Defining parameters
| Level: | \( N \) | \(=\) | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1344.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 22 \) | ||
| Sturm bound: | \(512\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1344))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 280 | 24 | 256 |
| Cusp forms | 233 | 24 | 209 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(32\) | \(2\) | \(30\) | \(27\) | \(2\) | \(25\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(36\) | \(3\) | \(33\) | \(30\) | \(3\) | \(27\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(38\) | \(4\) | \(34\) | \(32\) | \(4\) | \(28\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(34\) | \(1\) | \(33\) | \(28\) | \(1\) | \(27\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(38\) | \(4\) | \(34\) | \(32\) | \(4\) | \(28\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(34\) | \(3\) | \(31\) | \(28\) | \(3\) | \(25\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(32\) | \(2\) | \(30\) | \(26\) | \(2\) | \(24\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(36\) | \(5\) | \(31\) | \(30\) | \(5\) | \(25\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(132\) | \(8\) | \(124\) | \(109\) | \(8\) | \(101\) | \(23\) | \(0\) | \(23\) | |||||
| Minus space | \(-\) | \(148\) | \(16\) | \(132\) | \(124\) | \(16\) | \(108\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1344))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1344))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1344)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(224))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(448))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(672))\)\(^{\oplus 2}\)