Properties

Label 1332.2.bt.b.145.1
Level $1332$
Weight $2$
Character 1332.145
Analytic conductor $10.636$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1332,2,Mod(145,1332)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1332.145"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1332, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1332.bt (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6360735492\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 9x^{10} - 14x^{9} + 69x^{8} - 72x^{7} + 151x^{6} - 78x^{5} + 180x^{4} - 66x^{3} + 117x^{2} + 27x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 444)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 145.1
Root \(-0.130479 + 0.225997i\) of defining polynomial
Character \(\chi\) \(=\) 1332.145
Dual form 1332.2.bt.b.937.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.68491 - 0.613258i) q^{5} +(2.82666 + 1.02882i) q^{7} +(1.22691 - 2.12507i) q^{11} +(-0.123126 - 0.698284i) q^{13} +(0.266790 - 1.51304i) q^{17} +(-0.404849 + 0.339709i) q^{19} +(0.594663 + 1.02999i) q^{23} +(-1.36737 - 1.14736i) q^{25} +(0.173527 - 0.300558i) q^{29} +7.53270 q^{31} +(-4.13174 - 3.46694i) q^{35} +(-0.665428 - 6.04626i) q^{37} +(1.20977 + 6.86095i) q^{41} +3.76729 q^{43} +(-1.56067 - 2.70316i) q^{47} +(1.56922 + 1.31673i) q^{49} +(9.80095 - 3.56725i) q^{53} +(-3.37045 + 2.82814i) q^{55} +(10.8220 - 3.93888i) q^{59} +(-1.34742 - 7.64158i) q^{61} +(-0.220771 + 1.25206i) q^{65} +(5.01641 + 1.82582i) q^{67} +(4.62237 - 3.87863i) q^{71} +6.37193 q^{73} +(5.65436 - 4.74457i) q^{77} +(-11.3107 - 4.11675i) q^{79} +(1.94652 - 11.0392i) q^{83} +(-1.37740 + 2.38573i) q^{85} +(2.57240 - 0.936276i) q^{89} +(0.370372 - 2.10049i) q^{91} +(0.890465 - 0.324103i) q^{95} +(-1.94047 - 3.36099i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} - 6 q^{11} - 6 q^{13} - 12 q^{17} + 12 q^{19} - 15 q^{25} + 3 q^{29} - 36 q^{35} + 27 q^{37} - 18 q^{41} - 12 q^{43} - 9 q^{47} - 18 q^{49} + 36 q^{53} - 3 q^{55} + 6 q^{59} - 9 q^{61} - 30 q^{65}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times\).

\(n\) \(667\) \(1037\) \(1297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.68491 0.613258i −0.753516 0.274257i −0.0634316 0.997986i \(-0.520204\pi\)
−0.690085 + 0.723729i \(0.742427\pi\)
\(6\) 0 0
\(7\) 2.82666 + 1.02882i 1.06838 + 0.388857i 0.815569 0.578660i \(-0.196424\pi\)
0.252807 + 0.967517i \(0.418646\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.22691 2.12507i 0.369927 0.640732i −0.619627 0.784897i \(-0.712716\pi\)
0.989554 + 0.144164i \(0.0460494\pi\)
\(12\) 0 0
\(13\) −0.123126 0.698284i −0.0341491 0.193669i 0.962961 0.269641i \(-0.0869051\pi\)
−0.997110 + 0.0759720i \(0.975794\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.266790 1.51304i 0.0647060 0.366966i −0.935211 0.354091i \(-0.884790\pi\)
0.999917 0.0128754i \(-0.00409848\pi\)
\(18\) 0 0
\(19\) −0.404849 + 0.339709i −0.0928788 + 0.0779346i −0.688045 0.725668i \(-0.741531\pi\)
0.595166 + 0.803603i \(0.297086\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.594663 + 1.02999i 0.123996 + 0.214767i 0.921340 0.388758i \(-0.127096\pi\)
−0.797344 + 0.603525i \(0.793762\pi\)
\(24\) 0 0
\(25\) −1.36737 1.14736i −0.273475 0.229473i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.173527 0.300558i 0.0322232 0.0558122i −0.849464 0.527646i \(-0.823075\pi\)
0.881687 + 0.471834i \(0.156408\pi\)
\(30\) 0 0
\(31\) 7.53270 1.35291 0.676457 0.736483i \(-0.263515\pi\)
0.676457 + 0.736483i \(0.263515\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.13174 3.46694i −0.698392 0.586020i
\(36\) 0 0
\(37\) −0.665428 6.04626i −0.109396 0.993998i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.20977 + 6.86095i 0.188934 + 1.07150i 0.920795 + 0.390046i \(0.127541\pi\)
−0.731861 + 0.681454i \(0.761348\pi\)
\(42\) 0 0
\(43\) 3.76729 0.574507 0.287253 0.957855i \(-0.407258\pi\)
0.287253 + 0.957855i \(0.407258\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.56067 2.70316i −0.227648 0.394297i 0.729463 0.684020i \(-0.239770\pi\)
−0.957110 + 0.289723i \(0.906437\pi\)
\(48\) 0 0
\(49\) 1.56922 + 1.31673i 0.224174 + 0.188104i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.80095 3.56725i 1.34626 0.490000i 0.434484 0.900679i \(-0.356931\pi\)
0.911780 + 0.410679i \(0.134708\pi\)
\(54\) 0 0
\(55\) −3.37045 + 2.82814i −0.454472 + 0.381347i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.8220 3.93888i 1.40890 0.512798i 0.478094 0.878309i \(-0.341328\pi\)
0.930807 + 0.365511i \(0.119106\pi\)
\(60\) 0 0
\(61\) −1.34742 7.64158i −0.172519 0.978404i −0.940969 0.338494i \(-0.890083\pi\)
0.768449 0.639910i \(-0.221029\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.220771 + 1.25206i −0.0273833 + 0.155299i
\(66\) 0 0
\(67\) 5.01641 + 1.82582i 0.612852 + 0.223060i 0.629751 0.776797i \(-0.283157\pi\)
−0.0168987 + 0.999857i \(0.505379\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.62237 3.87863i 0.548574 0.460308i −0.325884 0.945410i \(-0.605662\pi\)
0.874458 + 0.485101i \(0.161217\pi\)
\(72\) 0 0
\(73\) 6.37193 0.745778 0.372889 0.927876i \(-0.378367\pi\)
0.372889 + 0.927876i \(0.378367\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.65436 4.74457i 0.644375 0.540694i
\(78\) 0 0
\(79\) −11.3107 4.11675i −1.27255 0.463170i −0.384588 0.923088i \(-0.625656\pi\)
−0.887961 + 0.459918i \(0.847879\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.94652 11.0392i 0.213658 1.21171i −0.669562 0.742756i \(-0.733518\pi\)
0.883220 0.468959i \(-0.155371\pi\)
\(84\) 0 0
\(85\) −1.37740 + 2.38573i −0.149400 + 0.258769i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.57240 0.936276i 0.272674 0.0992451i −0.202064 0.979372i \(-0.564765\pi\)
0.474738 + 0.880127i \(0.342543\pi\)
\(90\) 0 0
\(91\) 0.370372 2.10049i 0.0388256 0.220191i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.890465 0.324103i 0.0913598 0.0332523i
\(96\) 0 0
\(97\) −1.94047 3.36099i −0.197025 0.341257i 0.750538 0.660828i \(-0.229795\pi\)
−0.947562 + 0.319571i \(0.896461\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.0151777 + 0.0262885i 0.00151024 + 0.00261581i 0.866780 0.498692i \(-0.166186\pi\)
−0.865269 + 0.501307i \(0.832853\pi\)
\(102\) 0 0
\(103\) −1.99947 + 3.46319i −0.197014 + 0.341238i −0.947559 0.319581i \(-0.896458\pi\)
0.750545 + 0.660819i \(0.229791\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.491977 2.79014i −0.0475612 0.269733i 0.951749 0.306879i \(-0.0992846\pi\)
−0.999310 + 0.0371456i \(0.988173\pi\)
\(108\) 0 0
\(109\) −5.09645 4.27643i −0.488152 0.409608i 0.365212 0.930924i \(-0.380997\pi\)
−0.853363 + 0.521317i \(0.825441\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.85604 + 8.27020i 0.927178 + 0.777995i 0.975309 0.220846i \(-0.0708819\pi\)
−0.0481304 + 0.998841i \(0.515326\pi\)
\(114\) 0 0
\(115\) −0.370308 2.10012i −0.0345314 0.195837i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.31077 4.00237i 0.211828 0.366896i
\(120\) 0 0
\(121\) 2.48939 + 4.31175i 0.226308 + 0.391977i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.08290 + 10.5359i 0.544071 + 0.942358i
\(126\) 0 0
\(127\) −11.5097 + 4.18921i −1.02132 + 0.371732i −0.797772 0.602960i \(-0.793988\pi\)
−0.223553 + 0.974692i \(0.571766\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.28321 7.27747i 0.112115 0.635835i −0.876023 0.482269i \(-0.839813\pi\)
0.988138 0.153567i \(-0.0490760\pi\)
\(132\) 0 0
\(133\) −1.49387 + 0.543724i −0.129535 + 0.0471469i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.65213 + 4.59362i −0.226587 + 0.392459i −0.956794 0.290766i \(-0.906090\pi\)
0.730208 + 0.683225i \(0.239423\pi\)
\(138\) 0 0
\(139\) 1.17114 6.64186i 0.0993347 0.563355i −0.893998 0.448071i \(-0.852111\pi\)
0.993333 0.115284i \(-0.0367777\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.63497 0.595079i −0.136723 0.0497630i
\(144\) 0 0
\(145\) −0.476698 + 0.399997i −0.0395876 + 0.0332180i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.218804 −0.0179251 −0.00896255 0.999960i \(-0.502853\pi\)
−0.00896255 + 0.999960i \(0.502853\pi\)
\(150\) 0 0
\(151\) −2.59809 + 2.18006i −0.211430 + 0.177411i −0.742352 0.670010i \(-0.766290\pi\)
0.530923 + 0.847420i \(0.321845\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.6919 4.61949i −1.01944 0.371047i
\(156\) 0 0
\(157\) −3.07491 + 17.4387i −0.245404 + 1.39176i 0.574147 + 0.818752i \(0.305334\pi\)
−0.819552 + 0.573005i \(0.805777\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.621239 + 3.52322i 0.0489605 + 0.277669i
\(162\) 0 0
\(163\) −1.76962 + 0.644088i −0.138607 + 0.0504489i −0.410392 0.911909i \(-0.634608\pi\)
0.271785 + 0.962358i \(0.412386\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.4877 + 13.8348i −1.27586 + 1.07057i −0.282056 + 0.959398i \(0.591016\pi\)
−0.993801 + 0.111174i \(0.964539\pi\)
\(168\) 0 0
\(169\) 11.7436 4.27431i 0.903351 0.328793i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.9244 + 15.0404i 1.36277 + 1.14350i 0.975117 + 0.221693i \(0.0711581\pi\)
0.387652 + 0.921806i \(0.373286\pi\)
\(174\) 0 0
\(175\) −2.68467 4.64999i −0.202942 0.351506i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.5543 −1.31207 −0.656036 0.754730i \(-0.727768\pi\)
−0.656036 + 0.754730i \(0.727768\pi\)
\(180\) 0 0
\(181\) 2.74388 + 15.5613i 0.203951 + 1.15666i 0.899082 + 0.437780i \(0.144235\pi\)
−0.695131 + 0.718883i \(0.744654\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.58673 + 10.5955i −0.190180 + 0.778996i
\(186\) 0 0
\(187\) −2.88799 2.42331i −0.211191 0.177210i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.03091 −0.653454 −0.326727 0.945119i \(-0.605946\pi\)
−0.326727 + 0.945119i \(0.605946\pi\)
\(192\) 0 0
\(193\) 4.60423 7.97475i 0.331419 0.574035i −0.651371 0.758759i \(-0.725806\pi\)
0.982790 + 0.184724i \(0.0591391\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.50243 7.13438i −0.605773 0.508304i 0.287523 0.957774i \(-0.407168\pi\)
−0.893295 + 0.449470i \(0.851613\pi\)
\(198\) 0 0
\(199\) 8.08719 + 14.0074i 0.573286 + 0.992960i 0.996226 + 0.0868020i \(0.0276648\pi\)
−0.422940 + 0.906158i \(0.639002\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.799722 0.671046i 0.0561295 0.0470982i
\(204\) 0 0
\(205\) 2.16918 12.3020i 0.151502 0.859209i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.225191 + 1.27712i 0.0155768 + 0.0883405i
\(210\) 0 0
\(211\) 0.0803109 0.139102i 0.00552883 0.00957621i −0.863248 0.504780i \(-0.831573\pi\)
0.868777 + 0.495204i \(0.164907\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.34756 2.31032i −0.432900 0.157563i
\(216\) 0 0
\(217\) 21.2924 + 7.74979i 1.44542 + 0.526090i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.08938 −0.0732797
\(222\) 0 0
\(223\) −12.4549 −0.834041 −0.417020 0.908897i \(-0.636926\pi\)
−0.417020 + 0.908897i \(0.636926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −23.3567 8.50113i −1.55024 0.564240i −0.581763 0.813359i \(-0.697637\pi\)
−0.968473 + 0.249119i \(0.919859\pi\)
\(228\) 0 0
\(229\) 0.403499 + 0.146862i 0.0266640 + 0.00970490i 0.355318 0.934746i \(-0.384373\pi\)
−0.328654 + 0.944450i \(0.606595\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.09978 + 14.0292i −0.530634 + 0.919085i 0.468727 + 0.883343i \(0.344713\pi\)
−0.999361 + 0.0357420i \(0.988621\pi\)
\(234\) 0 0
\(235\) 0.971860 + 5.51169i 0.0633972 + 0.359543i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.38062 13.5012i 0.153990 0.873318i −0.805714 0.592305i \(-0.798218\pi\)
0.959704 0.281014i \(-0.0906707\pi\)
\(240\) 0 0
\(241\) 8.81814 7.39930i 0.568026 0.476631i −0.312964 0.949765i \(-0.601322\pi\)
0.880990 + 0.473134i \(0.156877\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.83650 3.18091i −0.117330 0.203221i
\(246\) 0 0
\(247\) 0.287061 + 0.240873i 0.0182653 + 0.0153264i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.284939 + 0.493528i −0.0179852 + 0.0311512i −0.874878 0.484344i \(-0.839059\pi\)
0.856893 + 0.515495i \(0.172392\pi\)
\(252\) 0 0
\(253\) 2.91839 0.183478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.57738 8.03638i −0.597420 0.501295i 0.293195 0.956053i \(-0.405282\pi\)
−0.890615 + 0.454757i \(0.849726\pi\)
\(258\) 0 0
\(259\) 4.33957 17.7753i 0.269648 1.10450i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.82609 + 16.0276i 0.174264 + 0.988302i 0.938990 + 0.343946i \(0.111764\pi\)
−0.764725 + 0.644357i \(0.777125\pi\)
\(264\) 0 0
\(265\) −18.7014 −1.14882
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.89239 5.00976i −0.176352 0.305451i 0.764276 0.644889i \(-0.223096\pi\)
−0.940628 + 0.339438i \(0.889763\pi\)
\(270\) 0 0
\(271\) 21.1687 + 17.7626i 1.28591 + 1.07900i 0.992401 + 0.123046i \(0.0392663\pi\)
0.293505 + 0.955957i \(0.405178\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.11587 + 1.49805i −0.248196 + 0.0903361i
\(276\) 0 0
\(277\) −14.9108 + 12.5117i −0.895904 + 0.751752i −0.969385 0.245544i \(-0.921033\pi\)
0.0734818 + 0.997297i \(0.476589\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.9568 + 7.99163i −1.30983 + 0.476741i −0.900187 0.435503i \(-0.856570\pi\)
−0.409647 + 0.912244i \(0.634348\pi\)
\(282\) 0 0
\(283\) −4.84293 27.4656i −0.287882 1.63266i −0.694804 0.719199i \(-0.744509\pi\)
0.406922 0.913463i \(-0.366602\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.63907 + 20.6382i −0.214808 + 1.21823i
\(288\) 0 0
\(289\) 13.7567 + 5.00702i 0.809215 + 0.294530i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.8959 10.8209i 0.753384 0.632164i −0.183012 0.983111i \(-0.558585\pi\)
0.936395 + 0.350947i \(0.114140\pi\)
\(294\) 0 0
\(295\) −20.6496 −1.20227
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.646005 0.542063i 0.0373594 0.0313483i
\(300\) 0 0
\(301\) 10.6488 + 3.87586i 0.613789 + 0.223401i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.41598 + 13.7017i −0.138339 + 0.784558i
\(306\) 0 0
\(307\) 4.10550 7.11094i 0.234313 0.405843i −0.724760 0.689002i \(-0.758049\pi\)
0.959073 + 0.283159i \(0.0913825\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.8630 + 5.40970i −0.842806 + 0.306756i −0.727104 0.686528i \(-0.759134\pi\)
−0.115702 + 0.993284i \(0.536912\pi\)
\(312\) 0 0
\(313\) 1.53053 8.68008i 0.0865108 0.490627i −0.910510 0.413488i \(-0.864310\pi\)
0.997020 0.0771389i \(-0.0245785\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.8737 9.78123i 1.50938 0.549368i 0.550908 0.834566i \(-0.314281\pi\)
0.958469 + 0.285197i \(0.0920591\pi\)
\(318\) 0 0
\(319\) −0.425804 0.737515i −0.0238405 0.0412929i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.405983 + 0.703184i 0.0225895 + 0.0391262i
\(324\) 0 0
\(325\) −0.632826 + 1.09609i −0.0351029 + 0.0608000i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.63042 9.24657i −0.0898880 0.509780i
\(330\) 0 0
\(331\) −21.3690 17.9307i −1.17455 0.985561i −1.00000 0.000911657i \(-0.999710\pi\)
−0.174546 0.984649i \(-0.555846\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.33251 6.15271i −0.400618 0.336158i
\(336\) 0 0
\(337\) 4.73144 + 26.8333i 0.257738 + 1.46171i 0.788945 + 0.614463i \(0.210627\pi\)
−0.531207 + 0.847242i \(0.678262\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.24194 16.0075i 0.500479 0.866855i
\(342\) 0 0
\(343\) −7.44727 12.8991i −0.402115 0.696484i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.0455 + 19.1313i 0.592952 + 1.02702i 0.993832 + 0.110893i \(0.0353710\pi\)
−0.400880 + 0.916130i \(0.631296\pi\)
\(348\) 0 0
\(349\) −8.86863 + 3.22792i −0.474727 + 0.172787i −0.568293 0.822827i \(-0.692396\pi\)
0.0935654 + 0.995613i \(0.470174\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.36431 + 7.73741i −0.0726151 + 0.411821i 0.926733 + 0.375720i \(0.122605\pi\)
−0.999348 + 0.0361002i \(0.988506\pi\)
\(354\) 0 0
\(355\) −10.1669 + 3.70045i −0.539603 + 0.196399i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.6695 + 18.4801i −0.563115 + 0.975343i 0.434108 + 0.900861i \(0.357064\pi\)
−0.997222 + 0.0744820i \(0.976270\pi\)
\(360\) 0 0
\(361\) −3.25081 + 18.4363i −0.171096 + 0.970331i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.7362 3.90764i −0.561956 0.204535i
\(366\) 0 0
\(367\) 6.65321 5.58271i 0.347295 0.291415i −0.452408 0.891811i \(-0.649435\pi\)
0.799703 + 0.600396i \(0.204990\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 31.3740 1.62886
\(372\) 0 0
\(373\) −27.4480 + 23.0316i −1.42120 + 1.19253i −0.470511 + 0.882394i \(0.655930\pi\)
−0.950692 + 0.310137i \(0.899625\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.231241 0.0841648i −0.0119095 0.00433471i
\(378\) 0 0
\(379\) −5.28513 + 29.9735i −0.271479 + 1.53963i 0.478449 + 0.878115i \(0.341199\pi\)
−0.749928 + 0.661519i \(0.769912\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.86968 + 21.9461i 0.197732 + 1.12139i 0.908475 + 0.417940i \(0.137248\pi\)
−0.710743 + 0.703452i \(0.751641\pi\)
\(384\) 0 0
\(385\) −12.4368 + 4.52661i −0.633836 + 0.230697i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.6564 + 13.1373i −0.793813 + 0.666089i −0.946686 0.322157i \(-0.895592\pi\)
0.152873 + 0.988246i \(0.451148\pi\)
\(390\) 0 0
\(391\) 1.71706 0.624959i 0.0868355 0.0316056i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.5329 + 13.8727i 0.831859 + 0.698012i
\(396\) 0 0
\(397\) 5.89114 + 10.2038i 0.295668 + 0.512112i 0.975140 0.221589i \(-0.0711244\pi\)
−0.679472 + 0.733701i \(0.737791\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.7932 −0.938488 −0.469244 0.883069i \(-0.655473\pi\)
−0.469244 + 0.883069i \(0.655473\pi\)
\(402\) 0 0
\(403\) −0.927474 5.25997i −0.0462008 0.262018i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.6651 6.00412i −0.677355 0.297613i
\(408\) 0 0
\(409\) 8.33254 + 6.99183i 0.412018 + 0.345724i 0.825117 0.564962i \(-0.191109\pi\)
−0.413099 + 0.910686i \(0.635554\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 34.6424 1.70464
\(414\) 0 0
\(415\) −10.0496 + 17.4065i −0.493317 + 0.854449i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.10697 7.64165i −0.444904 0.373319i 0.392636 0.919694i \(-0.371563\pi\)
−0.837541 + 0.546375i \(0.816008\pi\)
\(420\) 0 0
\(421\) −13.4119 23.2302i −0.653658 1.13217i −0.982228 0.187690i \(-0.939900\pi\)
0.328570 0.944480i \(-0.393433\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.10081 + 1.76279i −0.101904 + 0.0855078i
\(426\) 0 0
\(427\) 4.05312 22.9864i 0.196144 1.11239i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.449728 2.55053i −0.0216626 0.122855i 0.972059 0.234737i \(-0.0754230\pi\)
−0.993721 + 0.111883i \(0.964312\pi\)
\(432\) 0 0
\(433\) −4.10143 + 7.10389i −0.197102 + 0.341391i −0.947588 0.319496i \(-0.896486\pi\)
0.750485 + 0.660887i \(0.229820\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.590645 0.214977i −0.0282544 0.0102837i
\(438\) 0 0
\(439\) −23.6388 8.60384i −1.12822 0.410639i −0.290575 0.956852i \(-0.593846\pi\)
−0.837646 + 0.546214i \(0.816069\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.6947 1.17328 0.586641 0.809847i \(-0.300450\pi\)
0.586641 + 0.809847i \(0.300450\pi\)
\(444\) 0 0
\(445\) −4.90845 −0.232683
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −32.3629 11.7791i −1.52730 0.555892i −0.564343 0.825540i \(-0.690870\pi\)
−0.962959 + 0.269648i \(0.913093\pi\)
\(450\) 0 0
\(451\) 16.0643 + 5.84691i 0.756437 + 0.275320i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.91219 + 3.31200i −0.0896447 + 0.155269i
\(456\) 0 0
\(457\) −2.66585 15.1188i −0.124703 0.707228i −0.981484 0.191546i \(-0.938650\pi\)
0.856780 0.515682i \(-0.172461\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.69694 + 15.2951i −0.125609 + 0.712363i 0.855336 + 0.518074i \(0.173351\pi\)
−0.980944 + 0.194289i \(0.937760\pi\)
\(462\) 0 0
\(463\) 16.2316 13.6199i 0.754345 0.632970i −0.182303 0.983242i \(-0.558355\pi\)
0.936648 + 0.350272i \(0.113911\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.2621 24.7026i −0.659970 1.14310i −0.980623 0.195904i \(-0.937236\pi\)
0.320653 0.947197i \(-0.396098\pi\)
\(468\) 0 0
\(469\) 12.3012 + 10.3220i 0.568018 + 0.476624i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.62212 8.00575i 0.212525 0.368105i
\(474\) 0 0
\(475\) 0.943350 0.0432839
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.0822 + 10.1382i 0.552050 + 0.463225i 0.875635 0.482974i \(-0.160443\pi\)
−0.323584 + 0.946199i \(0.604888\pi\)
\(480\) 0 0
\(481\) −4.14007 + 1.20911i −0.188771 + 0.0551307i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.20837 + 6.85299i 0.0548691 + 0.311178i
\(486\) 0 0
\(487\) −5.56555 −0.252199 −0.126100 0.992018i \(-0.540246\pi\)
−0.126100 + 0.992018i \(0.540246\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.38035 12.7831i −0.333071 0.576895i 0.650042 0.759899i \(-0.274751\pi\)
−0.983112 + 0.183003i \(0.941418\pi\)
\(492\) 0 0
\(493\) −0.408461 0.342739i −0.0183962 0.0154362i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.0563 6.20797i 0.765078 0.278466i
\(498\) 0 0
\(499\) −10.8013 + 9.06337i −0.483533 + 0.405732i −0.851702 0.524027i \(-0.824429\pi\)
0.368169 + 0.929759i \(0.379985\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.86538 2.49880i 0.306112 0.111416i −0.184397 0.982852i \(-0.559033\pi\)
0.490509 + 0.871436i \(0.336811\pi\)
\(504\) 0 0
\(505\) −0.00945143 0.0536017i −0.000420583 0.00238525i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.28944 + 24.3266i −0.190126 + 1.07826i 0.729064 + 0.684445i \(0.239956\pi\)
−0.919190 + 0.393814i \(0.871156\pi\)
\(510\) 0 0
\(511\) 18.0113 + 6.55557i 0.796772 + 0.290001i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.49276 4.60898i 0.242040 0.203096i
\(516\) 0 0
\(517\) −7.65921 −0.336852
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.4446 23.8678i 1.24618 1.04567i 0.249164 0.968461i \(-0.419844\pi\)
0.997015 0.0772075i \(-0.0246004\pi\)
\(522\) 0 0
\(523\) −4.81378 1.75207i −0.210492 0.0766128i 0.234622 0.972087i \(-0.424615\pi\)
−0.445114 + 0.895474i \(0.646837\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.00965 11.3973i 0.0875416 0.496473i
\(528\) 0 0
\(529\) 10.7928 18.6936i 0.469250 0.812765i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.64194 1.68953i 0.201065 0.0731816i
\(534\) 0 0
\(535\) −0.882138 + 5.00285i −0.0381382 + 0.216292i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.72342 1.71918i 0.203452 0.0740505i
\(540\) 0 0
\(541\) 9.82067 + 17.0099i 0.422223 + 0.731313i 0.996157 0.0875896i \(-0.0279164\pi\)
−0.573933 + 0.818902i \(0.694583\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.96452 + 10.3309i 0.255492 + 0.442525i
\(546\) 0 0
\(547\) −0.414046 + 0.717149i −0.0177033 + 0.0306631i −0.874741 0.484590i \(-0.838969\pi\)
0.857038 + 0.515253i \(0.172302\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.0318498 + 0.180629i 0.00135685 + 0.00769507i
\(552\) 0 0
\(553\) −27.7360 23.2733i −1.17945 0.989680i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.2998 9.48170i −0.478790 0.401752i 0.371199 0.928553i \(-0.378947\pi\)
−0.849989 + 0.526801i \(0.823391\pi\)
\(558\) 0 0
\(559\) −0.463853 2.63064i −0.0196189 0.111264i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.5267 33.8213i 0.822953 1.42540i −0.0805206 0.996753i \(-0.525658\pi\)
0.903474 0.428644i \(-0.141008\pi\)
\(564\) 0 0
\(565\) −11.5348 19.9789i −0.485273 0.840517i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.559415 + 0.968936i 0.0234519 + 0.0406199i 0.877513 0.479553i \(-0.159201\pi\)
−0.854061 + 0.520172i \(0.825868\pi\)
\(570\) 0 0
\(571\) 39.9105 14.5262i 1.67020 0.607903i 0.678285 0.734799i \(-0.262723\pi\)
0.991916 + 0.126895i \(0.0405013\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.368642 2.09067i 0.0153734 0.0871871i
\(576\) 0 0
\(577\) 22.6372 8.23925i 0.942397 0.343005i 0.175285 0.984518i \(-0.443915\pi\)
0.767112 + 0.641513i \(0.221693\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.8595 29.2016i 0.699451 1.21148i
\(582\) 0 0
\(583\) 4.44421 25.2044i 0.184061 1.04386i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.9026 + 14.8873i 1.68823 + 0.614465i 0.994401 0.105674i \(-0.0337000\pi\)
0.693829 + 0.720140i \(0.255922\pi\)
\(588\) 0 0
\(589\) −3.04961 + 2.55893i −0.125657 + 0.105439i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.5529 1.25466 0.627330 0.778754i \(-0.284148\pi\)
0.627330 + 0.778754i \(0.284148\pi\)
\(594\) 0 0
\(595\) −6.34793 + 5.32655i −0.260240 + 0.218367i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.4184 9.61553i −1.07943 0.392880i −0.259734 0.965680i \(-0.583635\pi\)
−0.819695 + 0.572800i \(0.805857\pi\)
\(600\) 0 0
\(601\) 2.86505 16.2485i 0.116868 0.662790i −0.868941 0.494916i \(-0.835199\pi\)
0.985808 0.167874i \(-0.0536902\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.55019 8.79156i −0.0630242 0.357428i
\(606\) 0 0
\(607\) 24.2441 8.82412i 0.984036 0.358160i 0.200628 0.979667i \(-0.435702\pi\)
0.783408 + 0.621508i \(0.213479\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.69542 + 1.42262i −0.0685893 + 0.0575532i
\(612\) 0 0
\(613\) 30.0677 10.9437i 1.21442 0.442013i 0.346186 0.938166i \(-0.387477\pi\)
0.868235 + 0.496153i \(0.165254\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.6996 10.6562i −0.511266 0.429003i 0.350308 0.936634i \(-0.386077\pi\)
−0.861575 + 0.507631i \(0.830521\pi\)
\(618\) 0 0
\(619\) 7.23206 + 12.5263i 0.290681 + 0.503474i 0.973971 0.226673i \(-0.0727848\pi\)
−0.683290 + 0.730147i \(0.739451\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.23455 0.329910
\(624\) 0 0
\(625\) −2.23814 12.6931i −0.0895256 0.507725i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.32576 0.606260i −0.371842 0.0241732i
\(630\) 0 0
\(631\) 32.0071 + 26.8571i 1.27418 + 1.06917i 0.994018 + 0.109213i \(0.0348330\pi\)
0.280163 + 0.959952i \(0.409611\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.9620 0.871535
\(636\) 0 0
\(637\) 0.726239 1.25788i 0.0287746 0.0498391i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −32.6066 27.3602i −1.28788 1.08066i −0.992105 0.125406i \(-0.959977\pi\)
−0.295778 0.955257i \(-0.595579\pi\)
\(642\) 0 0
\(643\) 11.4258 + 19.7901i 0.450590 + 0.780444i 0.998423 0.0561436i \(-0.0178805\pi\)
−0.547833 + 0.836588i \(0.684547\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.2000 + 13.5934i −0.636887 + 0.534411i −0.903060 0.429514i \(-0.858685\pi\)
0.266174 + 0.963925i \(0.414241\pi\)
\(648\) 0 0
\(649\) 4.90719 27.8301i 0.192624 1.09243i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.15523 + 29.2368i 0.201740 + 1.14412i 0.902488 + 0.430715i \(0.141738\pi\)
−0.700748 + 0.713408i \(0.747150\pi\)
\(654\) 0 0
\(655\) −6.62507 + 11.4750i −0.258863 + 0.448364i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −38.3953 13.9747i −1.49567 0.544379i −0.540734 0.841194i \(-0.681853\pi\)
−0.954935 + 0.296815i \(0.904076\pi\)
\(660\) 0 0
\(661\) 21.0650 + 7.66703i 0.819333 + 0.298213i 0.717474 0.696586i \(-0.245298\pi\)
0.101860 + 0.994799i \(0.467521\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.85048 0.110537
\(666\) 0 0
\(667\) 0.412761 0.0159822
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.8920 6.51217i −0.690715 0.251400i
\(672\) 0 0
\(673\) 37.8469 + 13.7751i 1.45889 + 0.530992i 0.945059 0.326900i \(-0.106004\pi\)
0.513830 + 0.857892i \(0.328226\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.2975 + 28.2281i −0.626365 + 1.08490i 0.361911 + 0.932213i \(0.382124\pi\)
−0.988275 + 0.152682i \(0.951209\pi\)
\(678\) 0 0
\(679\) −2.02719 11.4968i −0.0777964 0.441205i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.77462 21.4069i 0.144432 0.819114i −0.823390 0.567476i \(-0.807920\pi\)
0.967822 0.251637i \(-0.0809690\pi\)
\(684\) 0 0
\(685\) 7.28568 6.11341i 0.278372 0.233581i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.69771 6.40463i −0.140872 0.243997i
\(690\) 0 0
\(691\) −9.32192 7.82202i −0.354623 0.297564i 0.448021 0.894023i \(-0.352129\pi\)
−0.802643 + 0.596460i \(0.796574\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.04644 + 10.4727i −0.229355 + 0.397254i
\(696\) 0 0
\(697\) 10.7036 0.405429
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.47744 6.27432i −0.282419 0.236978i 0.490563 0.871406i \(-0.336791\pi\)
−0.772982 + 0.634428i \(0.781236\pi\)
\(702\) 0 0
\(703\) 2.32336 + 2.22177i 0.0876274 + 0.0837957i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.0158560 + 0.0899238i 0.000596326 + 0.00338193i
\(708\) 0 0
\(709\) −35.1920 −1.32166 −0.660831 0.750534i \(-0.729796\pi\)
−0.660831 + 0.750534i \(0.729796\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.47942 + 7.75858i 0.167756 + 0.290561i
\(714\) 0 0
\(715\) 2.38984 + 2.00531i 0.0893750 + 0.0749945i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.9679 11.2714i 1.15491 0.420352i 0.307633 0.951505i \(-0.400463\pi\)
0.847276 + 0.531153i \(0.178241\pi\)
\(720\) 0 0
\(721\) −9.21482 + 7.73215i −0.343178 + 0.287960i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.582126 + 0.211877i −0.0216196 + 0.00786890i
\(726\) 0 0
\(727\) −3.59910 20.4115i −0.133483 0.757021i −0.975904 0.218200i \(-0.929981\pi\)
0.842421 0.538820i \(-0.181130\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.00507 5.70006i 0.0371740 0.210824i
\(732\) 0 0
\(733\) 19.0627 + 6.93827i 0.704098 + 0.256271i 0.669160 0.743119i \(-0.266654\pi\)
0.0349386 + 0.999389i \(0.488876\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0347 8.42009i 0.369632 0.310158i
\(738\) 0 0
\(739\) 0.643082 0.0236562 0.0118281 0.999930i \(-0.496235\pi\)
0.0118281 + 0.999930i \(0.496235\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.1199 + 23.5954i −1.03162 + 0.865631i −0.991043 0.133545i \(-0.957364\pi\)
−0.0405767 + 0.999176i \(0.512919\pi\)
\(744\) 0 0
\(745\) 0.368665 + 0.134183i 0.0135069 + 0.00491609i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.47990 8.39293i 0.0540744 0.306671i
\(750\) 0 0
\(751\) −9.18509 + 15.9090i −0.335169 + 0.580529i −0.983517 0.180815i \(-0.942127\pi\)
0.648349 + 0.761344i \(0.275460\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.71450 2.07991i 0.207972 0.0756955i
\(756\) 0 0
\(757\) −5.23164 + 29.6701i −0.190147 + 1.07838i 0.729014 + 0.684498i \(0.239979\pi\)
−0.919162 + 0.393880i \(0.871132\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.9183 5.42983i 0.540789 0.196831i −0.0571601 0.998365i \(-0.518205\pi\)
0.597950 + 0.801534i \(0.295982\pi\)
\(762\) 0 0
\(763\) −10.0063 17.3313i −0.362251 0.627437i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.08293 7.07184i −0.147426 0.255349i
\(768\) 0 0
\(769\) −12.9117 + 22.3637i −0.465607 + 0.806456i −0.999229 0.0392677i \(-0.987497\pi\)
0.533621 + 0.845724i \(0.320831\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.55406 + 8.81349i 0.0558955 + 0.316999i 0.999917 0.0128848i \(-0.00410146\pi\)
−0.944021 + 0.329884i \(0.892990\pi\)
\(774\) 0 0
\(775\) −10.3000 8.64275i −0.369988 0.310457i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.82050 2.36668i −0.101055 0.0847951i
\(780\) 0 0
\(781\) −2.57113 14.5816i −0.0920021 0.521770i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.8754 27.4969i 0.566616 0.981408i
\(786\) 0 0
\(787\) 4.92255 + 8.52610i 0.175470 + 0.303923i 0.940324 0.340281i \(-0.110522\pi\)
−0.764854 + 0.644204i \(0.777189\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.3511 + 33.5171i 0.688046 + 1.19173i
\(792\) 0 0
\(793\) −5.17010 + 1.88176i −0.183595 + 0.0668233i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.358173 2.03130i 0.0126871 0.0719523i −0.977807 0.209508i \(-0.932814\pi\)
0.990494 + 0.137556i \(0.0439247\pi\)
\(798\) 0 0
\(799\) −4.50637 + 1.64018i −0.159424 + 0.0580255i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.81778 13.5408i 0.275883 0.477844i
\(804\) 0 0
\(805\) 1.11391 6.31730i 0.0392602 0.222656i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.17683 + 0.792303i 0.0765334 + 0.0278559i 0.380003 0.924985i \(-0.375923\pi\)
−0.303470 + 0.952841i \(0.598145\pi\)
\(810\) 0 0
\(811\) −26.8917 + 22.5648i −0.944294 + 0.792356i −0.978327 0.207064i \(-0.933609\pi\)
0.0340337 + 0.999421i \(0.489165\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.37665 0.118279
\(816\) 0 0
\(817\) −1.52519 + 1.27978i −0.0533595 + 0.0447739i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.52316 + 2.73821i 0.262560 + 0.0955641i 0.469946 0.882695i \(-0.344273\pi\)
−0.207386 + 0.978259i \(0.566496\pi\)
\(822\) 0 0
\(823\) −6.77578 + 38.4274i −0.236189 + 1.33949i 0.603907 + 0.797055i \(0.293610\pi\)
−0.840095 + 0.542439i \(0.817501\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.28293 7.27583i −0.0446117 0.253005i 0.954343 0.298712i \(-0.0965571\pi\)
−0.998955 + 0.0457069i \(0.985446\pi\)
\(828\) 0 0
\(829\) 32.3653 11.7800i 1.12409 0.409136i 0.287949 0.957646i \(-0.407027\pi\)
0.836144 + 0.548509i \(0.184805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.41091 2.02300i 0.0835332 0.0700927i
\(834\) 0 0
\(835\) 36.2647 13.1993i 1.25499 0.456779i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.50313 + 6.29587i 0.259037 + 0.217358i 0.763052 0.646337i \(-0.223700\pi\)
−0.504015 + 0.863695i \(0.668144\pi\)
\(840\) 0 0
\(841\) 14.4398 + 25.0104i 0.497923 + 0.862429i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −22.4081 −0.770864
\(846\) 0 0
\(847\) 2.60064 + 14.7490i 0.0893591 + 0.506781i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.83186 4.28087i 0.199914 0.146746i
\(852\) 0 0
\(853\) −21.6990 18.2076i −0.742958 0.623416i 0.190672 0.981654i \(-0.438933\pi\)
−0.933630 + 0.358238i \(0.883378\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.1121 1.40436 0.702181 0.711998i \(-0.252210\pi\)
0.702181 + 0.711998i \(0.252210\pi\)
\(858\) 0 0
\(859\) 2.31018 4.00135i 0.0788223 0.136524i −0.823920 0.566706i \(-0.808217\pi\)
0.902742 + 0.430182i \(0.141551\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.55539 + 6.33973i 0.257188 + 0.215807i 0.762260 0.647271i \(-0.224090\pi\)
−0.505072 + 0.863077i \(0.668534\pi\)
\(864\) 0 0
\(865\) −20.9775 36.3340i −0.713255 1.23539i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −22.6255 + 18.9851i −0.767518 + 0.644024i
\(870\) 0 0
\(871\) 0.657292 3.72769i 0.0222715 0.126308i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.35474 + 36.0395i 0.214830 + 1.21836i
\(876\) 0 0
\(877\) 11.5143 19.9433i 0.388810 0.673439i −0.603480 0.797378i \(-0.706220\pi\)
0.992290 + 0.123940i \(0.0395529\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −29.8184 10.8530i −1.00461 0.365648i −0.213248 0.976998i \(-0.568404\pi\)
−0.791360 + 0.611350i \(0.790627\pi\)
\(882\) 0 0
\(883\) −13.6475 4.96728i −0.459274 0.167162i 0.102013 0.994783i \(-0.467472\pi\)
−0.561288 + 0.827621i \(0.689694\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 43.8229 1.47143 0.735714 0.677292i \(-0.236847\pi\)
0.735714 + 0.677292i \(0.236847\pi\)
\(888\) 0 0
\(889\) −36.8441 −1.23571
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.55013 + 0.564200i 0.0518730 + 0.0188802i
\(894\) 0 0
\(895\) 29.5775 + 10.7653i 0.988667 + 0.359845i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.30713 2.26401i 0.0435952 0.0755091i
\(900\) 0 0
\(901\) −2.78261 15.7809i −0.0927020 0.525739i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.91990 27.9022i 0.163543 0.927499i
\(906\) 0 0
\(907\) 18.1963 15.2685i 0.604199 0.506983i −0.288594 0.957452i \(-0.593188\pi\)
0.892792 + 0.450469i \(0.148743\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −21.8829 37.9023i −0.725013 1.25576i −0.958969 0.283512i \(-0.908501\pi\)
0.233956 0.972247i \(-0.424833\pi\)
\(912\) 0 0
\(913\) −21.0710 17.6806i −0.697347 0.585144i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.1144 19.2507i 0.367030 0.635715i
\(918\) 0 0
\(919\) −48.3191 −1.59390 −0.796950 0.604045i \(-0.793555\pi\)
−0.796950 + 0.604045i \(0.793555\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.27752 2.75017i −0.107881 0.0905229i
\(924\) 0 0
\(925\) −6.02736 + 9.03098i −0.198178 + 0.296937i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.86220 + 21.9036i 0.126715 + 0.718635i 0.980275 + 0.197640i \(0.0633279\pi\)
−0.853560 + 0.520995i \(0.825561\pi\)
\(930\) 0 0
\(931\) −1.08260 −0.0354808
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.37989 + 5.85415i 0.110534 + 0.191451i
\(936\) 0 0
\(937\) −2.38149 1.99831i −0.0777999 0.0652819i 0.603058 0.797697i \(-0.293949\pi\)
−0.680858 + 0.732415i \(0.738393\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 52.2774 19.0274i 1.70419 0.620276i 0.707903 0.706310i \(-0.249642\pi\)
0.996292 + 0.0860339i \(0.0274194\pi\)
\(942\) 0 0
\(943\) −6.34728 + 5.32600i −0.206696 + 0.173438i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.0620 6.21006i 0.554440 0.201800i −0.0495778 0.998770i \(-0.515788\pi\)
0.604018 + 0.796970i \(0.293565\pi\)
\(948\) 0 0
\(949\) −0.784553 4.44942i −0.0254677 0.144434i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.29166 + 35.6818i −0.203807 + 1.15585i 0.695500 + 0.718526i \(0.255183\pi\)
−0.899306 + 0.437319i \(0.855928\pi\)
\(954\) 0 0
\(955\) 15.2163 + 5.53828i 0.492388 + 0.179215i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.2227 + 10.2560i −0.394690 + 0.331184i
\(960\) 0 0
\(961\) 25.7416 0.830374
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.6483 + 10.6132i −0.407163 + 0.341651i
\(966\) 0 0
\(967\) 17.1528 + 6.24311i 0.551597 + 0.200765i 0.602756 0.797926i \(-0.294069\pi\)
−0.0511589 + 0.998691i \(0.516291\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.39038 7.88522i 0.0446193 0.253049i −0.954337 0.298733i \(-0.903436\pi\)
0.998956 + 0.0456847i \(0.0145470\pi\)
\(972\) 0 0
\(973\) 10.1437 17.5694i 0.325191 0.563248i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.03802 3.28957i 0.289152 0.105243i −0.193372 0.981126i \(-0.561942\pi\)
0.482524 + 0.875883i \(0.339720\pi\)
\(978\) 0 0
\(979\) 1.16645 6.61525i 0.0372798 0.211424i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.6070 13.3239i 1.16758 0.424965i 0.315781 0.948832i \(-0.397733\pi\)
0.851800 + 0.523867i \(0.175511\pi\)
\(984\) 0 0
\(985\) 9.95063 + 17.2350i 0.317054 + 0.549153i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.24027 + 3.88026i 0.0712364 + 0.123385i
\(990\) 0 0
\(991\) −12.5272 + 21.6978i −0.397940 + 0.689253i −0.993472 0.114079i \(-0.963608\pi\)
0.595531 + 0.803332i \(0.296942\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.03604 28.5608i −0.159653 0.905439i
\(996\) 0 0
\(997\) −25.2320 21.1722i −0.799106 0.670529i 0.148875 0.988856i \(-0.452435\pi\)
−0.947981 + 0.318327i \(0.896879\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1332.2.bt.b.145.1 12
3.2 odd 2 444.2.u.a.145.2 yes 12
37.12 even 9 inner 1332.2.bt.b.937.1 12
111.86 odd 18 444.2.u.a.49.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.u.a.49.2 12 111.86 odd 18
444.2.u.a.145.2 yes 12 3.2 odd 2
1332.2.bt.b.145.1 12 1.1 even 1 trivial
1332.2.bt.b.937.1 12 37.12 even 9 inner