Properties

Label 1344.2.a.p.1.1
Level $1344$
Weight $2$
Character 1344.1
Self dual yes
Analytic conductor $10.732$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(10.7318940317\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1344.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{7} +1.00000 q^{9} +2.00000 q^{11} +2.00000 q^{13} +4.00000 q^{17} +4.00000 q^{19} -1.00000 q^{21} -6.00000 q^{23} -5.00000 q^{25} +1.00000 q^{27} +2.00000 q^{29} +2.00000 q^{33} +6.00000 q^{37} +2.00000 q^{39} +8.00000 q^{41} +8.00000 q^{43} -4.00000 q^{47} +1.00000 q^{49} +4.00000 q^{51} +6.00000 q^{53} +4.00000 q^{57} +14.0000 q^{61} -1.00000 q^{63} -4.00000 q^{67} -6.00000 q^{69} -2.00000 q^{71} -2.00000 q^{73} -5.00000 q^{75} -2.00000 q^{77} +4.00000 q^{79} +1.00000 q^{81} -12.0000 q^{83} +2.00000 q^{87} -2.00000 q^{91} +6.00000 q^{97} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) −5.00000 −0.577350
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) 18.0000 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 8.00000 0.721336
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 0 0
\(175\) 5.00000 0.377964
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) 0 0
\(193\) −26.0000 −1.87152 −0.935760 0.352636i \(-0.885285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 24.0000 1.65223 0.826114 0.563503i \(-0.190547\pi\)
0.826114 + 0.563503i \(0.190547\pi\)
\(212\) 0 0
\(213\) −2.00000 −0.137038
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) 8.00000 0.530979 0.265489 0.964114i \(-0.414466\pi\)
0.265489 + 0.964114i \(0.414466\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) −2.00000 −0.131590
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.0000 −0.975537 −0.487769 0.872973i \(-0.662189\pi\)
−0.487769 + 0.872973i \(0.662189\pi\)
\(270\) 0 0
\(271\) −32.0000 −1.94386 −0.971931 0.235267i \(-0.924404\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) −10.0000 −0.603023
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) −28.0000 −1.63578 −0.817889 0.575376i \(-0.804856\pi\)
−0.817889 + 0.575376i \(0.804856\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −28.0000 −1.58773 −0.793867 0.608091i \(-0.791935\pi\)
−0.793867 + 0.608091i \(0.791935\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) −6.00000 −0.334887
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 0 0
\(327\) 18.0000 0.995402
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) −16.0000 −0.879440 −0.439720 0.898135i \(-0.644922\pi\)
−0.439720 + 0.898135i \(0.644922\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.0000 1.61048 0.805242 0.592946i \(-0.202035\pi\)
0.805242 + 0.592946i \(0.202035\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −36.0000 −1.91609 −0.958043 0.286623i \(-0.907467\pi\)
−0.958043 + 0.286623i \(0.907467\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) −20.0000 −1.00887
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 14.0000 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) −8.00000 −0.390826 −0.195413 0.980721i \(-0.562605\pi\)
−0.195413 + 0.980721i \(0.562605\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) −4.00000 −0.194487
\(424\) 0 0
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) −14.0000 −0.677507
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 22.0000 1.04525 0.522626 0.852562i \(-0.324953\pi\)
0.522626 + 0.852562i \(0.324953\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −10.0000 −0.472984
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 36.0000 1.67669 0.838344 0.545142i \(-0.183524\pi\)
0.838344 + 0.545142i \(0.183524\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.0000 −1.48078 −0.740392 0.672176i \(-0.765360\pi\)
−0.740392 + 0.672176i \(0.765360\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) −20.0000 −0.917663
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 6.00000 0.273009
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 40.0000 1.81257 0.906287 0.422664i \(-0.138905\pi\)
0.906287 + 0.422664i \(0.138905\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) 8.00000 0.360302
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.00000 0.0897123
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) −16.0000 −0.709188 −0.354594 0.935020i \(-0.615381\pi\)
−0.354594 + 0.935020i \(0.615381\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −8.00000 −0.351840
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 5.00000 0.218218
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.0000 0.693037
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) −14.0000 −0.600798
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0000 0.932170 0.466085 0.884740i \(-0.345664\pi\)
0.466085 + 0.884740i \(0.345664\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 16.0000 0.674320 0.337160 0.941447i \(-0.390534\pi\)
0.337160 + 0.941447i \(0.390534\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) −10.0000 −0.417756
\(574\) 0 0
\(575\) 30.0000 1.25109
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) −26.0000 −1.08052
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.0000 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) −4.00000 −0.164260 −0.0821302 0.996622i \(-0.526172\pi\)
−0.0821302 + 0.996622i \(0.526172\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.0000 0.982255
\(598\) 0 0
\(599\) 38.0000 1.55264 0.776319 0.630340i \(-0.217085\pi\)
0.776319 + 0.630340i \(0.217085\pi\)
\(600\) 0 0
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) −2.00000 −0.0810441
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 8.00000 0.319489
\(628\) 0 0
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 24.0000 0.953914
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) 22.0000 0.868948 0.434474 0.900684i \(-0.356934\pi\)
0.434474 + 0.900684i \(0.356934\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −46.0000 −1.80012 −0.900060 0.435767i \(-0.856477\pi\)
−0.900060 + 0.435767i \(0.856477\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 30.0000 1.16686 0.583432 0.812162i \(-0.301709\pi\)
0.583432 + 0.812162i \(0.301709\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 28.0000 1.08093
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) −2.00000 −0.0759737
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 32.0000 1.21209
\(698\) 0 0
\(699\) −26.0000 −0.983410
\(700\) 0 0
\(701\) 26.0000 0.982006 0.491003 0.871158i \(-0.336630\pi\)
0.491003 + 0.871158i \(0.336630\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 26.0000 0.970988
\(718\) 0 0
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 22.0000 0.818189
\(724\) 0 0
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 32.0000 1.18356
\(732\) 0 0
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 6.00000 0.219235
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) 40.0000 1.45000 0.724999 0.688749i \(-0.241840\pi\)
0.724999 + 0.688749i \(0.241840\pi\)
\(762\) 0 0
\(763\) −18.0000 −0.651644
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) 0 0
\(771\) −8.00000 −0.288113
\(772\) 0 0
\(773\) 12.0000 0.431610 0.215805 0.976436i \(-0.430762\pi\)
0.215805 + 0.976436i \(0.430762\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.00000 −0.215249
\(778\) 0 0
\(779\) 32.0000 1.14652
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) −14.0000 −0.498413
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 28.0000 0.994309
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.00000 −0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −16.0000 −0.563227
\(808\) 0 0
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) −32.0000 −1.12229
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) −10.0000 −0.348155
\(826\) 0 0
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 0 0
\(829\) 50.0000 1.73657 0.868286 0.496064i \(-0.165222\pi\)
0.868286 + 0.496064i \(0.165222\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) 0 0
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.00000 −0.138095 −0.0690477 0.997613i \(-0.521996\pi\)
−0.0690477 + 0.997613i \(0.521996\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −2.00000 −0.0688837
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) −36.0000 −1.23406
\(852\) 0 0
\(853\) 30.0000 1.02718 0.513590 0.858036i \(-0.328315\pi\)
0.513590 + 0.858036i \(0.328315\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40.0000 −1.36637 −0.683187 0.730243i \(-0.739407\pi\)
−0.683187 + 0.730243i \(0.739407\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) −8.00000 −0.272639
\(862\) 0 0
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 8.00000 0.271381
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) −28.0000 −0.944417
\(880\) 0 0
\(881\) −12.0000 −0.404290 −0.202145 0.979356i \(-0.564791\pi\)
−0.202145 + 0.979356i \(0.564791\pi\)
\(882\) 0 0
\(883\) 56.0000 1.88455 0.942275 0.334840i \(-0.108682\pi\)
0.942275 + 0.334840i \(0.108682\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 0 0
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 24.0000 0.799556
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.0000 0.531271 0.265636 0.964073i \(-0.414418\pi\)
0.265636 + 0.964073i \(0.414418\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 14.0000 0.463841 0.231920 0.972735i \(-0.425499\pi\)
0.231920 + 0.972735i \(0.425499\pi\)
\(912\) 0 0
\(913\) −24.0000 −0.794284
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.0000 0.660458
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) −4.00000 −0.131662
\(924\) 0 0
\(925\) −30.0000 −0.986394
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −40.0000 −1.31236 −0.656179 0.754606i \(-0.727828\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 0 0
\(933\) −28.0000 −0.916679
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 0 0
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) −56.0000 −1.82555 −0.912774 0.408465i \(-0.866064\pi\)
−0.912774 + 0.408465i \(0.866064\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.0000 −0.454939 −0.227469 0.973785i \(-0.573045\pi\)
−0.227469 + 0.973785i \(0.573045\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 14.0000 0.453981
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.00000 0.129302
\(958\) 0 0
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −52.0000 −1.67221 −0.836104 0.548572i \(-0.815172\pi\)
−0.836104 + 0.548572i \(0.815172\pi\)
\(968\) 0 0
\(969\) 16.0000 0.513994
\(970\) 0 0
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) 12.0000 0.384702
\(974\) 0 0
\(975\) −10.0000 −0.320256
\(976\) 0 0
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 18.0000 0.574696
\(982\) 0 0
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.00000 0.127321
\(988\) 0 0
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 0 0
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.2.a.p.1.1 1
3.2 odd 2 4032.2.a.q.1.1 1
4.3 odd 2 1344.2.a.e.1.1 1
7.6 odd 2 9408.2.a.w.1.1 1
8.3 odd 2 672.2.a.g.1.1 yes 1
8.5 even 2 672.2.a.c.1.1 1
12.11 even 2 4032.2.a.x.1.1 1
16.3 odd 4 5376.2.c.j.2689.1 2
16.5 even 4 5376.2.c.y.2689.1 2
16.11 odd 4 5376.2.c.j.2689.2 2
16.13 even 4 5376.2.c.y.2689.2 2
24.5 odd 2 2016.2.a.d.1.1 1
24.11 even 2 2016.2.a.i.1.1 1
28.27 even 2 9408.2.a.ch.1.1 1
56.13 odd 2 4704.2.a.z.1.1 1
56.27 even 2 4704.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.a.c.1.1 1 8.5 even 2
672.2.a.g.1.1 yes 1 8.3 odd 2
1344.2.a.e.1.1 1 4.3 odd 2
1344.2.a.p.1.1 1 1.1 even 1 trivial
2016.2.a.d.1.1 1 24.5 odd 2
2016.2.a.i.1.1 1 24.11 even 2
4032.2.a.q.1.1 1 3.2 odd 2
4032.2.a.x.1.1 1 12.11 even 2
4704.2.a.k.1.1 1 56.27 even 2
4704.2.a.z.1.1 1 56.13 odd 2
5376.2.c.j.2689.1 2 16.3 odd 4
5376.2.c.j.2689.2 2 16.11 odd 4
5376.2.c.y.2689.1 2 16.5 even 4
5376.2.c.y.2689.2 2 16.13 even 4
9408.2.a.w.1.1 1 7.6 odd 2
9408.2.a.ch.1.1 1 28.27 even 2