Properties

Label 1344.1.bn.b
Level $1344$
Weight $1$
Character orbit 1344.bn
Analytic conductor $0.671$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1344.bn (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.670743376979\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.588.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{3} - \zeta_{6} q^{7} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6}^{2} q^{3} - \zeta_{6} q^{7} - \zeta_{6} q^{9} + q^{13} - \zeta_{6} q^{19} - q^{21} + \zeta_{6}^{2} q^{25} - q^{27} - \zeta_{6}^{2} q^{31} - \zeta_{6} q^{37} - \zeta_{6}^{2} q^{39} + q^{43} + \zeta_{6}^{2} q^{49} - q^{57} + \zeta_{6} q^{61} + \zeta_{6}^{2} q^{63} + \zeta_{6}^{2} q^{67} - \zeta_{6}^{2} q^{73} + \zeta_{6} q^{75} + \zeta_{6} q^{79} + \zeta_{6}^{2} q^{81} - \zeta_{6} q^{91} - \zeta_{6} q^{93} + q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} - q^{7} - q^{9} + 2 q^{13} - q^{19} - 2 q^{21} - q^{25} - 2 q^{27} + q^{31} - q^{37} + q^{39} + 2 q^{43} - q^{49} - 2 q^{57} + 2 q^{61} - q^{63} - q^{67} + q^{73} + q^{75} + q^{79} - q^{81} - q^{91} - q^{93} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 + 0.866025i 0 0 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0
641.1 0 0.500000 0.866025i 0 0 0 −0.500000 0.866025i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.1.bn.b 2
3.b odd 2 1 CM 1344.1.bn.b 2
4.b odd 2 1 1344.1.bn.a 2
7.c even 3 1 inner 1344.1.bn.b 2
8.b even 2 1 84.1.p.a 2
8.d odd 2 1 336.1.bn.a 2
12.b even 2 1 1344.1.bn.a 2
21.h odd 6 1 inner 1344.1.bn.b 2
24.f even 2 1 336.1.bn.a 2
24.h odd 2 1 84.1.p.a 2
28.g odd 6 1 1344.1.bn.a 2
40.f even 2 1 2100.1.bn.c 2
40.i odd 4 2 2100.1.bh.a 4
56.e even 2 1 2352.1.bn.a 2
56.h odd 2 1 588.1.p.a 2
56.j odd 6 1 588.1.c.a 1
56.j odd 6 1 588.1.p.a 2
56.k odd 6 1 336.1.bn.a 2
56.k odd 6 1 2352.1.d.a 1
56.m even 6 1 2352.1.d.b 1
56.m even 6 1 2352.1.bn.a 2
56.p even 6 1 84.1.p.a 2
56.p even 6 1 588.1.c.b 1
72.j odd 6 1 2268.1.m.a 2
72.j odd 6 1 2268.1.bh.b 2
72.n even 6 1 2268.1.m.a 2
72.n even 6 1 2268.1.bh.b 2
84.n even 6 1 1344.1.bn.a 2
120.i odd 2 1 2100.1.bn.c 2
120.w even 4 2 2100.1.bh.a 4
168.e odd 2 1 2352.1.bn.a 2
168.i even 2 1 588.1.p.a 2
168.s odd 6 1 84.1.p.a 2
168.s odd 6 1 588.1.c.b 1
168.v even 6 1 336.1.bn.a 2
168.v even 6 1 2352.1.d.a 1
168.ba even 6 1 588.1.c.a 1
168.ba even 6 1 588.1.p.a 2
168.be odd 6 1 2352.1.d.b 1
168.be odd 6 1 2352.1.bn.a 2
280.bf even 6 1 2100.1.bn.c 2
280.bt odd 12 2 2100.1.bh.a 4
504.w even 6 1 2268.1.bh.b 2
504.bi odd 6 1 2268.1.m.a 2
504.cq even 6 1 2268.1.m.a 2
504.db odd 6 1 2268.1.bh.b 2
840.cg odd 6 1 2100.1.bn.c 2
840.dc even 12 2 2100.1.bh.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.1.p.a 2 8.b even 2 1
84.1.p.a 2 24.h odd 2 1
84.1.p.a 2 56.p even 6 1
84.1.p.a 2 168.s odd 6 1
336.1.bn.a 2 8.d odd 2 1
336.1.bn.a 2 24.f even 2 1
336.1.bn.a 2 56.k odd 6 1
336.1.bn.a 2 168.v even 6 1
588.1.c.a 1 56.j odd 6 1
588.1.c.a 1 168.ba even 6 1
588.1.c.b 1 56.p even 6 1
588.1.c.b 1 168.s odd 6 1
588.1.p.a 2 56.h odd 2 1
588.1.p.a 2 56.j odd 6 1
588.1.p.a 2 168.i even 2 1
588.1.p.a 2 168.ba even 6 1
1344.1.bn.a 2 4.b odd 2 1
1344.1.bn.a 2 12.b even 2 1
1344.1.bn.a 2 28.g odd 6 1
1344.1.bn.a 2 84.n even 6 1
1344.1.bn.b 2 1.a even 1 1 trivial
1344.1.bn.b 2 3.b odd 2 1 CM
1344.1.bn.b 2 7.c even 3 1 inner
1344.1.bn.b 2 21.h odd 6 1 inner
2100.1.bh.a 4 40.i odd 4 2
2100.1.bh.a 4 120.w even 4 2
2100.1.bh.a 4 280.bt odd 12 2
2100.1.bh.a 4 840.dc even 12 2
2100.1.bn.c 2 40.f even 2 1
2100.1.bn.c 2 120.i odd 2 1
2100.1.bn.c 2 280.bf even 6 1
2100.1.bn.c 2 840.cg odd 6 1
2268.1.m.a 2 72.j odd 6 1
2268.1.m.a 2 72.n even 6 1
2268.1.m.a 2 504.bi odd 6 1
2268.1.m.a 2 504.cq even 6 1
2268.1.bh.b 2 72.j odd 6 1
2268.1.bh.b 2 72.n even 6 1
2268.1.bh.b 2 504.w even 6 1
2268.1.bh.b 2 504.db odd 6 1
2352.1.d.a 1 56.k odd 6 1
2352.1.d.a 1 168.v even 6 1
2352.1.d.b 1 56.m even 6 1
2352.1.d.b 1 168.be odd 6 1
2352.1.bn.a 2 56.e even 2 1
2352.1.bn.a 2 56.m even 6 1
2352.1.bn.a 2 168.e odd 2 1
2352.1.bn.a 2 168.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{19}^{2} + T_{19} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1344, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less