# Properties

 Label 1344.2.k.d Level $1344$ Weight $2$ Character orbit 1344.k Analytic conductor $10.732$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1344 = 2^{6} \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1344.k (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$10.7318940317$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{6})$$ Defining polynomial: $$x^{4} + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$3$$ Twist minimal: no (minimal twist has level 42) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{3} + ( \beta_{1} - \beta_{3} ) q^{5} + ( 1 + \beta_{1} + \beta_{3} ) q^{7} + \beta_{2} q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{3} + ( \beta_{1} - \beta_{3} ) q^{5} + ( 1 + \beta_{1} + \beta_{3} ) q^{7} + \beta_{2} q^{9} + ( -\beta_{1} - \beta_{3} ) q^{13} + ( 3 + \beta_{2} ) q^{15} + ( 2 \beta_{1} - 2 \beta_{3} ) q^{17} + ( -\beta_{1} - \beta_{3} ) q^{19} + ( -3 + \beta_{1} + \beta_{2} ) q^{21} + 2 \beta_{2} q^{23} + q^{25} + 3 \beta_{3} q^{27} -2 \beta_{2} q^{29} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{35} + 2 q^{37} + ( 3 - \beta_{2} ) q^{39} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{41} + 4 q^{43} + ( 3 \beta_{1} + 3 \beta_{3} ) q^{45} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{47} + ( -5 + 2 \beta_{1} + 2 \beta_{3} ) q^{49} + ( 6 + 2 \beta_{2} ) q^{51} + 2 \beta_{2} q^{53} + ( 3 - \beta_{2} ) q^{57} + ( -5 \beta_{1} + 5 \beta_{3} ) q^{59} + ( -5 \beta_{1} - 5 \beta_{3} ) q^{61} + ( -3 \beta_{1} + \beta_{2} + 3 \beta_{3} ) q^{63} -2 \beta_{2} q^{65} + 8 q^{67} + 6 \beta_{3} q^{69} + ( -4 \beta_{1} - 4 \beta_{3} ) q^{73} + \beta_{1} q^{75} + 10 q^{79} -9 q^{81} + ( \beta_{1} - \beta_{3} ) q^{83} + 12 q^{85} -6 \beta_{3} q^{87} + ( 6 - \beta_{1} - \beta_{3} ) q^{91} -2 \beta_{2} q^{95} + ( -2 \beta_{1} - 2 \beta_{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 4q^{7} + O(q^{10})$$ $$4q + 4q^{7} + 12q^{15} - 12q^{21} + 4q^{25} + 8q^{37} + 12q^{39} + 16q^{43} - 20q^{49} + 24q^{51} + 12q^{57} + 32q^{67} + 40q^{79} - 36q^{81} + 48q^{85} + 24q^{91} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2}$$ $$\beta_{3}$$ $$=$$ $$\nu^{3}$$$$/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2}$$ $$\nu^{3}$$ $$=$$ $$3 \beta_{3}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$449$$ $$577$$ $$1093$$ $$\chi(n)$$ $$1$$ $$-1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1217.1
 −1.22474 − 1.22474i −1.22474 + 1.22474i 1.22474 − 1.22474i 1.22474 + 1.22474i
0 −1.22474 1.22474i 0 −2.44949 0 1.00000 2.44949i 0 3.00000i 0
1217.2 0 −1.22474 + 1.22474i 0 −2.44949 0 1.00000 + 2.44949i 0 3.00000i 0
1217.3 0 1.22474 1.22474i 0 2.44949 0 1.00000 2.44949i 0 3.00000i 0
1217.4 0 1.22474 + 1.22474i 0 2.44949 0 1.00000 + 2.44949i 0 3.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.2.k.d 4
3.b odd 2 1 inner 1344.2.k.d 4
4.b odd 2 1 1344.2.k.c 4
7.b odd 2 1 inner 1344.2.k.d 4
8.b even 2 1 336.2.k.b 4
8.d odd 2 1 42.2.d.a 4
12.b even 2 1 1344.2.k.c 4
21.c even 2 1 inner 1344.2.k.d 4
24.f even 2 1 42.2.d.a 4
24.h odd 2 1 336.2.k.b 4
28.d even 2 1 1344.2.k.c 4
40.e odd 2 1 1050.2.b.b 4
40.k even 4 1 1050.2.d.b 4
40.k even 4 1 1050.2.d.e 4
56.e even 2 1 42.2.d.a 4
56.h odd 2 1 336.2.k.b 4
56.k odd 6 2 294.2.f.b 8
56.m even 6 2 294.2.f.b 8
72.l even 6 2 1134.2.m.g 8
72.p odd 6 2 1134.2.m.g 8
84.h odd 2 1 1344.2.k.c 4
120.m even 2 1 1050.2.b.b 4
120.q odd 4 1 1050.2.d.b 4
120.q odd 4 1 1050.2.d.e 4
168.e odd 2 1 42.2.d.a 4
168.i even 2 1 336.2.k.b 4
168.v even 6 2 294.2.f.b 8
168.be odd 6 2 294.2.f.b 8
280.n even 2 1 1050.2.b.b 4
280.y odd 4 1 1050.2.d.b 4
280.y odd 4 1 1050.2.d.e 4
504.be even 6 2 1134.2.m.g 8
504.co odd 6 2 1134.2.m.g 8
840.b odd 2 1 1050.2.b.b 4
840.bm even 4 1 1050.2.d.b 4
840.bm even 4 1 1050.2.d.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.d.a 4 8.d odd 2 1
42.2.d.a 4 24.f even 2 1
42.2.d.a 4 56.e even 2 1
42.2.d.a 4 168.e odd 2 1
294.2.f.b 8 56.k odd 6 2
294.2.f.b 8 56.m even 6 2
294.2.f.b 8 168.v even 6 2
294.2.f.b 8 168.be odd 6 2
336.2.k.b 4 8.b even 2 1
336.2.k.b 4 24.h odd 2 1
336.2.k.b 4 56.h odd 2 1
336.2.k.b 4 168.i even 2 1
1050.2.b.b 4 40.e odd 2 1
1050.2.b.b 4 120.m even 2 1
1050.2.b.b 4 280.n even 2 1
1050.2.b.b 4 840.b odd 2 1
1050.2.d.b 4 40.k even 4 1
1050.2.d.b 4 120.q odd 4 1
1050.2.d.b 4 280.y odd 4 1
1050.2.d.b 4 840.bm even 4 1
1050.2.d.e 4 40.k even 4 1
1050.2.d.e 4 120.q odd 4 1
1050.2.d.e 4 280.y odd 4 1
1050.2.d.e 4 840.bm even 4 1
1134.2.m.g 8 72.l even 6 2
1134.2.m.g 8 72.p odd 6 2
1134.2.m.g 8 504.be even 6 2
1134.2.m.g 8 504.co odd 6 2
1344.2.k.c 4 4.b odd 2 1
1344.2.k.c 4 12.b even 2 1
1344.2.k.c 4 28.d even 2 1
1344.2.k.c 4 84.h odd 2 1
1344.2.k.d 4 1.a even 1 1 trivial
1344.2.k.d 4 3.b odd 2 1 inner
1344.2.k.d 4 7.b odd 2 1 inner
1344.2.k.d 4 21.c even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1344, [\chi])$$:

 $$T_{5}^{2} - 6$$ $$T_{43} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$9 + T^{4}$$
$5$ $$( -6 + T^{2} )^{2}$$
$7$ $$( 7 - 2 T + T^{2} )^{2}$$
$11$ $$T^{4}$$
$13$ $$( 6 + T^{2} )^{2}$$
$17$ $$( -24 + T^{2} )^{2}$$
$19$ $$( 6 + T^{2} )^{2}$$
$23$ $$( 36 + T^{2} )^{2}$$
$29$ $$( 36 + T^{2} )^{2}$$
$31$ $$T^{4}$$
$37$ $$( -2 + T )^{4}$$
$41$ $$( -24 + T^{2} )^{2}$$
$43$ $$( -4 + T )^{4}$$
$47$ $$( -24 + T^{2} )^{2}$$
$53$ $$( 36 + T^{2} )^{2}$$
$59$ $$( -150 + T^{2} )^{2}$$
$61$ $$( 150 + T^{2} )^{2}$$
$67$ $$( -8 + T )^{4}$$
$71$ $$T^{4}$$
$73$ $$( 96 + T^{2} )^{2}$$
$79$ $$( -10 + T )^{4}$$
$83$ $$( -6 + T^{2} )^{2}$$
$89$ $$T^{4}$$
$97$ $$( 24 + T^{2} )^{2}$$