Properties

Label 1344.2.a.m
Level $1344$
Weight $2$
Character orbit 1344.a
Self dual yes
Analytic conductor $10.732$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(10.7318940317\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - 2q^{5} + q^{7} + q^{9} + O(q^{10}) \) \( q + q^{3} - 2q^{5} + q^{7} + q^{9} - 6q^{13} - 2q^{15} - 2q^{17} - 4q^{19} + q^{21} - 4q^{23} - q^{25} + q^{27} + 10q^{29} - 8q^{31} - 2q^{35} - 6q^{37} - 6q^{39} - 2q^{41} + 4q^{43} - 2q^{45} + 8q^{47} + q^{49} - 2q^{51} + 10q^{53} - 4q^{57} - 12q^{59} + 2q^{61} + q^{63} + 12q^{65} - 12q^{67} - 4q^{69} - 12q^{71} - 14q^{73} - q^{75} - 8q^{79} + q^{81} - 12q^{83} + 4q^{85} + 10q^{87} - 2q^{89} - 6q^{91} - 8q^{93} + 8q^{95} + 10q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −2.00000 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.2.a.m 1
3.b odd 2 1 4032.2.a.bh 1
4.b odd 2 1 1344.2.a.b 1
7.b odd 2 1 9408.2.a.be 1
8.b even 2 1 168.2.a.a 1
8.d odd 2 1 336.2.a.e 1
12.b even 2 1 4032.2.a.bc 1
16.e even 4 2 5376.2.c.d 2
16.f odd 4 2 5376.2.c.bb 2
24.f even 2 1 1008.2.a.b 1
24.h odd 2 1 504.2.a.e 1
28.d even 2 1 9408.2.a.da 1
40.e odd 2 1 8400.2.a.y 1
40.f even 2 1 4200.2.a.t 1
40.i odd 4 2 4200.2.t.j 2
56.e even 2 1 2352.2.a.c 1
56.h odd 2 1 1176.2.a.f 1
56.j odd 6 2 1176.2.q.d 2
56.k odd 6 2 2352.2.q.d 2
56.m even 6 2 2352.2.q.w 2
56.p even 6 2 1176.2.q.f 2
168.e odd 2 1 7056.2.a.bq 1
168.i even 2 1 3528.2.a.v 1
168.s odd 6 2 3528.2.s.w 2
168.ba even 6 2 3528.2.s.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.a.a 1 8.b even 2 1
336.2.a.e 1 8.d odd 2 1
504.2.a.e 1 24.h odd 2 1
1008.2.a.b 1 24.f even 2 1
1176.2.a.f 1 56.h odd 2 1
1176.2.q.d 2 56.j odd 6 2
1176.2.q.f 2 56.p even 6 2
1344.2.a.b 1 4.b odd 2 1
1344.2.a.m 1 1.a even 1 1 trivial
2352.2.a.c 1 56.e even 2 1
2352.2.q.d 2 56.k odd 6 2
2352.2.q.w 2 56.m even 6 2
3528.2.a.v 1 168.i even 2 1
3528.2.s.g 2 168.ba even 6 2
3528.2.s.w 2 168.s odd 6 2
4032.2.a.bc 1 12.b even 2 1
4032.2.a.bh 1 3.b odd 2 1
4200.2.a.t 1 40.f even 2 1
4200.2.t.j 2 40.i odd 4 2
5376.2.c.d 2 16.e even 4 2
5376.2.c.bb 2 16.f odd 4 2
7056.2.a.bq 1 168.e odd 2 1
8400.2.a.y 1 40.e odd 2 1
9408.2.a.be 1 7.b odd 2 1
9408.2.a.da 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1344))\):

\( T_{5} + 2 \)
\( T_{11} \)
\( T_{13} + 6 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - T \)
$5$ \( 1 + 2 T + 5 T^{2} \)
$7$ \( 1 - T \)
$11$ \( 1 + 11 T^{2} \)
$13$ \( 1 + 6 T + 13 T^{2} \)
$17$ \( 1 + 2 T + 17 T^{2} \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + 4 T + 23 T^{2} \)
$29$ \( 1 - 10 T + 29 T^{2} \)
$31$ \( 1 + 8 T + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 + 2 T + 41 T^{2} \)
$43$ \( 1 - 4 T + 43 T^{2} \)
$47$ \( 1 - 8 T + 47 T^{2} \)
$53$ \( 1 - 10 T + 53 T^{2} \)
$59$ \( 1 + 12 T + 59 T^{2} \)
$61$ \( 1 - 2 T + 61 T^{2} \)
$67$ \( 1 + 12 T + 67 T^{2} \)
$71$ \( 1 + 12 T + 71 T^{2} \)
$73$ \( 1 + 14 T + 73 T^{2} \)
$79$ \( 1 + 8 T + 79 T^{2} \)
$83$ \( 1 + 12 T + 83 T^{2} \)
$89$ \( 1 + 2 T + 89 T^{2} \)
$97$ \( 1 - 10 T + 97 T^{2} \)
show more
show less