# Properties

 Label 1344.2.a.s Level $1344$ Weight $2$ Character orbit 1344.a Self dual yes Analytic conductor $10.732$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1344,2,Mod(1,1344)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1344, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1344.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1344 = 2^{6} \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1344.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$10.7318940317$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 21) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{3} + 2 q^{5} + q^{7} + q^{9}+O(q^{10})$$ q + q^3 + 2 * q^5 + q^7 + q^9 $$q + q^{3} + 2 q^{5} + q^{7} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} - 6 q^{17} + 4 q^{19} + q^{21} - q^{25} + q^{27} + 2 q^{29} + 4 q^{33} + 2 q^{35} - 6 q^{37} + 2 q^{39} + 2 q^{41} - 4 q^{43} + 2 q^{45} + q^{49} - 6 q^{51} - 6 q^{53} + 8 q^{55} + 4 q^{57} + 12 q^{59} + 2 q^{61} + q^{63} + 4 q^{65} + 4 q^{67} - 6 q^{73} - q^{75} + 4 q^{77} + 16 q^{79} + q^{81} - 12 q^{83} - 12 q^{85} + 2 q^{87} - 14 q^{89} + 2 q^{91} + 8 q^{95} + 18 q^{97} + 4 q^{99}+O(q^{100})$$ q + q^3 + 2 * q^5 + q^7 + q^9 + 4 * q^11 + 2 * q^13 + 2 * q^15 - 6 * q^17 + 4 * q^19 + q^21 - q^25 + q^27 + 2 * q^29 + 4 * q^33 + 2 * q^35 - 6 * q^37 + 2 * q^39 + 2 * q^41 - 4 * q^43 + 2 * q^45 + q^49 - 6 * q^51 - 6 * q^53 + 8 * q^55 + 4 * q^57 + 12 * q^59 + 2 * q^61 + q^63 + 4 * q^65 + 4 * q^67 - 6 * q^73 - q^75 + 4 * q^77 + 16 * q^79 + q^81 - 12 * q^83 - 12 * q^85 + 2 * q^87 - 14 * q^89 + 2 * q^91 + 8 * q^95 + 18 * q^97 + 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 2.00000 0 1.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.2.a.s 1
3.b odd 2 1 4032.2.a.k 1
4.b odd 2 1 1344.2.a.g 1
7.b odd 2 1 9408.2.a.m 1
8.b even 2 1 336.2.a.a 1
8.d odd 2 1 21.2.a.a 1
12.b even 2 1 4032.2.a.h 1
16.e even 4 2 5376.2.c.l 2
16.f odd 4 2 5376.2.c.r 2
24.f even 2 1 63.2.a.a 1
24.h odd 2 1 1008.2.a.l 1
28.d even 2 1 9408.2.a.bv 1
40.e odd 2 1 525.2.a.d 1
40.f even 2 1 8400.2.a.bn 1
40.k even 4 2 525.2.d.a 2
56.e even 2 1 147.2.a.a 1
56.h odd 2 1 2352.2.a.v 1
56.j odd 6 2 2352.2.q.e 2
56.k odd 6 2 147.2.e.b 2
56.m even 6 2 147.2.e.c 2
56.p even 6 2 2352.2.q.x 2
72.l even 6 2 567.2.f.b 2
72.p odd 6 2 567.2.f.g 2
88.g even 2 1 2541.2.a.j 1
104.h odd 2 1 3549.2.a.c 1
120.m even 2 1 1575.2.a.c 1
120.q odd 4 2 1575.2.d.a 2
136.e odd 2 1 6069.2.a.b 1
152.b even 2 1 7581.2.a.d 1
168.e odd 2 1 441.2.a.f 1
168.i even 2 1 7056.2.a.p 1
168.v even 6 2 441.2.e.a 2
168.be odd 6 2 441.2.e.b 2
264.p odd 2 1 7623.2.a.g 1
280.n even 2 1 3675.2.a.n 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.a.a 1 8.d odd 2 1
63.2.a.a 1 24.f even 2 1
147.2.a.a 1 56.e even 2 1
147.2.e.b 2 56.k odd 6 2
147.2.e.c 2 56.m even 6 2
336.2.a.a 1 8.b even 2 1
441.2.a.f 1 168.e odd 2 1
441.2.e.a 2 168.v even 6 2
441.2.e.b 2 168.be odd 6 2
525.2.a.d 1 40.e odd 2 1
525.2.d.a 2 40.k even 4 2
567.2.f.b 2 72.l even 6 2
567.2.f.g 2 72.p odd 6 2
1008.2.a.l 1 24.h odd 2 1
1344.2.a.g 1 4.b odd 2 1
1344.2.a.s 1 1.a even 1 1 trivial
1575.2.a.c 1 120.m even 2 1
1575.2.d.a 2 120.q odd 4 2
2352.2.a.v 1 56.h odd 2 1
2352.2.q.e 2 56.j odd 6 2
2352.2.q.x 2 56.p even 6 2
2541.2.a.j 1 88.g even 2 1
3549.2.a.c 1 104.h odd 2 1
3675.2.a.n 1 280.n even 2 1
4032.2.a.h 1 12.b even 2 1
4032.2.a.k 1 3.b odd 2 1
5376.2.c.l 2 16.e even 4 2
5376.2.c.r 2 16.f odd 4 2
6069.2.a.b 1 136.e odd 2 1
7056.2.a.p 1 168.i even 2 1
7581.2.a.d 1 152.b even 2 1
7623.2.a.g 1 264.p odd 2 1
8400.2.a.bn 1 40.f even 2 1
9408.2.a.m 1 7.b odd 2 1
9408.2.a.bv 1 28.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1344))$$:

 $$T_{5} - 2$$ T5 - 2 $$T_{11} - 4$$ T11 - 4 $$T_{13} - 2$$ T13 - 2 $$T_{19} - 4$$ T19 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 1$$
$5$ $$T - 2$$
$7$ $$T - 1$$
$11$ $$T - 4$$
$13$ $$T - 2$$
$17$ $$T + 6$$
$19$ $$T - 4$$
$23$ $$T$$
$29$ $$T - 2$$
$31$ $$T$$
$37$ $$T + 6$$
$41$ $$T - 2$$
$43$ $$T + 4$$
$47$ $$T$$
$53$ $$T + 6$$
$59$ $$T - 12$$
$61$ $$T - 2$$
$67$ $$T - 4$$
$71$ $$T$$
$73$ $$T + 6$$
$79$ $$T - 16$$
$83$ $$T + 12$$
$89$ $$T + 14$$
$97$ $$T - 18$$