Newspace parameters
Level: | \( N \) | \(=\) | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1344.bn (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.670743376979\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 84) |
Projective image: | \(D_{3}\) |
Projective field: | Galois closure of 3.1.588.1 |
Artin image: | $C_6\times S_3$ |
Artin field: | Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(449\) | \(577\) | \(1093\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-\zeta_{6}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | −0.500000 | − | 0.866025i | 0 | 0 | 0 | 0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | ||||||||||||||||||
641.1 | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 0 | 0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{19}^{2} - T_{19} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(1344, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + T + 1 \)
$5$
\( T^{2} \)
$7$
\( T^{2} - T + 1 \)
$11$
\( T^{2} \)
$13$
\( (T - 1)^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} - T + 1 \)
$23$
\( T^{2} \)
$29$
\( T^{2} \)
$31$
\( T^{2} + T + 1 \)
$37$
\( T^{2} + T + 1 \)
$41$
\( T^{2} \)
$43$
\( (T + 1)^{2} \)
$47$
\( T^{2} \)
$53$
\( T^{2} \)
$59$
\( T^{2} \)
$61$
\( T^{2} - 2T + 4 \)
$67$
\( T^{2} - T + 1 \)
$71$
\( T^{2} \)
$73$
\( T^{2} - T + 1 \)
$79$
\( T^{2} + T + 1 \)
$83$
\( T^{2} \)
$89$
\( T^{2} \)
$97$
\( (T - 2)^{2} \)
show more
show less