −10.0000 + 17.3205i −0.470882 + 0.815591i
\(452\) 0 0
\(453\) −8.00000 13.8564i −0.375873 0.651031i
\(454\) 0 0
\(455\) 1.00000 + 5.19615i 0.0468807 + 0.243599i
\(456\) 0 0
\(457\) 5.50000 + 9.52628i 0.257279 + 0.445621i 0.965512 0.260358i \(-0.0838407\pi\)
−0.708233 + 0.705979i \(0.750507\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 17.0000 0.790057 0.395029 0.918669i \(-0.370735\pi\)
0.395029 + 0.918669i \(0.370735\pi\)
\(464\) 0 0
\(465\) 9.00000 15.5885i 0.417365 0.722897i
\(466\) 0 0
\(467\) −3.00000 5.19615i −0.138823 0.240449i 0.788228 0.615383i \(-0.210999\pi\)
−0.927052 + 0.374934i \(0.877665\pi\)
\(468\) 0 0
\(469\) 10.0000 8.66025i 0.461757 0.399893i
\(470\) 0 0
\(471\) −7.00000 12.1244i −0.322543 0.558661i
\(472\) 0 0
\(473\) 5.00000 8.66025i 0.229900 0.398199i
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) −14.0000 + 24.2487i −0.639676 + 1.10795i 0.345827 + 0.938298i \(0.387598\pi\)
−0.985504 + 0.169654i \(0.945735\pi\)
\(480\) 0 0
\(481\) −1.50000 2.59808i −0.0683941 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.00000 + 10.3923i 0.272446 + 0.471890i
\(486\) 0 0
\(487\) 15.5000 26.8468i 0.702372 1.21654i −0.265260 0.964177i \(-0.585458\pi\)
0.967632 0.252367i \(-0.0812090\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.00000 + 3.46410i 0.0898933 + 0.155700i
\(496\) 0 0
\(497\) 15.0000 + 5.19615i 0.672842 + 0.233079i
\(498\) 0 0
\(499\) −18.5000 32.0429i −0.828174 1.43444i −0.899469 0.436984i \(-0.856047\pi\)
0.0712957 0.997455i \(-0.477287\pi\)
\(500\) 0 0
\(501\) −7.00000 + 12.1244i −0.312737 + 0.541676i
\(502\) 0 0
\(503\) 42.0000 1.87269 0.936344 0.351085i \(-0.114187\pi\)
0.936344 + 0.351085i \(0.114187\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 6.00000 10.3923i 0.266469 0.461538i
\(508\) 0 0
\(509\) 1.00000 + 1.73205i 0.0443242 + 0.0767718i 0.887336 0.461123i \(-0.152553\pi\)
−0.843012 + 0.537895i \(0.819220\pi\)
\(510\) 0 0
\(511\) 6.00000 5.19615i 0.265424 0.229864i
\(512\) 0 0
\(513\) −0.500000 0.866025i −0.0220755 0.0382360i
\(514\) 0 0
\(515\) −7.00000 + 12.1244i −0.308457 + 0.534263i
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) −8.00000 −0.351161
\(520\) 0 0
\(521\) −6.00000 + 10.3923i −0.262865 + 0.455295i −0.967002 0.254769i \(-0.918001\pi\)
0.704137 + 0.710064i \(0.251334\pi\)
\(522\) 0 0
\(523\) −15.5000 26.8468i −0.677768 1.17393i −0.975652 0.219326i \(-0.929614\pi\)
0.297884 0.954602i \(-0.403719\pi\)
\(524\) 0 0
\(525\) 0.500000 + 2.59808i 0.0218218 + 0.113389i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 8.00000 13.8564i 0.345870 0.599065i
\(536\) 0 0
\(537\) −1.00000 1.73205i −0.0431532 0.0747435i
\(538\) 0 0
\(539\) 13.0000 5.19615i 0.559950 0.223814i
\(540\) 0 0
\(541\) −9.50000 16.4545i −0.408437 0.707433i 0.586278 0.810110i \(-0.300593\pi\)
−0.994715 + 0.102677i \(0.967259\pi\)
\(542\) 0 0
\(543\) 6.50000 11.2583i 0.278942 0.483141i
\(544\) 0 0
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 5.00000 8.66025i 0.213395 0.369611i
\(550\) 0 0
\(551\) 2.00000 + 3.46410i 0.0852029 + 0.147576i
\(552\) 0 0
\(553\) −0.500000 2.59808i −0.0212622 0.110481i
\(554\) 0 0
\(555\) 3.00000 + 5.19615i 0.127343 + 0.220564i
\(556\) 0 0
\(557\) −1.00000 + 1.73205i −0.0423714 + 0.0733893i −0.886433 0.462856i \(-0.846825\pi\)
0.844062 + 0.536246i \(0.180158\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.0000 22.5167i 0.547885 0.948964i −0.450535 0.892759i \(-0.648767\pi\)
0.998419 0.0562051i \(-0.0179001\pi\)
\(564\) 0 0
\(565\) −10.0000 17.3205i −0.420703 0.728679i
\(566\) 0 0
\(567\) −2.00000 + 1.73205i −0.0839921 + 0.0727393i
\(568\) 0 0
\(569\) 13.0000 + 22.5167i 0.544988 + 0.943948i 0.998608 + 0.0527519i \(0.0167993\pi\)
−0.453619 + 0.891196i \(0.649867\pi\)
\(570\) 0 0
\(571\) 9.50000 16.4545i 0.397563 0.688599i −0.595862 0.803087i \(-0.703189\pi\)
0.993425 + 0.114488i \(0.0365228\pi\)
\(572\) 0 0
\(573\) −10.0000 −0.417756
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.50000 14.7224i 0.353860 0.612903i −0.633062 0.774101i \(-0.718202\pi\)
0.986922 + 0.161198i \(0.0515357\pi\)
\(578\) 0 0
\(579\) −5.50000 9.52628i −0.228572 0.395899i
\(580\) 0 0
\(581\) 15.0000 + 5.19615i 0.622305 + 0.215573i
\(582\) 0 0
\(583\) −12.0000 20.7846i −0.496989 0.860811i
\(584\) 0 0
\(585\) 1.00000 1.73205i 0.0413449 0.0716115i
\(586\) 0 0
\(587\) 16.0000 0.660391 0.330195 0.943913i \(-0.392885\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(588\) 0 0
\(589\) −9.00000 −0.370839
\(590\) 0 0
\(591\) 8.00000 13.8564i 0.329076 0.569976i
\(592\) 0 0
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) −9.00000 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(602\) 0 0
\(603\) −5.00000 −0.203616
\(604\) 0 0
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) 11.5000 + 19.9186i 0.466771 + 0.808470i 0.999279 0.0379540i \(-0.0120840\pi\)
−0.532509 + 0.846424i \(0.678751\pi\)
\(608\) 0 0
\(609\) 8.00000 6.92820i 0.324176 0.280745i
\(610\) 0 0
\(611\) 3.00000 + 5.19615i 0.121367 + 0.210214i
\(612\) 0 0
\(613\) 17.0000 29.4449i 0.686624 1.18927i −0.286300 0.958140i \(-0.592425\pi\)
0.972924 0.231127i \(-0.0742412\pi\)
\(614\) 0 0
\(615\) −20.0000 −0.806478
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 14.5000 25.1147i 0.582804 1.00945i −0.412341 0.911030i \(-0.635289\pi\)
0.995145 0.0984169i \(-0.0313779\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.00000 41.5692i −0.320513 1.66544i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 1.00000 1.73205i 0.0399362 0.0691714i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) −2.00000 + 3.46410i −0.0794929 + 0.137686i
\(634\) 0 0
\(635\) −15.0000 25.9808i −0.595257 1.03102i
\(636\) 0 0
\(637\) −5.50000 4.33013i −0.217918 0.171566i
\(638\) 0 0
\(639\) −3.00000 5.19615i −0.118678 0.205557i
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) 10.0000 0.393750
\(646\) 0 0
\(647\) 1.00000 1.73205i 0.0393141 0.0680939i −0.845699 0.533660i \(-0.820816\pi\)
0.885013 + 0.465566i \(0.154149\pi\)
\(648\) 0 0
\(649\) −12.0000 20.7846i −0.471041 0.815867i
\(650\) 0 0
\(651\) 4.50000 + 23.3827i 0.176369 + 0.916440i
\(652\) 0 0
\(653\) 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i \(-0.0521013\pi\)
−0.634437 + 0.772975i \(0.718768\pi\)
\(654\) 0 0
\(655\) 14.0000 24.2487i 0.547025 0.947476i
\(656\) 0 0
\(657\) −3.00000 −0.117041
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −20.5000 + 35.5070i −0.797358 + 1.38106i 0.123974 + 0.992286i \(0.460436\pi\)
−0.921331 + 0.388778i \(0.872897\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.00000 + 3.46410i −0.155113 + 0.134332i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 8.00000 13.8564i 0.309298 0.535720i
\(670\) 0 0
\(671\) 20.0000 0.772091
\(672\) 0 0
\(673\) −41.0000 −1.58043 −0.790217 0.612827i \(-0.790032\pi\)
−0.790217 + 0.612827i \(0.790032\pi\)
\(674\) 0 0
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) 0 0
\(677\) 6.00000 + 10.3923i 0.230599 + 0.399409i 0.957984 0.286820i \(-0.0925982\pi\)
−0.727386 + 0.686229i \(0.759265\pi\)
\(678\) 0 0
\(679\) −15.0000 5.19615i −0.575647 0.199410i
\(680\) 0 0
\(681\) −9.00000 15.5885i −0.344881 0.597351i
\(682\) 0 0
\(683\) 6.00000 10.3923i 0.229584 0.397650i −0.728101 0.685470i \(-0.759597\pi\)
0.957685 + 0.287819i \(0.0929302\pi\)
\(684\) 0 0
\(685\) −24.0000 −0.916993
\(686\) 0 0
\(687\) 19.0000 0.724895
\(688\) 0 0
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 18.5000 + 32.0429i 0.703773 + 1.21897i 0.967132 + 0.254273i \(0.0818362\pi\)
−0.263359 + 0.964698i \(0.584830\pi\)
\(692\) 0 0
\(693\) −5.00000 1.73205i −0.189934 0.0657952i
\(694\) 0 0
\(695\) 3.00000 + 5.19615i 0.113796 + 0.197101i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 1.50000 2.59808i 0.0565736 0.0979883i
\(704\) 0 0
\(705\) −6.00000 10.3923i −0.225973 0.391397i
\(706\) 0 0
\(707\) 4.00000 3.46410i 0.150435 0.130281i
\(708\) 0 0
\(709\) 15.0000 + 25.9808i 0.563337 + 0.975728i 0.997202 + 0.0747503i \(0.0238160\pi\)
−0.433865 + 0.900978i \(0.642851\pi\)
\(710\) 0 0
\(711\) −0.500000 + 0.866025i −0.0187515 + 0.0324785i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) 3.00000 5.19615i 0.112037 0.194054i
\(718\) 0 0
\(719\) −9.00000 15.5885i −0.335643 0.581351i 0.647965 0.761670i \(-0.275620\pi\)
−0.983608 + 0.180319i \(0.942287\pi\)
\(720\) 0 0
\(721\) −3.50000 18.1865i −0.130347 0.677302i
\(722\) 0 0
\(723\) −7.00000 12.1244i −0.260333 0.450910i
\(724\) 0 0
\(725\) −2.00000 + 3.46410i −0.0742781 + 0.128654i
\(726\) 0 0
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −7.50000 12.9904i −0.277019 0.479811i 0.693624 0.720338i \(-0.256013\pi\)
−0.970642 + 0.240527i \(0.922680\pi\)
\(734\) 0 0
\(735\) 11.0000 + 8.66025i 0.405741 + 0.319438i
\(736\) 0 0
\(737\) −5.00000 8.66025i −0.184177 0.319005i
\(738\) 0 0
\(739\) 7.50000 12.9904i 0.275892 0.477859i −0.694468 0.719524i \(-0.744360\pi\)
0.970360 + 0.241665i \(0.0776935\pi\)
\(740\) 0 0
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) −42.0000 −1.54083 −0.770415 0.637542i \(-0.779951\pi\)
−0.770415 + 0.637542i \(0.779951\pi\)
\(744\) 0 0
\(745\) −12.0000 + 20.7846i −0.439646 + 0.761489i
\(746\) 0 0
\(747\) −3.00000 5.19615i −0.109764 0.190117i
\(748\) 0 0
\(749\) 4.00000 + 20.7846i 0.146157 + 0.759453i
\(750\) 0 0
\(751\) 6.50000 + 11.2583i 0.237188 + 0.410822i 0.959906 0.280321i \(-0.0904408\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) 0 0
\(753\) 4.00000 6.92820i 0.145768 0.252478i
\(754\) 0 0
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000 + 41.5692i 0.869999 + 1.50688i 0.861996 + 0.506915i \(0.169214\pi\)
0.00800331 + 0.999968i \(0.497452\pi\)
\(762\) 0 0
\(763\) 18.0000 15.5885i 0.651644 0.564340i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.00000 + 10.3923i −0.216647 + 0.375244i
\(768\) 0 0
\(769\) −49.0000 −1.76699 −0.883493 0.468445i \(-0.844814\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 26.0000 0.936367
\(772\) 0 0
\(773\) −17.0000 + 29.4449i −0.611448 + 1.05906i 0.379549 + 0.925172i \(0.376079\pi\)
−0.990997 + 0.133887i \(0.957254\pi\)
\(774\) 0 0
\(775\) −4.50000 7.79423i −0.161645 0.279977i
\(776\) 0 0
\(777\) −7.50000 2.59808i −0.269061 0.0932055i
\(778\) 0 0
\(779\) 5.00000 + 8.66025i 0.179144 + 0.310286i
\(780\) 0 0
\(781\) 6.00000 10.3923i 0.214697 0.371866i
\(782\) 0 0
\(783\) −4.00000 −0.142948
\(784\) 0 0
\(785\) 28.0000 0.999363
\(786\) 0 0
\(787\) −20.0000 + 34.6410i −0.712923 + 1.23482i 0.250832 + 0.968031i \(0.419296\pi\)
−0.963755 + 0.266788i \(0.914038\pi\)
\(788\) 0 0
\(789\) 2.00000 + 3.46410i 0.0712019 + 0.123325i
\(790\) 0 0
\(791\) 25.0000 + 8.66025i 0.888898 + 0.307923i
\(792\) 0 0
\(793\) −5.00000 8.66025i −0.177555 0.307535i
\(794\) 0 0
\(795\) 12.0000 20.7846i 0.425596 0.737154i
\(796\) 0 0
\(797\) 8.00000 0.283375 0.141687 0.989911i \(-0.454747\pi\)
0.141687 + 0.989911i \(0.454747\pi\)