Properties

Label 1343.2.q
Level 1343
Weight 2
Character orbit q
Rep. character \(\chi_{1343}(78,\cdot)\)
Character field \(\Q(\zeta_{16})\)
Dimension 944
Sturm bound 240

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1343 = 17 \cdot 79 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1343.q (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 1343 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1343, [\chi])\).

Total New Old
Modular forms 976 976 0
Cusp forms 944 944 0
Eisenstein series 32 32 0

Trace form

\( 944q - 16q^{2} - 16q^{4} - 16q^{5} - 16q^{8} - 16q^{9} + O(q^{10}) \) \( 944q - 16q^{2} - 16q^{4} - 16q^{5} - 16q^{8} - 16q^{9} - 16q^{10} - 16q^{11} + 32q^{18} - 16q^{19} - 16q^{20} - 64q^{21} - 16q^{22} - 32q^{23} - 16q^{25} - 16q^{26} + 48q^{31} + 96q^{32} + 80q^{36} + 64q^{38} + 48q^{40} - 16q^{42} - 144q^{44} - 16q^{45} - 48q^{46} - 80q^{49} - 16q^{51} - 32q^{52} - 80q^{55} - 16q^{62} + 112q^{64} + 16q^{65} - 80q^{72} - 16q^{73} + 112q^{76} + 56q^{79} + 64q^{80} + 80q^{81} + 32q^{83} - 16q^{87} - 16q^{88} - 160q^{89} - 96q^{90} - 16q^{92} - 176q^{95} - 144q^{97} - 16q^{98} - 32q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1343, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database