Properties

Label 133.2.f.c.58.2
Level $133$
Weight $2$
Character 133.58
Analytic conductor $1.062$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [133,2,Mod(39,133)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("133.39"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(133, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 133.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06201034688\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 58.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 133.58
Dual form 133.2.f.c.39.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20711 - 2.09077i) q^{2} +(-0.707107 - 1.22474i) q^{3} +(-1.91421 - 3.31552i) q^{4} +(-0.500000 + 0.866025i) q^{5} -3.41421 q^{6} +(1.62132 + 2.09077i) q^{7} -4.41421 q^{8} +(0.500000 - 0.866025i) q^{9} +(1.20711 + 2.09077i) q^{10} +(0.207107 + 0.358719i) q^{11} +(-2.70711 + 4.68885i) q^{12} -2.24264 q^{13} +(6.32843 - 0.866025i) q^{14} +1.41421 q^{15} +(-1.50000 + 2.59808i) q^{16} +(2.00000 + 3.46410i) q^{17} +(-1.20711 - 2.09077i) q^{18} +(0.500000 - 0.866025i) q^{19} +3.82843 q^{20} +(1.41421 - 3.46410i) q^{21} +1.00000 q^{22} +(2.79289 - 4.83743i) q^{23} +(3.12132 + 5.40629i) q^{24} +(2.00000 + 3.46410i) q^{25} +(-2.70711 + 4.68885i) q^{26} -5.65685 q^{27} +(3.82843 - 9.37769i) q^{28} -6.58579 q^{29} +(1.70711 - 2.95680i) q^{30} +(3.12132 + 5.40629i) q^{31} +(-0.792893 - 1.37333i) q^{32} +(0.292893 - 0.507306i) q^{33} +9.65685 q^{34} +(-2.62132 + 0.358719i) q^{35} -3.82843 q^{36} +(-4.53553 + 7.85578i) q^{37} +(-1.20711 - 2.09077i) q^{38} +(1.58579 + 2.74666i) q^{39} +(2.20711 - 3.82282i) q^{40} -3.17157 q^{41} +(-5.53553 - 7.13834i) q^{42} +8.07107 q^{43} +(0.792893 - 1.37333i) q^{44} +(0.500000 + 0.866025i) q^{45} +(-6.74264 - 11.6786i) q^{46} +(2.20711 - 3.82282i) q^{47} +4.24264 q^{48} +(-1.74264 + 6.77962i) q^{49} +9.65685 q^{50} +(2.82843 - 4.89898i) q^{51} +(4.29289 + 7.43551i) q^{52} +(2.12132 + 3.67423i) q^{53} +(-6.82843 + 11.8272i) q^{54} -0.414214 q^{55} +(-7.15685 - 9.22911i) q^{56} -1.41421 q^{57} +(-7.94975 + 13.7694i) q^{58} +(-3.41421 - 5.91359i) q^{59} +(-2.70711 - 4.68885i) q^{60} +(-5.91421 + 10.2437i) q^{61} +15.0711 q^{62} +(2.62132 - 0.358719i) q^{63} -9.82843 q^{64} +(1.12132 - 1.94218i) q^{65} +(-0.707107 - 1.22474i) q^{66} +(-0.585786 - 1.01461i) q^{67} +(7.65685 - 13.2621i) q^{68} -7.89949 q^{69} +(-2.41421 + 5.91359i) q^{70} -14.2426 q^{71} +(-2.20711 + 3.82282i) q^{72} +(-7.57107 - 13.1135i) q^{73} +(10.9497 + 18.9655i) q^{74} +(2.82843 - 4.89898i) q^{75} -3.82843 q^{76} +(-0.414214 + 1.01461i) q^{77} +7.65685 q^{78} +(-0.707107 + 1.22474i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(2.50000 + 4.33013i) q^{81} +(-3.82843 + 6.63103i) q^{82} +9.24264 q^{83} +(-14.1924 + 1.94218i) q^{84} -4.00000 q^{85} +(9.74264 - 16.8747i) q^{86} +(4.65685 + 8.06591i) q^{87} +(-0.914214 - 1.58346i) q^{88} +(5.70711 - 9.88500i) q^{89} +2.41421 q^{90} +(-3.63604 - 4.68885i) q^{91} -21.3848 q^{92} +(4.41421 - 7.64564i) q^{93} +(-5.32843 - 9.22911i) q^{94} +(0.500000 + 0.866025i) q^{95} +(-1.12132 + 1.94218i) q^{96} -3.17157 q^{97} +(12.0711 + 11.8272i) q^{98} +0.414214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 8 q^{6} - 2 q^{7} - 12 q^{8} + 2 q^{9} + 2 q^{10} - 2 q^{11} - 8 q^{12} + 8 q^{13} + 14 q^{14} - 6 q^{16} + 8 q^{17} - 2 q^{18} + 2 q^{19} + 4 q^{20} + 4 q^{22} + 14 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/133\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(115\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20711 2.09077i 0.853553 1.47840i −0.0244272 0.999702i \(-0.507776\pi\)
0.877981 0.478696i \(-0.158890\pi\)
\(3\) −0.707107 1.22474i −0.408248 0.707107i 0.586445 0.809989i \(-0.300527\pi\)
−0.994694 + 0.102882i \(0.967194\pi\)
\(4\) −1.91421 3.31552i −0.957107 1.65776i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) −3.41421 −1.39385
\(7\) 1.62132 + 2.09077i 0.612801 + 0.790237i
\(8\) −4.41421 −1.56066
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 1.20711 + 2.09077i 0.381721 + 0.661160i
\(11\) 0.207107 + 0.358719i 0.0624450 + 0.108158i 0.895558 0.444945i \(-0.146777\pi\)
−0.833113 + 0.553103i \(0.813444\pi\)
\(12\) −2.70711 + 4.68885i −0.781474 + 1.35355i
\(13\) −2.24264 −0.621997 −0.310998 0.950410i \(-0.600663\pi\)
−0.310998 + 0.950410i \(0.600663\pi\)
\(14\) 6.32843 0.866025i 1.69134 0.231455i
\(15\) 1.41421 0.365148
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) −1.20711 2.09077i −0.284518 0.492799i
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) 3.82843 0.856062
\(21\) 1.41421 3.46410i 0.308607 0.755929i
\(22\) 1.00000 0.213201
\(23\) 2.79289 4.83743i 0.582358 1.00867i −0.412841 0.910803i \(-0.635463\pi\)
0.995199 0.0978712i \(-0.0312033\pi\)
\(24\) 3.12132 + 5.40629i 0.637137 + 1.10355i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −2.70711 + 4.68885i −0.530907 + 0.919558i
\(27\) −5.65685 −1.08866
\(28\) 3.82843 9.37769i 0.723505 1.77222i
\(29\) −6.58579 −1.22295 −0.611475 0.791264i \(-0.709423\pi\)
−0.611475 + 0.791264i \(0.709423\pi\)
\(30\) 1.70711 2.95680i 0.311674 0.539835i
\(31\) 3.12132 + 5.40629i 0.560606 + 0.970998i 0.997444 + 0.0714573i \(0.0227650\pi\)
−0.436838 + 0.899540i \(0.643902\pi\)
\(32\) −0.792893 1.37333i −0.140165 0.242773i
\(33\) 0.292893 0.507306i 0.0509862 0.0883106i
\(34\) 9.65685 1.65614
\(35\) −2.62132 + 0.358719i −0.443084 + 0.0606347i
\(36\) −3.82843 −0.638071
\(37\) −4.53553 + 7.85578i −0.745637 + 1.29148i 0.204259 + 0.978917i \(0.434521\pi\)
−0.949896 + 0.312565i \(0.898812\pi\)
\(38\) −1.20711 2.09077i −0.195819 0.339168i
\(39\) 1.58579 + 2.74666i 0.253929 + 0.439818i
\(40\) 2.20711 3.82282i 0.348974 0.604441i
\(41\) −3.17157 −0.495316 −0.247658 0.968847i \(-0.579661\pi\)
−0.247658 + 0.968847i \(0.579661\pi\)
\(42\) −5.53553 7.13834i −0.854151 1.10147i
\(43\) 8.07107 1.23083 0.615413 0.788205i \(-0.288989\pi\)
0.615413 + 0.788205i \(0.288989\pi\)
\(44\) 0.792893 1.37333i 0.119533 0.207037i
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) −6.74264 11.6786i −0.994148 1.72192i
\(47\) 2.20711 3.82282i 0.321940 0.557616i −0.658949 0.752188i \(-0.728999\pi\)
0.980888 + 0.194572i \(0.0623319\pi\)
\(48\) 4.24264 0.612372
\(49\) −1.74264 + 6.77962i −0.248949 + 0.968517i
\(50\) 9.65685 1.36569
\(51\) 2.82843 4.89898i 0.396059 0.685994i
\(52\) 4.29289 + 7.43551i 0.595317 + 1.03112i
\(53\) 2.12132 + 3.67423i 0.291386 + 0.504695i 0.974138 0.225955i \(-0.0725503\pi\)
−0.682752 + 0.730650i \(0.739217\pi\)
\(54\) −6.82843 + 11.8272i −0.929231 + 1.60948i
\(55\) −0.414214 −0.0558525
\(56\) −7.15685 9.22911i −0.956375 1.23329i
\(57\) −1.41421 −0.187317
\(58\) −7.94975 + 13.7694i −1.04385 + 1.80801i
\(59\) −3.41421 5.91359i −0.444493 0.769884i 0.553524 0.832833i \(-0.313283\pi\)
−0.998017 + 0.0629492i \(0.979949\pi\)
\(60\) −2.70711 4.68885i −0.349486 0.605327i
\(61\) −5.91421 + 10.2437i −0.757237 + 1.31157i 0.187017 + 0.982357i \(0.440118\pi\)
−0.944254 + 0.329217i \(0.893215\pi\)
\(62\) 15.0711 1.91403
\(63\) 2.62132 0.358719i 0.330255 0.0451944i
\(64\) −9.82843 −1.22855
\(65\) 1.12132 1.94218i 0.139083 0.240898i
\(66\) −0.707107 1.22474i −0.0870388 0.150756i
\(67\) −0.585786 1.01461i −0.0715652 0.123955i 0.828022 0.560695i \(-0.189466\pi\)
−0.899587 + 0.436741i \(0.856133\pi\)
\(68\) 7.65685 13.2621i 0.928530 1.60826i
\(69\) −7.89949 −0.950987
\(70\) −2.41421 + 5.91359i −0.288554 + 0.706809i
\(71\) −14.2426 −1.69029 −0.845145 0.534537i \(-0.820486\pi\)
−0.845145 + 0.534537i \(0.820486\pi\)
\(72\) −2.20711 + 3.82282i −0.260110 + 0.450524i
\(73\) −7.57107 13.1135i −0.886126 1.53482i −0.844417 0.535686i \(-0.820053\pi\)
−0.0417094 0.999130i \(-0.513280\pi\)
\(74\) 10.9497 + 18.9655i 1.27288 + 2.20470i
\(75\) 2.82843 4.89898i 0.326599 0.565685i
\(76\) −3.82843 −0.439151
\(77\) −0.414214 + 1.01461i −0.0472040 + 0.115626i
\(78\) 7.65685 0.866968
\(79\) −0.707107 + 1.22474i −0.0795557 + 0.137795i −0.903058 0.429518i \(-0.858683\pi\)
0.823503 + 0.567312i \(0.192017\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) −3.82843 + 6.63103i −0.422779 + 0.732275i
\(83\) 9.24264 1.01451 0.507256 0.861796i \(-0.330660\pi\)
0.507256 + 0.861796i \(0.330660\pi\)
\(84\) −14.1924 + 1.94218i −1.54852 + 0.211910i
\(85\) −4.00000 −0.433861
\(86\) 9.74264 16.8747i 1.05058 1.81965i
\(87\) 4.65685 + 8.06591i 0.499267 + 0.864756i
\(88\) −0.914214 1.58346i −0.0974555 0.168798i
\(89\) 5.70711 9.88500i 0.604952 1.04781i −0.387107 0.922035i \(-0.626526\pi\)
0.992059 0.125773i \(-0.0401411\pi\)
\(90\) 2.41421 0.254480
\(91\) −3.63604 4.68885i −0.381160 0.491525i
\(92\) −21.3848 −2.22952
\(93\) 4.41421 7.64564i 0.457733 0.792816i
\(94\) −5.32843 9.22911i −0.549585 0.951910i
\(95\) 0.500000 + 0.866025i 0.0512989 + 0.0888523i
\(96\) −1.12132 + 1.94218i −0.114444 + 0.198223i
\(97\) −3.17157 −0.322024 −0.161012 0.986952i \(-0.551476\pi\)
−0.161012 + 0.986952i \(0.551476\pi\)
\(98\) 12.0711 + 11.8272i 1.21936 + 1.19473i
\(99\) 0.414214 0.0416300
\(100\) 7.65685 13.2621i 0.765685 1.32621i
\(101\) −9.15685 15.8601i −0.911141 1.57814i −0.812455 0.583024i \(-0.801869\pi\)
−0.0986861 0.995119i \(-0.531464\pi\)
\(102\) −6.82843 11.8272i −0.676115 1.17107i
\(103\) 3.00000 5.19615i 0.295599 0.511992i −0.679525 0.733652i \(-0.737814\pi\)
0.975124 + 0.221660i \(0.0711475\pi\)
\(104\) 9.89949 0.970725
\(105\) 2.29289 + 2.95680i 0.223763 + 0.288554i
\(106\) 10.2426 0.994853
\(107\) 6.94975 12.0373i 0.671857 1.16369i −0.305519 0.952186i \(-0.598830\pi\)
0.977377 0.211505i \(-0.0678366\pi\)
\(108\) 10.8284 + 18.7554i 1.04197 + 1.80474i
\(109\) 4.82843 + 8.36308i 0.462479 + 0.801038i 0.999084 0.0427961i \(-0.0136266\pi\)
−0.536604 + 0.843834i \(0.680293\pi\)
\(110\) −0.500000 + 0.866025i −0.0476731 + 0.0825723i
\(111\) 12.8284 1.21762
\(112\) −7.86396 + 1.07616i −0.743074 + 0.101687i
\(113\) −0.242641 −0.0228257 −0.0114129 0.999935i \(-0.503633\pi\)
−0.0114129 + 0.999935i \(0.503633\pi\)
\(114\) −1.70711 + 2.95680i −0.159885 + 0.276929i
\(115\) 2.79289 + 4.83743i 0.260439 + 0.451093i
\(116\) 12.6066 + 21.8353i 1.17049 + 2.02735i
\(117\) −1.12132 + 1.94218i −0.103666 + 0.179555i
\(118\) −16.4853 −1.51759
\(119\) −4.00000 + 9.79796i −0.366679 + 0.898177i
\(120\) −6.24264 −0.569873
\(121\) 5.41421 9.37769i 0.492201 0.852518i
\(122\) 14.2782 + 24.7305i 1.29269 + 2.23900i
\(123\) 2.24264 + 3.88437i 0.202212 + 0.350242i
\(124\) 11.9497 20.6976i 1.07312 1.85870i
\(125\) −9.00000 −0.804984
\(126\) 2.41421 5.91359i 0.215075 0.526825i
\(127\) 4.24264 0.376473 0.188237 0.982124i \(-0.439723\pi\)
0.188237 + 0.982124i \(0.439723\pi\)
\(128\) −10.2782 + 17.8023i −0.908471 + 1.57352i
\(129\) −5.70711 9.88500i −0.502483 0.870326i
\(130\) −2.70711 4.68885i −0.237429 0.411239i
\(131\) −1.75736 + 3.04384i −0.153541 + 0.265941i −0.932527 0.361101i \(-0.882401\pi\)
0.778986 + 0.627042i \(0.215734\pi\)
\(132\) −2.24264 −0.195197
\(133\) 2.62132 0.358719i 0.227297 0.0311049i
\(134\) −2.82843 −0.244339
\(135\) 2.82843 4.89898i 0.243432 0.421637i
\(136\) −8.82843 15.2913i −0.757031 1.31122i
\(137\) 9.91421 + 17.1719i 0.847028 + 1.46710i 0.883848 + 0.467774i \(0.154944\pi\)
−0.0368195 + 0.999322i \(0.511723\pi\)
\(138\) −9.53553 + 16.5160i −0.811719 + 1.40594i
\(139\) −6.07107 −0.514941 −0.257471 0.966286i \(-0.582889\pi\)
−0.257471 + 0.966286i \(0.582889\pi\)
\(140\) 6.20711 + 8.00436i 0.524596 + 0.676492i
\(141\) −6.24264 −0.525725
\(142\) −17.1924 + 29.7781i −1.44275 + 2.49892i
\(143\) −0.464466 0.804479i −0.0388406 0.0672739i
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 3.29289 5.70346i 0.273460 0.473646i
\(146\) −36.5563 −3.02542
\(147\) 9.53553 2.65962i 0.786478 0.219362i
\(148\) 34.7279 2.85462
\(149\) 0.0857864 0.148586i 0.00702790 0.0121727i −0.862490 0.506074i \(-0.831096\pi\)
0.869518 + 0.493901i \(0.164430\pi\)
\(150\) −6.82843 11.8272i −0.557539 0.965685i
\(151\) 8.65685 + 14.9941i 0.704485 + 1.22020i 0.966877 + 0.255242i \(0.0821552\pi\)
−0.262392 + 0.964961i \(0.584511\pi\)
\(152\) −2.20711 + 3.82282i −0.179020 + 0.310072i
\(153\) 4.00000 0.323381
\(154\) 1.62132 + 2.09077i 0.130650 + 0.168479i
\(155\) −6.24264 −0.501421
\(156\) 6.07107 10.5154i 0.486074 0.841906i
\(157\) −3.08579 5.34474i −0.246273 0.426557i 0.716216 0.697879i \(-0.245873\pi\)
−0.962489 + 0.271322i \(0.912539\pi\)
\(158\) 1.70711 + 2.95680i 0.135810 + 0.235230i
\(159\) 3.00000 5.19615i 0.237915 0.412082i
\(160\) 1.58579 0.125367
\(161\) 14.6421 2.00373i 1.15396 0.157916i
\(162\) 12.0711 0.948393
\(163\) −1.96447 + 3.40256i −0.153869 + 0.266509i −0.932647 0.360791i \(-0.882507\pi\)
0.778778 + 0.627300i \(0.215840\pi\)
\(164\) 6.07107 + 10.5154i 0.474071 + 0.821115i
\(165\) 0.292893 + 0.507306i 0.0228017 + 0.0394937i
\(166\) 11.1569 19.3242i 0.865940 1.49985i
\(167\) 13.0711 1.01147 0.505735 0.862689i \(-0.331221\pi\)
0.505735 + 0.862689i \(0.331221\pi\)
\(168\) −6.24264 + 15.2913i −0.481630 + 1.17975i
\(169\) −7.97056 −0.613120
\(170\) −4.82843 + 8.36308i −0.370323 + 0.641419i
\(171\) −0.500000 0.866025i −0.0382360 0.0662266i
\(172\) −15.4497 26.7597i −1.17803 2.04041i
\(173\) 3.65685 6.33386i 0.278025 0.481554i −0.692868 0.721064i \(-0.743653\pi\)
0.970894 + 0.239510i \(0.0769867\pi\)
\(174\) 22.4853 1.70460
\(175\) −4.00000 + 9.79796i −0.302372 + 0.740656i
\(176\) −1.24264 −0.0936676
\(177\) −4.82843 + 8.36308i −0.362927 + 0.628608i
\(178\) −13.7782 23.8645i −1.03272 1.78872i
\(179\) −8.89949 15.4144i −0.665179 1.15212i −0.979237 0.202721i \(-0.935022\pi\)
0.314057 0.949404i \(-0.398312\pi\)
\(180\) 1.91421 3.31552i 0.142677 0.247124i
\(181\) 9.89949 0.735824 0.367912 0.929861i \(-0.380073\pi\)
0.367912 + 0.929861i \(0.380073\pi\)
\(182\) −14.1924 + 1.94218i −1.05201 + 0.143964i
\(183\) 16.7279 1.23656
\(184\) −12.3284 + 21.3535i −0.908864 + 1.57420i
\(185\) −4.53553 7.85578i −0.333459 0.577568i
\(186\) −10.6569 18.4582i −0.781398 1.35342i
\(187\) −0.828427 + 1.43488i −0.0605806 + 0.104929i
\(188\) −16.8995 −1.23252
\(189\) −9.17157 11.8272i −0.667134 0.860301i
\(190\) 2.41421 0.175145
\(191\) −4.20711 + 7.28692i −0.304416 + 0.527263i −0.977131 0.212638i \(-0.931794\pi\)
0.672715 + 0.739901i \(0.265128\pi\)
\(192\) 6.94975 + 12.0373i 0.501555 + 0.868718i
\(193\) −3.94975 6.84116i −0.284309 0.492438i 0.688132 0.725585i \(-0.258431\pi\)
−0.972441 + 0.233147i \(0.925098\pi\)
\(194\) −3.82843 + 6.63103i −0.274865 + 0.476080i
\(195\) −3.17157 −0.227121
\(196\) 25.8137 7.19988i 1.84384 0.514277i
\(197\) 4.51472 0.321660 0.160830 0.986982i \(-0.448583\pi\)
0.160830 + 0.986982i \(0.448583\pi\)
\(198\) 0.500000 0.866025i 0.0355335 0.0615457i
\(199\) −8.03553 13.9180i −0.569624 0.986618i −0.996603 0.0823560i \(-0.973756\pi\)
0.426979 0.904262i \(-0.359578\pi\)
\(200\) −8.82843 15.2913i −0.624264 1.08126i
\(201\) −0.828427 + 1.43488i −0.0584327 + 0.101208i
\(202\) −44.2132 −3.11083
\(203\) −10.6777 13.7694i −0.749425 0.966420i
\(204\) −21.6569 −1.51628
\(205\) 1.58579 2.74666i 0.110756 0.191835i
\(206\) −7.24264 12.5446i −0.504619 0.874025i
\(207\) −2.79289 4.83743i −0.194119 0.336225i
\(208\) 3.36396 5.82655i 0.233249 0.403999i
\(209\) 0.414214 0.0286518
\(210\) 8.94975 1.22474i 0.617591 0.0845154i
\(211\) −1.17157 −0.0806544 −0.0403272 0.999187i \(-0.512840\pi\)
−0.0403272 + 0.999187i \(0.512840\pi\)
\(212\) 8.12132 14.0665i 0.557775 0.966094i
\(213\) 10.0711 + 17.4436i 0.690058 + 1.19522i
\(214\) −16.7782 29.0607i −1.14693 1.98655i
\(215\) −4.03553 + 6.98975i −0.275221 + 0.476697i
\(216\) 24.9706 1.69903
\(217\) −6.24264 + 15.2913i −0.423778 + 1.03804i
\(218\) 23.3137 1.57900
\(219\) −10.7071 + 18.5453i −0.723519 + 1.25317i
\(220\) 0.792893 + 1.37333i 0.0534568 + 0.0925900i
\(221\) −4.48528 7.76874i −0.301713 0.522582i
\(222\) 15.4853 26.8213i 1.03930 1.80013i
\(223\) 2.24264 0.150178 0.0750892 0.997177i \(-0.476076\pi\)
0.0750892 + 0.997177i \(0.476076\pi\)
\(224\) 1.58579 3.88437i 0.105955 0.259535i
\(225\) 4.00000 0.266667
\(226\) −0.292893 + 0.507306i −0.0194830 + 0.0337455i
\(227\) 10.1213 + 17.5306i 0.671776 + 1.16355i 0.977400 + 0.211397i \(0.0678014\pi\)
−0.305625 + 0.952152i \(0.598865\pi\)
\(228\) 2.70711 + 4.68885i 0.179283 + 0.310526i
\(229\) −6.24264 + 10.8126i −0.412525 + 0.714515i −0.995165 0.0982157i \(-0.968686\pi\)
0.582640 + 0.812730i \(0.302020\pi\)
\(230\) 13.4853 0.889193
\(231\) 1.53553 0.210133i 0.101031 0.0138257i
\(232\) 29.0711 1.90861
\(233\) −0.242641 + 0.420266i −0.0158959 + 0.0275325i −0.873864 0.486171i \(-0.838393\pi\)
0.857968 + 0.513703i \(0.171727\pi\)
\(234\) 2.70711 + 4.68885i 0.176969 + 0.306519i
\(235\) 2.20711 + 3.82282i 0.143976 + 0.249373i
\(236\) −13.0711 + 22.6398i −0.850854 + 1.47372i
\(237\) 2.00000 0.129914
\(238\) 15.6569 + 20.1903i 1.01488 + 1.30874i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) −2.12132 + 3.67423i −0.136931 + 0.237171i
\(241\) 13.0208 + 22.5527i 0.838744 + 1.45275i 0.890945 + 0.454111i \(0.150043\pi\)
−0.0522005 + 0.998637i \(0.516623\pi\)
\(242\) −13.0711 22.6398i −0.840240 1.45534i
\(243\) −4.94975 + 8.57321i −0.317526 + 0.549972i
\(244\) 45.2843 2.89903
\(245\) −5.00000 4.89898i −0.319438 0.312984i
\(246\) 10.8284 0.690395
\(247\) −1.12132 + 1.94218i −0.0713479 + 0.123578i
\(248\) −13.7782 23.8645i −0.874915 1.51540i
\(249\) −6.53553 11.3199i −0.414173 0.717368i
\(250\) −10.8640 + 18.8169i −0.687097 + 1.19009i
\(251\) −13.7279 −0.866499 −0.433249 0.901274i \(-0.642633\pi\)
−0.433249 + 0.901274i \(0.642633\pi\)
\(252\) −6.20711 8.00436i −0.391011 0.504227i
\(253\) 2.31371 0.145462
\(254\) 5.12132 8.87039i 0.321340 0.556578i
\(255\) 2.82843 + 4.89898i 0.177123 + 0.306786i
\(256\) 14.9853 + 25.9553i 0.936580 + 1.62220i
\(257\) −4.65685 + 8.06591i −0.290487 + 0.503138i −0.973925 0.226871i \(-0.927150\pi\)
0.683438 + 0.730008i \(0.260484\pi\)
\(258\) −27.5563 −1.71558
\(259\) −23.7782 + 3.25397i −1.47750 + 0.202192i
\(260\) −8.58579 −0.532468
\(261\) −3.29289 + 5.70346i −0.203825 + 0.353035i
\(262\) 4.24264 + 7.34847i 0.262111 + 0.453990i
\(263\) −8.24264 14.2767i −0.508263 0.880337i −0.999954 0.00956772i \(-0.996954\pi\)
0.491691 0.870770i \(-0.336379\pi\)
\(264\) −1.29289 + 2.23936i −0.0795721 + 0.137823i
\(265\) −4.24264 −0.260623
\(266\) 2.41421 5.91359i 0.148025 0.362586i
\(267\) −16.1421 −0.987883
\(268\) −2.24264 + 3.88437i −0.136991 + 0.237276i
\(269\) 2.00000 + 3.46410i 0.121942 + 0.211210i 0.920534 0.390664i \(-0.127754\pi\)
−0.798591 + 0.601874i \(0.794421\pi\)
\(270\) −6.82843 11.8272i −0.415565 0.719779i
\(271\) 7.62132 13.2005i 0.462962 0.801874i −0.536145 0.844126i \(-0.680120\pi\)
0.999107 + 0.0422519i \(0.0134532\pi\)
\(272\) −12.0000 −0.727607
\(273\) −3.17157 + 7.76874i −0.191952 + 0.470185i
\(274\) 47.8701 2.89194
\(275\) −0.828427 + 1.43488i −0.0499560 + 0.0865264i
\(276\) 15.1213 + 26.1909i 0.910197 + 1.57651i
\(277\) 11.2279 + 19.4473i 0.674620 + 1.16848i 0.976580 + 0.215156i \(0.0690260\pi\)
−0.301959 + 0.953321i \(0.597641\pi\)
\(278\) −7.32843 + 12.6932i −0.439530 + 0.761288i
\(279\) 6.24264 0.373737
\(280\) 11.5711 1.58346i 0.691504 0.0946301i
\(281\) −28.2426 −1.68481 −0.842407 0.538841i \(-0.818862\pi\)
−0.842407 + 0.538841i \(0.818862\pi\)
\(282\) −7.53553 + 13.0519i −0.448735 + 0.777231i
\(283\) −15.0355 26.0423i −0.893770 1.54805i −0.835320 0.549764i \(-0.814718\pi\)
−0.0584498 0.998290i \(-0.518616\pi\)
\(284\) 27.2635 + 47.2217i 1.61779 + 2.80209i
\(285\) 0.707107 1.22474i 0.0418854 0.0725476i
\(286\) −2.24264 −0.132610
\(287\) −5.14214 6.63103i −0.303531 0.391417i
\(288\) −1.58579 −0.0934434
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) −7.94975 13.7694i −0.466825 0.808565i
\(291\) 2.24264 + 3.88437i 0.131466 + 0.227706i
\(292\) −28.9853 + 50.2040i −1.69624 + 2.93797i
\(293\) 3.17157 0.185285 0.0926426 0.995699i \(-0.470469\pi\)
0.0926426 + 0.995699i \(0.470469\pi\)
\(294\) 5.94975 23.1471i 0.346996 1.34996i
\(295\) 6.82843 0.397566
\(296\) 20.0208 34.6771i 1.16369 2.01556i
\(297\) −1.17157 2.02922i −0.0679816 0.117748i
\(298\) −0.207107 0.358719i −0.0119974 0.0207801i
\(299\) −6.26346 + 10.8486i −0.362225 + 0.627392i
\(300\) −21.6569 −1.25036
\(301\) 13.0858 + 16.8747i 0.754252 + 0.972644i
\(302\) 41.7990 2.40526
\(303\) −12.9497 + 22.4296i −0.743944 + 1.28855i
\(304\) 1.50000 + 2.59808i 0.0860309 + 0.149010i
\(305\) −5.91421 10.2437i −0.338647 0.586554i
\(306\) 4.82843 8.36308i 0.276023 0.478086i
\(307\) 29.3137 1.67302 0.836511 0.547950i \(-0.184592\pi\)
0.836511 + 0.547950i \(0.184592\pi\)
\(308\) 4.15685 0.568852i 0.236859 0.0324134i
\(309\) −8.48528 −0.482711
\(310\) −7.53553 + 13.0519i −0.427990 + 0.741300i
\(311\) 11.8995 + 20.6105i 0.674758 + 1.16872i 0.976539 + 0.215339i \(0.0690855\pi\)
−0.301781 + 0.953377i \(0.597581\pi\)
\(312\) −7.00000 12.1244i −0.396297 0.686406i
\(313\) 3.32843 5.76500i 0.188134 0.325857i −0.756494 0.654000i \(-0.773089\pi\)
0.944628 + 0.328143i \(0.106423\pi\)
\(314\) −14.8995 −0.840827
\(315\) −1.00000 + 2.44949i −0.0563436 + 0.138013i
\(316\) 5.41421 0.304573
\(317\) 10.1213 17.5306i 0.568470 0.984619i −0.428248 0.903661i \(-0.640869\pi\)
0.996718 0.0809574i \(-0.0257978\pi\)
\(318\) −7.24264 12.5446i −0.406147 0.703467i
\(319\) −1.36396 2.36245i −0.0763672 0.132272i
\(320\) 4.91421 8.51167i 0.274713 0.475817i
\(321\) −19.6569 −1.09714
\(322\) 13.4853 33.0321i 0.751505 1.84080i
\(323\) 4.00000 0.222566
\(324\) 9.57107 16.5776i 0.531726 0.920976i
\(325\) −4.48528 7.76874i −0.248799 0.430932i
\(326\) 4.74264 + 8.21449i 0.262671 + 0.454959i
\(327\) 6.82843 11.8272i 0.377613 0.654045i
\(328\) 14.0000 0.773021
\(329\) 11.5711 1.58346i 0.637934 0.0872992i
\(330\) 1.41421 0.0778499
\(331\) 15.7279 27.2416i 0.864485 1.49733i −0.00307307 0.999995i \(-0.500978\pi\)
0.867558 0.497336i \(-0.165688\pi\)
\(332\) −17.6924 30.6441i −0.970996 1.68181i
\(333\) 4.53553 + 7.85578i 0.248546 + 0.430494i
\(334\) 15.7782 27.3286i 0.863343 1.49535i
\(335\) 1.17157 0.0640099
\(336\) 6.87868 + 8.87039i 0.375263 + 0.483919i
\(337\) 19.5563 1.06530 0.532651 0.846335i \(-0.321196\pi\)
0.532651 + 0.846335i \(0.321196\pi\)
\(338\) −9.62132 + 16.6646i −0.523331 + 0.906436i
\(339\) 0.171573 + 0.297173i 0.00931856 + 0.0161402i
\(340\) 7.65685 + 13.2621i 0.415251 + 0.719236i
\(341\) −1.29289 + 2.23936i −0.0700141 + 0.121268i
\(342\) −2.41421 −0.130546
\(343\) −17.0000 + 7.34847i −0.917914 + 0.396780i
\(344\) −35.6274 −1.92090
\(345\) 3.94975 6.84116i 0.212647 0.368316i
\(346\) −8.82843 15.2913i −0.474619 0.822065i
\(347\) −13.5208 23.4187i −0.725835 1.25718i −0.958629 0.284658i \(-0.908120\pi\)
0.232794 0.972526i \(-0.425213\pi\)
\(348\) 17.8284 30.8797i 0.955704 1.65533i
\(349\) 4.48528 0.240092 0.120046 0.992768i \(-0.461696\pi\)
0.120046 + 0.992768i \(0.461696\pi\)
\(350\) 15.6569 + 20.1903i 0.836894 + 1.07921i
\(351\) 12.6863 0.677144
\(352\) 0.328427 0.568852i 0.0175052 0.0303199i
\(353\) −0.242641 0.420266i −0.0129145 0.0223685i 0.859496 0.511143i \(-0.170778\pi\)
−0.872410 + 0.488774i \(0.837444\pi\)
\(354\) 11.6569 + 20.1903i 0.619555 + 1.07310i
\(355\) 7.12132 12.3345i 0.377960 0.654647i
\(356\) −43.6985 −2.31602
\(357\) 14.8284 2.02922i 0.784804 0.107398i
\(358\) −42.9706 −2.27106
\(359\) −2.62132 + 4.54026i −0.138348 + 0.239626i −0.926871 0.375379i \(-0.877513\pi\)
0.788523 + 0.615005i \(0.210846\pi\)
\(360\) −2.20711 3.82282i −0.116325 0.201480i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 11.9497 20.6976i 0.628065 1.08784i
\(363\) −15.3137 −0.803761
\(364\) −8.58579 + 21.0308i −0.450017 + 1.10231i
\(365\) 15.1421 0.792576
\(366\) 20.1924 34.9742i 1.05547 1.82813i
\(367\) 12.1716 + 21.0818i 0.635351 + 1.10046i 0.986441 + 0.164118i \(0.0524779\pi\)
−0.351090 + 0.936342i \(0.614189\pi\)
\(368\) 8.37868 + 14.5123i 0.436769 + 0.756506i
\(369\) −1.58579 + 2.74666i −0.0825527 + 0.142986i
\(370\) −21.8995 −1.13850
\(371\) −4.24264 + 10.3923i −0.220267 + 0.539542i
\(372\) −33.7990 −1.75240
\(373\) −5.65685 + 9.79796i −0.292901 + 0.507319i −0.974494 0.224412i \(-0.927954\pi\)
0.681594 + 0.731731i \(0.261287\pi\)
\(374\) 2.00000 + 3.46410i 0.103418 + 0.179124i
\(375\) 6.36396 + 11.0227i 0.328634 + 0.569210i
\(376\) −9.74264 + 16.8747i −0.502438 + 0.870249i
\(377\) 14.7696 0.760671
\(378\) −35.7990 + 4.89898i −1.84130 + 0.251976i
\(379\) 4.24264 0.217930 0.108965 0.994046i \(-0.465246\pi\)
0.108965 + 0.994046i \(0.465246\pi\)
\(380\) 1.91421 3.31552i 0.0981971 0.170082i
\(381\) −3.00000 5.19615i −0.153695 0.266207i
\(382\) 10.1569 + 17.5922i 0.519670 + 0.900095i
\(383\) −9.87868 + 17.1104i −0.504777 + 0.874299i 0.495208 + 0.868775i \(0.335092\pi\)
−0.999985 + 0.00552476i \(0.998241\pi\)
\(384\) 29.0711 1.48353
\(385\) −0.671573 0.866025i −0.0342265 0.0441367i
\(386\) −19.0711 −0.970692
\(387\) 4.03553 6.98975i 0.205138 0.355309i
\(388\) 6.07107 + 10.5154i 0.308212 + 0.533838i
\(389\) 5.75736 + 9.97204i 0.291910 + 0.505602i 0.974261 0.225422i \(-0.0723760\pi\)
−0.682352 + 0.731024i \(0.739043\pi\)
\(390\) −3.82843 + 6.63103i −0.193860 + 0.335775i
\(391\) 22.3431 1.12994
\(392\) 7.69239 29.9267i 0.388524 1.51153i
\(393\) 4.97056 0.250732
\(394\) 5.44975 9.43924i 0.274554 0.475542i
\(395\) −0.707107 1.22474i −0.0355784 0.0616236i
\(396\) −0.792893 1.37333i −0.0398444 0.0690125i
\(397\) 4.31371 7.47156i 0.216499 0.374987i −0.737236 0.675635i \(-0.763870\pi\)
0.953735 + 0.300648i \(0.0972029\pi\)
\(398\) −38.7990 −1.94482
\(399\) −2.29289 2.95680i −0.114788 0.148025i
\(400\) −12.0000 −0.600000
\(401\) −0.242641 + 0.420266i −0.0121169 + 0.0209871i −0.872020 0.489470i \(-0.837190\pi\)
0.859903 + 0.510457i \(0.170524\pi\)
\(402\) 2.00000 + 3.46410i 0.0997509 + 0.172774i
\(403\) −7.00000 12.1244i −0.348695 0.603957i
\(404\) −35.0563 + 60.7194i −1.74412 + 3.02090i
\(405\) −5.00000 −0.248452
\(406\) −41.6777 + 5.70346i −2.06843 + 0.283058i
\(407\) −3.75736 −0.186245
\(408\) −12.4853 + 21.6251i −0.618114 + 1.07060i
\(409\) 1.34315 + 2.32640i 0.0664143 + 0.115033i 0.897320 0.441380i \(-0.145511\pi\)
−0.830906 + 0.556413i \(0.812177\pi\)
\(410\) −3.82843 6.63103i −0.189073 0.327483i
\(411\) 14.0208 24.2848i 0.691596 1.19788i
\(412\) −22.9706 −1.13168
\(413\) 6.82843 16.7262i 0.336005 0.823041i
\(414\) −13.4853 −0.662765
\(415\) −4.62132 + 8.00436i −0.226852 + 0.392919i
\(416\) 1.77817 + 3.07989i 0.0871822 + 0.151004i
\(417\) 4.29289 + 7.43551i 0.210224 + 0.364118i
\(418\) 0.500000 0.866025i 0.0244558 0.0423587i
\(419\) 6.07107 0.296591 0.148296 0.988943i \(-0.452621\pi\)
0.148296 + 0.988943i \(0.452621\pi\)
\(420\) 5.41421 13.2621i 0.264187 0.647122i
\(421\) −37.2132 −1.81366 −0.906830 0.421496i \(-0.861505\pi\)
−0.906830 + 0.421496i \(0.861505\pi\)
\(422\) −1.41421 + 2.44949i −0.0688428 + 0.119239i
\(423\) −2.20711 3.82282i −0.107313 0.185872i
\(424\) −9.36396 16.2189i −0.454754 0.787657i
\(425\) −8.00000 + 13.8564i −0.388057 + 0.672134i
\(426\) 48.6274 2.35601
\(427\) −31.0061 + 4.24309i −1.50049 + 0.205337i
\(428\) −53.2132 −2.57216
\(429\) −0.656854 + 1.13770i −0.0317132 + 0.0549289i
\(430\) 9.74264 + 16.8747i 0.469832 + 0.813773i
\(431\) 5.02082 + 8.69631i 0.241844 + 0.418886i 0.961240 0.275714i \(-0.0889144\pi\)
−0.719395 + 0.694601i \(0.755581\pi\)
\(432\) 8.48528 14.6969i 0.408248 0.707107i
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 24.4350 + 31.5101i 1.17292 + 1.51254i
\(435\) −9.31371 −0.446558
\(436\) 18.4853 32.0174i 0.885284 1.53336i
\(437\) −2.79289 4.83743i −0.133602 0.231406i
\(438\) 25.8492 + 44.7722i 1.23512 + 2.13930i
\(439\) 12.2426 21.2049i 0.584309 1.01205i −0.410652 0.911792i \(-0.634699\pi\)
0.994961 0.100261i \(-0.0319679\pi\)
\(440\) 1.82843 0.0871668
\(441\) 5.00000 + 4.89898i 0.238095 + 0.233285i
\(442\) −21.6569 −1.03011
\(443\) −8.82843 + 15.2913i −0.419451 + 0.726511i −0.995884 0.0906335i \(-0.971111\pi\)
0.576433 + 0.817144i \(0.304444\pi\)
\(444\) −24.5563 42.5328i −1.16539 2.01852i
\(445\) 5.70711 + 9.88500i 0.270543 + 0.468594i
\(446\) 2.70711 4.68885i 0.128185 0.222023i
\(447\) −0.242641 −0.0114765
\(448\) −15.9350 20.5490i −0.752859 0.970848i
\(449\) 9.65685 0.455735 0.227868 0.973692i \(-0.426825\pi\)
0.227868 + 0.973692i \(0.426825\pi\)
\(450\) 4.82843 8.36308i 0.227614 0.394239i
\(451\) −0.656854 1.13770i −0.0309301 0.0535724i
\(452\) 0.464466 + 0.804479i 0.0218466 + 0.0378395i
\(453\) 12.2426 21.2049i 0.575209 0.996292i
\(454\) 48.8701 2.29359
\(455\) 5.87868 0.804479i 0.275597 0.0377146i
\(456\) 6.24264 0.292338
\(457\) 3.91421 6.77962i 0.183099 0.317137i −0.759835 0.650116i \(-0.774720\pi\)
0.942934 + 0.332979i \(0.108054\pi\)
\(458\) 15.0711 + 26.1039i 0.704225 + 1.21975i
\(459\) −11.3137 19.5959i −0.528079 0.914659i
\(460\) 10.6924 18.5198i 0.498535 0.863488i
\(461\) 29.9706 1.39587 0.697934 0.716162i \(-0.254103\pi\)
0.697934 + 0.716162i \(0.254103\pi\)
\(462\) 1.41421 3.46410i 0.0657952 0.161165i
\(463\) −4.07107 −0.189199 −0.0945993 0.995515i \(-0.530157\pi\)
−0.0945993 + 0.995515i \(0.530157\pi\)
\(464\) 9.87868 17.1104i 0.458606 0.794329i
\(465\) 4.41421 + 7.64564i 0.204704 + 0.354558i
\(466\) 0.585786 + 1.01461i 0.0271360 + 0.0470010i
\(467\) −9.55025 + 16.5415i −0.441933 + 0.765450i −0.997833 0.0657988i \(-0.979040\pi\)
0.555900 + 0.831249i \(0.312374\pi\)
\(468\) 8.58579 0.396878
\(469\) 1.17157 2.86976i 0.0540982 0.132513i
\(470\) 10.6569 0.491564
\(471\) −4.36396 + 7.55860i −0.201081 + 0.348282i
\(472\) 15.0711 + 26.1039i 0.693702 + 1.20153i
\(473\) 1.67157 + 2.89525i 0.0768590 + 0.133124i
\(474\) 2.41421 4.18154i 0.110889 0.192065i
\(475\) 4.00000 0.183533
\(476\) 40.1421 5.49333i 1.83991 0.251786i
\(477\) 4.24264 0.194257
\(478\) 2.41421 4.18154i 0.110424 0.191259i
\(479\) 12.6924 + 21.9839i 0.579930 + 1.00447i 0.995487 + 0.0949010i \(0.0302534\pi\)
−0.415557 + 0.909567i \(0.636413\pi\)
\(480\) −1.12132 1.94218i −0.0511810 0.0886482i
\(481\) 10.1716 17.6177i 0.463784 0.803297i
\(482\) 62.8701 2.86365
\(483\) −12.8076 16.5160i −0.582767 0.751505i
\(484\) −41.4558 −1.88436
\(485\) 1.58579 2.74666i 0.0720069 0.124720i
\(486\) 11.9497 + 20.6976i 0.542052 + 0.938861i
\(487\) −7.58579 13.1390i −0.343745 0.595383i 0.641380 0.767223i \(-0.278362\pi\)
−0.985125 + 0.171840i \(0.945029\pi\)
\(488\) 26.1066 45.2180i 1.18179 2.04692i
\(489\) 5.55635 0.251267
\(490\) −16.2782 + 4.54026i −0.735373 + 0.205108i
\(491\) −1.44365 −0.0651510 −0.0325755 0.999469i \(-0.510371\pi\)
−0.0325755 + 0.999469i \(0.510371\pi\)
\(492\) 8.58579 14.8710i 0.387077 0.670437i
\(493\) −13.1716 22.8138i −0.593218 1.02748i
\(494\) 2.70711 + 4.68885i 0.121798 + 0.210961i
\(495\) −0.207107 + 0.358719i −0.00930876 + 0.0161232i
\(496\) −18.7279 −0.840909
\(497\) −23.0919 29.7781i −1.03581 1.33573i
\(498\) −31.5563 −1.41407
\(499\) −17.2782 + 29.9267i −0.773477 + 1.33970i 0.162169 + 0.986763i \(0.448151\pi\)
−0.935646 + 0.352939i \(0.885182\pi\)
\(500\) 17.2279 + 29.8396i 0.770456 + 1.33447i
\(501\) −9.24264 16.0087i −0.412931 0.715217i
\(502\) −16.5711 + 28.7019i −0.739603 + 1.28103i
\(503\) −29.0416 −1.29490 −0.647451 0.762107i \(-0.724165\pi\)
−0.647451 + 0.762107i \(0.724165\pi\)
\(504\) −11.5711 + 1.58346i −0.515416 + 0.0705331i
\(505\) 18.3137 0.814949
\(506\) 2.79289 4.83743i 0.124159 0.215050i
\(507\) 5.63604 + 9.76191i 0.250305 + 0.433541i
\(508\) −8.12132 14.0665i −0.360325 0.624102i
\(509\) 7.48528 12.9649i 0.331779 0.574659i −0.651082 0.759008i \(-0.725684\pi\)
0.982861 + 0.184349i \(0.0590177\pi\)
\(510\) 13.6569 0.604736
\(511\) 15.1421 37.0905i 0.669849 1.64079i
\(512\) 31.2426 1.38074
\(513\) −2.82843 + 4.89898i −0.124878 + 0.216295i
\(514\) 11.2426 + 19.4728i 0.495892 + 0.858909i
\(515\) 3.00000 + 5.19615i 0.132196 + 0.228970i
\(516\) −21.8492 + 37.8440i −0.961859 + 1.66599i
\(517\) 1.82843 0.0804141
\(518\) −21.8995 + 53.6426i −0.962209 + 2.35692i
\(519\) −10.3431 −0.454014
\(520\) −4.94975 + 8.57321i −0.217061 + 0.375960i
\(521\) −20.7782 35.9889i −0.910308 1.57670i −0.813629 0.581385i \(-0.802511\pi\)
−0.0966796 0.995316i \(-0.530822\pi\)
\(522\) 7.94975 + 13.7694i 0.347951 + 0.602669i
\(523\) 6.17157 10.6895i 0.269864 0.467418i −0.698962 0.715158i \(-0.746355\pi\)
0.968827 + 0.247740i \(0.0796879\pi\)
\(524\) 13.4558 0.587821
\(525\) 14.8284 2.02922i 0.647166 0.0885626i
\(526\) −39.7990 −1.73532
\(527\) −12.4853 + 21.6251i −0.543867 + 0.942006i
\(528\) 0.878680 + 1.52192i 0.0382396 + 0.0662330i
\(529\) −4.10051 7.10228i −0.178283 0.308795i
\(530\) −5.12132 + 8.87039i −0.222456 + 0.385305i
\(531\) −6.82843 −0.296328
\(532\) −6.20711 8.00436i −0.269112 0.347033i
\(533\) 7.11270 0.308085
\(534\) −19.4853 + 33.7495i −0.843211 + 1.46048i
\(535\) 6.94975 + 12.0373i 0.300464 + 0.520419i
\(536\) 2.58579 + 4.47871i 0.111689 + 0.193451i
\(537\) −12.5858 + 21.7992i −0.543117 + 0.940706i
\(538\) 9.65685 0.416337
\(539\) −2.79289 + 0.778985i −0.120298 + 0.0335533i
\(540\) −21.6569 −0.931963
\(541\) 11.5711 20.0417i 0.497479 0.861659i −0.502517 0.864567i \(-0.667592\pi\)
0.999996 + 0.00290849i \(0.000925802\pi\)
\(542\) −18.3995 31.8689i −0.790326 1.36888i
\(543\) −7.00000 12.1244i −0.300399 0.520306i
\(544\) 3.17157 5.49333i 0.135980 0.235524i
\(545\) −9.65685 −0.413654
\(546\) 12.4142 + 16.0087i 0.531279 + 0.685110i
\(547\) −1.55635 −0.0665447 −0.0332723 0.999446i \(-0.510593\pi\)
−0.0332723 + 0.999446i \(0.510593\pi\)
\(548\) 37.9558 65.7415i 1.62139 2.80834i
\(549\) 5.91421 + 10.2437i 0.252412 + 0.437191i
\(550\) 2.00000 + 3.46410i 0.0852803 + 0.147710i
\(551\) −3.29289 + 5.70346i −0.140282 + 0.242975i
\(552\) 34.8701 1.48417
\(553\) −3.70711 + 0.507306i −0.157642 + 0.0215728i
\(554\) 54.2132 2.30330
\(555\) −6.41421 + 11.1097i −0.272268 + 0.471582i
\(556\) 11.6213 + 20.1287i 0.492854 + 0.853648i
\(557\) −7.91421 13.7078i −0.335336 0.580819i 0.648213 0.761459i \(-0.275517\pi\)
−0.983549 + 0.180640i \(0.942183\pi\)
\(558\) 7.53553 13.0519i 0.319005 0.552532i
\(559\) −18.1005 −0.765570
\(560\) 3.00000 7.34847i 0.126773 0.310530i
\(561\) 2.34315 0.0989277
\(562\) −34.0919 + 59.0489i −1.43808 + 2.49083i
\(563\) −2.94975 5.10911i −0.124317 0.215323i 0.797149 0.603783i \(-0.206341\pi\)
−0.921466 + 0.388460i \(0.873007\pi\)
\(564\) 11.9497 + 20.6976i 0.503175 + 0.871525i
\(565\) 0.121320 0.210133i 0.00510399 0.00884036i
\(566\) −72.5980 −3.05152
\(567\) −5.00000 + 12.2474i −0.209980 + 0.514344i
\(568\) 62.8701 2.63797
\(569\) 4.51472 7.81972i 0.189267 0.327820i −0.755739 0.654873i \(-0.772722\pi\)
0.945006 + 0.327053i \(0.106056\pi\)
\(570\) −1.70711 2.95680i −0.0715028 0.123847i
\(571\) −0.449747 0.778985i −0.0188213 0.0325995i 0.856461 0.516211i \(-0.172658\pi\)
−0.875283 + 0.483612i \(0.839325\pi\)
\(572\) −1.77817 + 3.07989i −0.0743492 + 0.128777i
\(573\) 11.8995 0.497109
\(574\) −20.0711 + 2.74666i −0.837750 + 0.114643i
\(575\) 22.3431 0.931774
\(576\) −4.91421 + 8.51167i −0.204759 + 0.354653i
\(577\) 2.98528 + 5.17066i 0.124279 + 0.215257i 0.921451 0.388495i \(-0.127005\pi\)
−0.797172 + 0.603752i \(0.793672\pi\)
\(578\) −1.20711 2.09077i −0.0502090 0.0869646i
\(579\) −5.58579 + 9.67487i −0.232137 + 0.402074i
\(580\) −25.2132 −1.04692
\(581\) 14.9853 + 19.3242i 0.621694 + 0.801704i
\(582\) 10.8284 0.448853
\(583\) −0.878680 + 1.52192i −0.0363912 + 0.0630314i
\(584\) 33.4203 + 57.8857i 1.38294 + 2.39533i
\(585\) −1.12132 1.94218i −0.0463609 0.0802994i
\(586\) 3.82843 6.63103i 0.158151 0.273925i
\(587\) 14.0000 0.577842 0.288921 0.957353i \(-0.406704\pi\)
0.288921 + 0.957353i \(0.406704\pi\)
\(588\) −27.0711 26.5241i −1.11639 1.09384i
\(589\) 6.24264 0.257224
\(590\) 8.24264 14.2767i 0.339344 0.587761i
\(591\) −3.19239 5.52938i −0.131317 0.227448i
\(592\) −13.6066 23.5673i −0.559228 0.968611i
\(593\) −5.91421 + 10.2437i −0.242868 + 0.420659i −0.961530 0.274700i \(-0.911421\pi\)
0.718662 + 0.695359i \(0.244755\pi\)
\(594\) −5.65685 −0.232104
\(595\) −6.48528 8.36308i −0.265871 0.342853i
\(596\) −0.656854 −0.0269058
\(597\) −11.3640 + 19.6830i −0.465096 + 0.805570i
\(598\) 15.1213 + 26.1909i 0.618357 + 1.07103i
\(599\) −13.8492 23.9876i −0.565865 0.980106i −0.996969 0.0778042i \(-0.975209\pi\)
0.431104 0.902302i \(-0.358124\pi\)
\(600\) −12.4853 + 21.6251i −0.509709 + 0.882843i
\(601\) −34.7279 −1.41658 −0.708291 0.705921i \(-0.750533\pi\)
−0.708291 + 0.705921i \(0.750533\pi\)
\(602\) 51.0772 6.98975i 2.08175 0.284881i
\(603\) −1.17157 −0.0477101
\(604\) 33.1421 57.4039i 1.34853 2.33573i
\(605\) 5.41421 + 9.37769i 0.220119 + 0.381257i
\(606\) 31.2635 + 54.1499i 1.26999 + 2.19969i
\(607\) 16.2635 28.1691i 0.660113 1.14335i −0.320472 0.947258i \(-0.603842\pi\)
0.980586 0.196092i \(-0.0628251\pi\)
\(608\) −1.58579 −0.0643121
\(609\) −9.31371 + 22.8138i −0.377411 + 0.924463i
\(610\) −28.5563 −1.15621
\(611\) −4.94975 + 8.57321i −0.200245 + 0.346835i
\(612\) −7.65685 13.2621i −0.309510 0.536087i
\(613\) 15.6569 + 27.1185i 0.632374 + 1.09530i 0.987065 + 0.160321i \(0.0512529\pi\)
−0.354691 + 0.934984i \(0.615414\pi\)
\(614\) 35.3848 61.2882i 1.42801 2.47339i
\(615\) −4.48528 −0.180864
\(616\) 1.82843 4.47871i 0.0736694 0.180453i
\(617\) 8.45584 0.340419 0.170210 0.985408i \(-0.445555\pi\)
0.170210 + 0.985408i \(0.445555\pi\)
\(618\) −10.2426 + 17.7408i −0.412019 + 0.713639i
\(619\) −17.2782 29.9267i −0.694468 1.20285i −0.970360 0.241666i \(-0.922306\pi\)
0.275891 0.961189i \(-0.411027\pi\)
\(620\) 11.9497 + 20.6976i 0.479913 + 0.831234i
\(621\) −15.7990 + 27.3647i −0.633992 + 1.09811i
\(622\) 57.4558 2.30377
\(623\) 29.9203 4.09450i 1.19873 0.164043i
\(624\) −9.51472 −0.380894
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −8.03553 13.9180i −0.321165 0.556273i
\(627\) −0.292893 0.507306i −0.0116970 0.0202598i
\(628\) −11.8137 + 20.4619i −0.471418 + 0.816520i
\(629\) −36.2843 −1.44675
\(630\) 3.91421 + 5.04757i 0.155946 + 0.201100i
\(631\) −36.5563 −1.45529 −0.727643 0.685956i \(-0.759384\pi\)
−0.727643 + 0.685956i \(0.759384\pi\)
\(632\) 3.12132 5.40629i 0.124159 0.215050i
\(633\) 0.828427 + 1.43488i 0.0329270 + 0.0570313i
\(634\) −24.4350 42.3227i −0.970439 1.68085i
\(635\) −2.12132 + 3.67423i −0.0841820 + 0.145808i
\(636\) −22.9706 −0.910842
\(637\) 3.90812 15.2042i 0.154845 0.602414i
\(638\) −6.58579 −0.260734
\(639\) −7.12132 + 12.3345i −0.281715 + 0.487945i
\(640\) −10.2782 17.8023i −0.406281 0.703699i
\(641\) 17.8995 + 31.0028i 0.706988 + 1.22454i 0.965969 + 0.258656i \(0.0832797\pi\)
−0.258982 + 0.965882i \(0.583387\pi\)
\(642\) −23.7279 + 41.0980i −0.936466 + 1.62201i
\(643\) 1.85786 0.0732670 0.0366335 0.999329i \(-0.488337\pi\)
0.0366335 + 0.999329i \(0.488337\pi\)
\(644\) −34.6716 44.7107i −1.36625 1.76185i
\(645\) 11.4142 0.449434
\(646\) 4.82843 8.36308i 0.189972 0.329041i
\(647\) 18.1066 + 31.3616i 0.711844 + 1.23295i 0.964164 + 0.265306i \(0.0854730\pi\)
−0.252320 + 0.967644i \(0.581194\pi\)
\(648\) −11.0355 19.1141i −0.433517 0.750873i
\(649\) 1.41421 2.44949i 0.0555127 0.0961509i
\(650\) −21.6569 −0.849452
\(651\) 23.1421 3.16693i 0.907012 0.124122i
\(652\) 15.0416 0.589076
\(653\) 15.0711 26.1039i 0.589776 1.02152i −0.404485 0.914545i \(-0.632549\pi\)
0.994261 0.106978i \(-0.0341175\pi\)
\(654\) −16.4853 28.5533i −0.644626 1.11652i
\(655\) −1.75736 3.04384i −0.0686657 0.118932i
\(656\) 4.75736 8.23999i 0.185744 0.321717i
\(657\) −15.1421 −0.590751
\(658\) 10.6569 26.1039i 0.415447 1.01763i
\(659\) 10.0416 0.391166 0.195583 0.980687i \(-0.437340\pi\)
0.195583 + 0.980687i \(0.437340\pi\)
\(660\) 1.12132 1.94218i 0.0436473 0.0755994i
\(661\) −1.36396 2.36245i −0.0530519 0.0918886i 0.838280 0.545240i \(-0.183562\pi\)
−0.891332 + 0.453352i \(0.850228\pi\)
\(662\) −37.9706 65.7669i −1.47577 2.55610i
\(663\) −6.34315 + 10.9867i −0.246347 + 0.426686i
\(664\) −40.7990 −1.58331
\(665\) −1.00000 + 2.44949i −0.0387783 + 0.0949871i
\(666\) 21.8995 0.848588
\(667\) −18.3934 + 31.8583i −0.712195 + 1.23356i
\(668\) −25.0208 43.3373i −0.968084 1.67677i
\(669\) −1.58579 2.74666i −0.0613100 0.106192i
\(670\) 1.41421 2.44949i 0.0546358 0.0946320i
\(671\) −4.89949 −0.189143
\(672\) −5.87868 + 0.804479i −0.226775 + 0.0310334i
\(673\) −3.79899 −0.146440 −0.0732201 0.997316i \(-0.523328\pi\)
−0.0732201 + 0.997316i \(0.523328\pi\)
\(674\) 23.6066 40.8878i 0.909292 1.57494i
\(675\) −11.3137 19.5959i −0.435465 0.754247i
\(676\) 15.2574 + 26.4265i 0.586822 + 1.01640i
\(677\) −11.6569 + 20.1903i −0.448009 + 0.775975i −0.998256 0.0590270i \(-0.981200\pi\)
0.550247 + 0.835002i \(0.314534\pi\)
\(678\) 0.828427 0.0318156
\(679\) −5.14214 6.63103i −0.197337 0.254476i
\(680\) 17.6569 0.677109
\(681\) 14.3137 24.7921i 0.548503 0.950034i
\(682\) 3.12132 + 5.40629i 0.119522 + 0.207017i
\(683\) 3.24264 + 5.61642i 0.124076 + 0.214906i 0.921371 0.388683i \(-0.127070\pi\)
−0.797295 + 0.603589i \(0.793737\pi\)
\(684\) −1.91421 + 3.31552i −0.0731918 + 0.126772i
\(685\) −19.8284 −0.757605
\(686\) −5.15685 + 44.4135i −0.196890 + 1.69571i
\(687\) 17.6569 0.673651
\(688\) −12.1066 + 20.9692i −0.461560 + 0.799445i
\(689\) −4.75736 8.23999i −0.181241 0.313919i
\(690\) −9.53553 16.5160i −0.363012 0.628754i
\(691\) −15.4853 + 26.8213i −0.589088 + 1.02033i 0.405264 + 0.914200i \(0.367179\pi\)
−0.994352 + 0.106131i \(0.966154\pi\)
\(692\) −28.0000 −1.06440
\(693\) 0.671573 + 0.866025i 0.0255109 + 0.0328976i
\(694\) −65.2843 −2.47816
\(695\) 3.03553 5.25770i 0.115144 0.199436i
\(696\) −20.5563 35.6046i −0.779186 1.34959i
\(697\) −6.34315 10.9867i −0.240264 0.416149i
\(698\) 5.41421 9.37769i 0.204931 0.354951i
\(699\) 0.686292 0.0259579
\(700\) 40.1421 5.49333i 1.51723 0.207628i
\(701\) −1.82843 −0.0690587 −0.0345294 0.999404i \(-0.510993\pi\)
−0.0345294 + 0.999404i \(0.510993\pi\)
\(702\) 15.3137 26.5241i 0.577979 1.00109i
\(703\) 4.53553 + 7.85578i 0.171061 + 0.296286i
\(704\) −2.03553 3.52565i −0.0767171 0.132878i
\(705\) 3.12132 5.40629i 0.117556 0.203612i
\(706\) −1.17157 −0.0440927
\(707\) 18.3137 44.8592i 0.688758 1.68711i
\(708\) 36.9706 1.38944
\(709\) 21.4706 37.1881i 0.806344 1.39663i −0.109036 0.994038i \(-0.534776\pi\)
0.915380 0.402591i \(-0.131890\pi\)
\(710\) −17.1924 29.7781i −0.645219 1.11755i
\(711\) 0.707107 + 1.22474i 0.0265186 + 0.0459315i
\(712\) −25.1924 + 43.6345i −0.944125 + 1.63527i
\(713\) 34.8701 1.30589
\(714\) 13.6569 33.4523i 0.511095 1.25192i
\(715\) 0.928932 0.0347401
\(716\) −34.0711 + 59.0128i −1.27330 + 2.20541i
\(717\) −1.41421 2.44949i −0.0528148 0.0914779i
\(718\) 6.32843 + 10.9612i 0.236175 + 0.409067i
\(719\) −26.0416 + 45.1054i −0.971189 + 1.68215i −0.279211 + 0.960230i \(0.590073\pi\)
−0.691978 + 0.721919i \(0.743260\pi\)
\(720\) −3.00000 −0.111803
\(721\) 15.7279 2.15232i 0.585738 0.0801565i
\(722\) −2.41421 −0.0898477
\(723\) 18.4142 31.8944i 0.684832 1.18616i
\(724\) −18.9497 32.8219i −0.704262 1.21982i
\(725\) −13.1716 22.8138i −0.489180 0.847285i
\(726\) −18.4853 + 32.0174i −0.686053 + 1.18828i
\(727\) 20.0711 0.744395 0.372197 0.928154i \(-0.378604\pi\)
0.372197 + 0.928154i \(0.378604\pi\)
\(728\) 16.0503 + 20.6976i 0.594862 + 0.767103i
\(729\) 29.0000 1.07407
\(730\) 18.2782 31.6587i 0.676506 1.17174i
\(731\) 16.1421 + 27.9590i 0.597038 + 1.03410i
\(732\) −32.0208 55.4617i −1.18352 2.04992i
\(733\) −10.7279 + 18.5813i −0.396245 + 0.686316i −0.993259 0.115914i \(-0.963020\pi\)
0.597014 + 0.802231i \(0.296354\pi\)
\(734\) 58.7696 2.16922
\(735\) −2.46447 + 9.58783i −0.0909032 + 0.353652i
\(736\) −8.85786 −0.326505
\(737\) 0.242641 0.420266i 0.00893778 0.0154807i
\(738\) 3.82843 + 6.63103i 0.140926 + 0.244092i
\(739\) 4.17157 + 7.22538i 0.153454 + 0.265790i 0.932495 0.361183i \(-0.117627\pi\)
−0.779041 + 0.626973i \(0.784294\pi\)
\(740\) −17.3640 + 30.0753i −0.638312 + 1.10559i
\(741\) 3.17157 0.116511
\(742\) 16.6066 + 21.4150i 0.609648 + 0.786170i
\(743\) −2.87006 −0.105292 −0.0526461 0.998613i \(-0.516766\pi\)
−0.0526461 + 0.998613i \(0.516766\pi\)
\(744\) −19.4853 + 33.7495i −0.714365 + 1.23732i
\(745\) 0.0857864 + 0.148586i 0.00314297 + 0.00544379i
\(746\) 13.6569 + 23.6544i 0.500013 + 0.866048i
\(747\) 4.62132 8.00436i 0.169085 0.292864i
\(748\) 6.34315 0.231928
\(749\) 36.4350 4.98602i 1.33131 0.182185i
\(750\) 30.7279 1.12203
\(751\) −4.72792 + 8.18900i −0.172524 + 0.298821i −0.939302 0.343092i \(-0.888526\pi\)
0.766777 + 0.641913i \(0.221859\pi\)
\(752\) 6.62132 + 11.4685i 0.241455 + 0.418212i
\(753\) 9.70711 + 16.8132i 0.353747 + 0.612707i
\(754\) 17.8284 30.8797i 0.649273 1.12457i
\(755\) −17.3137 −0.630110
\(756\) −21.6569 + 53.0482i −0.787652 + 1.92935i
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) 5.12132 8.87039i 0.186015 0.322187i
\(759\) −1.63604 2.83370i −0.0593845 0.102857i
\(760\) −2.20711 3.82282i −0.0800602 0.138668i
\(761\) 17.0563 29.5425i 0.618292 1.07091i −0.371505 0.928431i \(-0.621158\pi\)
0.989797 0.142483i \(-0.0455085\pi\)
\(762\) −14.4853 −0.524746
\(763\) −9.65685 + 23.6544i −0.349602 + 0.856346i
\(764\) 32.2132 1.16543
\(765\) −2.00000 + 3.46410i −0.0723102 + 0.125245i
\(766\) 23.8492 + 41.3081i 0.861708 + 1.49252i
\(767\) 7.65685 + 13.2621i 0.276473 + 0.478865i
\(768\) 21.1924 36.7063i 0.764714 1.32452i
\(769\) −43.4264 −1.56600 −0.782998 0.622024i \(-0.786311\pi\)
−0.782998 + 0.622024i \(0.786311\pi\)
\(770\) −2.62132 + 0.358719i −0.0944658 + 0.0129274i
\(771\) 13.1716 0.474363
\(772\) −15.1213 + 26.1909i −0.544228 + 0.942631i
\(773\) 17.1213 + 29.6550i 0.615811 + 1.06662i 0.990242 + 0.139361i \(0.0445049\pi\)
−0.374431 + 0.927255i \(0.622162\pi\)
\(774\) −9.74264 16.8747i −0.350192 0.606550i
\(775\) −12.4853 + 21.6251i −0.448485 + 0.776798i
\(776\) 14.0000 0.502571
\(777\) 20.7990 + 26.8213i 0.746160 + 0.962209i
\(778\) 27.7990 0.996642
\(779\) −1.58579 + 2.74666i −0.0568167 + 0.0984094i
\(780\) 6.07107 + 10.5154i 0.217379 + 0.376512i
\(781\) −2.94975 5.10911i −0.105550 0.182818i
\(782\) 26.9706 46.7144i 0.964465 1.67050i
\(783\) 37.2548 1.33138
\(784\) −15.0000 14.6969i −0.535714 0.524891i
\(785\) 6.17157 0.220273
\(786\) 6.00000 10.3923i 0.214013 0.370681i
\(787\) −20.5061 35.5176i −0.730963 1.26607i −0.956472 0.291825i \(-0.905738\pi\)
0.225508 0.974241i \(-0.427596\pi\)
\(788\) −8.64214 14.9686i −0.307863 0.533235i
\(789\) −11.6569 + 20.1903i −0.414995 + 0.718792i
\(790\) −3.41421 −0.121472
\(791\) −0.393398 0.507306i −0.0139876 0.0180377i
\(792\) −1.82843 −0.0649703
\(793\) 13.2635 22.9730i 0.470999 0.815794i
\(794\) −10.4142 18.0379i −0.369587 0.640143i
\(795\) 3.00000 + 5.19615i 0.106399 + 0.184289i
\(796\) −30.7635 + 53.2839i −1.09038 + 1.88860i
\(797\) −30.2426 −1.07125 −0.535625 0.844456i \(-0.679924\pi\)
−0.535625 + 0.844456i \(0.679924\pi\)
\(798\) −8.94975 + 1.22474i −0.316818 + 0.0433555i
\(799\) 17.6569 0.624655
\(800\) 3.17157 5.49333i 0.112132 0.194218i
\(801\) −5.70711 9.88500i −0.201651 0.349269i
\(802\) 0.585786 + 1.01461i 0.0206848 + 0.0358272i
\(803\) 3.13604 5.43178i 0.110668 0.191683i
\(804\) 6.34315 0.223706
\(805\) −5.58579 + 13.6823i −0.196873 + 0.482239i
\(806\) −33.7990 −1.19052
\(807\) 2.82843 4.89898i 0.0995654 0.172452i
\(808\) 40.4203 + 70.0100i 1.42198 + 2.46294i
\(809\) −15.5711 26.9699i −0.547450 0.948211i −0.998448 0.0556859i \(-0.982265\pi\)
0.450999 0.892525i \(-0.351068\pi\)
\(810\) −6.03553 + 10.4539i −0.212067 + 0.367311i
\(811\) −0.544156 −0.0191079 −0.00955395 0.999954i \(-0.503041\pi\)
−0.00955395 + 0.999954i \(0.503041\pi\)
\(812\) −25.2132 + 61.7595i −0.884810 + 2.16733i
\(813\) −21.5563 −0.756014
\(814\) −4.53553 + 7.85578i −0.158970 + 0.275345i
\(815\) −1.96447 3.40256i −0.0688122 0.119186i
\(816\) 8.48528 + 14.6969i 0.297044 + 0.514496i
\(817\) 4.03553 6.98975i 0.141185 0.244540i
\(818\) 6.48528 0.226753
\(819\) −5.87868 + 0.804479i −0.205418 + 0.0281108i
\(820\) −12.1421 −0.424022
\(821\) −5.05635 + 8.75785i −0.176468 + 0.305651i −0.940668 0.339328i \(-0.889800\pi\)
0.764200 + 0.644979i \(0.223134\pi\)
\(822\) −33.8492 58.6286i −1.18063 2.04491i
\(823\) 3.10660 + 5.38079i 0.108289 + 0.187563i 0.915077 0.403278i \(-0.132129\pi\)
−0.806788 + 0.590841i \(0.798796\pi\)
\(824\) −13.2426 + 22.9369i −0.461329 + 0.799046i
\(825\) 2.34315 0.0815779
\(826\) −26.7279 34.4669i −0.929983 1.19926i
\(827\) 12.2843 0.427166 0.213583 0.976925i \(-0.431487\pi\)
0.213583 + 0.976925i \(0.431487\pi\)
\(828\) −10.6924 + 18.5198i −0.371586 + 0.643606i
\(829\) 14.1421 + 24.4949i 0.491177 + 0.850743i 0.999948 0.0101585i \(-0.00323361\pi\)
−0.508772 + 0.860901i \(0.669900\pi\)
\(830\) 11.1569 + 19.3242i 0.387260 + 0.670754i
\(831\) 15.8787 27.5027i 0.550825 0.954057i
\(832\) 22.0416 0.764156
\(833\) −26.9706 + 7.52255i −0.934475 + 0.260641i
\(834\) 20.7279 0.717749
\(835\) −6.53553 + 11.3199i −0.226171 + 0.391740i
\(836\) −0.792893 1.37333i −0.0274228 0.0474977i
\(837\) −17.6569 30.5826i −0.610310 1.05709i
\(838\) 7.32843 12.6932i 0.253156 0.438480i
\(839\) −19.7990 −0.683537 −0.341769 0.939784i \(-0.611026\pi\)
−0.341769 + 0.939784i \(0.611026\pi\)
\(840\) −10.1213 13.0519i −0.349219 0.450334i
\(841\) 14.3726 0.495606
\(842\) −44.9203 + 77.8043i −1.54806 + 2.68131i
\(843\) 19.9706 + 34.5900i 0.687823 + 1.19134i
\(844\) 2.24264 + 3.88437i 0.0771949 + 0.133705i
\(845\) 3.98528 6.90271i 0.137098 0.237460i
\(846\) −10.6569 −0.366390
\(847\) 28.3848 3.88437i 0.975312 0.133468i
\(848\) −12.7279 −0.437079
\(849\) −21.2635 + 36.8294i −0.729760 + 1.26398i
\(850\) 19.3137 + 33.4523i 0.662455 + 1.14741i
\(851\) 25.3345 + 43.8807i 0.868456 + 1.50421i
\(852\) 38.5563 66.7816i 1.32092 2.28790i
\(853\) 43.9706 1.50552 0.752762 0.658293i \(-0.228721\pi\)
0.752762 + 0.658293i \(0.228721\pi\)
\(854\) −28.5563 + 69.9485i −0.977178 + 2.39359i
\(855\) 1.00000 0.0341993
\(856\) −30.6777 + 53.1353i −1.04854 + 1.81613i
\(857\) 6.48528 + 11.2328i 0.221533 + 0.383706i 0.955274 0.295723i \(-0.0955606\pi\)
−0.733741 + 0.679430i \(0.762227\pi\)
\(858\) 1.58579 + 2.74666i 0.0541379 + 0.0937695i
\(859\) 6.03553 10.4539i 0.205930 0.356681i −0.744499 0.667624i \(-0.767311\pi\)
0.950429 + 0.310943i \(0.100645\pi\)
\(860\) 30.8995 1.05366
\(861\) −4.48528 + 10.9867i −0.152858 + 0.374424i
\(862\) 24.2426 0.825708
\(863\) −2.29289 + 3.97141i −0.0780510 + 0.135188i −0.902409 0.430881i \(-0.858203\pi\)
0.824358 + 0.566069i \(0.191536\pi\)
\(864\) 4.48528 + 7.76874i 0.152592 + 0.264298i
\(865\) 3.65685 + 6.33386i 0.124337 + 0.215358i
\(866\) 33.7990 58.5416i 1.14854 1.98932i
\(867\) −1.41421 −0.0480292
\(868\) 62.6482 8.57321i 2.12642 0.290994i
\(869\) −0.585786 −0.0198714
\(870\) −11.2426 + 19.4728i −0.381161 + 0.660191i
\(871\) 1.31371 + 2.27541i 0.0445133 + 0.0770993i
\(872\) −21.3137 36.9164i −0.721773 1.25015i
\(873\) −1.58579 + 2.74666i −0.0536707 + 0.0929604i
\(874\) −13.4853 −0.456146
\(875\) −14.5919 18.8169i −0.493296 0.636128i
\(876\) 81.9828 2.76994
\(877\) 13.9497 24.1617i 0.471050 0.815882i −0.528402 0.848994i \(-0.677209\pi\)
0.999452 + 0.0331126i \(0.0105420\pi\)
\(878\) −29.5563 51.1931i −0.997478 1.72768i
\(879\) −2.24264 3.88437i −0.0756424 0.131016i
\(880\) 0.621320 1.07616i 0.0209447 0.0362773i
\(881\) −52.2843 −1.76150 −0.880751 0.473580i \(-0.842962\pi\)
−0.880751 + 0.473580i \(0.842962\pi\)
\(882\) 16.2782 4.54026i 0.548115 0.152879i
\(883\) −5.65685 −0.190368 −0.0951842 0.995460i \(-0.530344\pi\)
−0.0951842 + 0.995460i \(0.530344\pi\)
\(884\) −17.1716 + 29.7420i −0.577542 + 1.00033i
\(885\) −4.82843 8.36308i −0.162306 0.281122i
\(886\) 21.3137 + 36.9164i 0.716048 + 1.24023i
\(887\) 10.6569 18.4582i 0.357822 0.619766i −0.629775 0.776778i \(-0.716853\pi\)
0.987597 + 0.157012i \(0.0501861\pi\)
\(888\) −56.6274 −1.90029
\(889\) 6.87868 + 8.87039i 0.230704 + 0.297503i
\(890\) 27.5563 0.923691
\(891\) −1.03553 + 1.79360i −0.0346917 + 0.0600878i
\(892\) −4.29289 7.43551i −0.143737 0.248959i
\(893\) −2.20711 3.82282i −0.0738580 0.127926i
\(894\) −0.292893 + 0.507306i −0.00979581 + 0.0169668i
\(895\) 17.7990 0.594955
\(896\) −53.8848 + 7.37396i −1.80016 + 0.246347i
\(897\) 17.7157 0.591511
\(898\) 11.6569 20.1903i 0.388994 0.673758i
\(899\) −20.5563 35.6046i −0.685593 1.18748i
\(900\) −7.65685 13.2621i −0.255228 0.442069i
\(901\) −8.48528 + 14.6969i −0.282686 + 0.489626i
\(902\) −3.17157 −0.105602
\(903\) 11.4142 27.9590i 0.379841 0.930417i
\(904\) 1.07107 0.0356232
\(905\) −4.94975 + 8.57321i −0.164535 + 0.284983i
\(906\) −29.5563 51.1931i −0.981944 1.70078i
\(907\) −15.7071 27.2055i −0.521546 0.903344i −0.999686 0.0250604i \(-0.992022\pi\)
0.478140 0.878284i \(-0.341311\pi\)
\(908\) 38.7487 67.1148i 1.28592 2.22728i
\(909\) −18.3137 −0.607427
\(910\) 5.41421 13.2621i 0.179479 0.439633i
\(911\) 9.27208 0.307198 0.153599 0.988133i \(-0.450914\pi\)
0.153599 + 0.988133i \(0.450914\pi\)
\(912\) 2.12132 3.67423i 0.0702439 0.121666i
\(913\) 1.91421 + 3.31552i 0.0633512 + 0.109728i
\(914\) −9.44975 16.3674i −0.312570 0.541387i
\(915\) −8.36396 + 14.4868i −0.276504 + 0.478919i
\(916\) 47.7990 1.57932
\(917\) −9.21320 + 1.26080i −0.304247 + 0.0416352i
\(918\) −54.6274 −1.80297
\(919\) 9.52082 16.4905i 0.314063 0.543973i −0.665175 0.746687i \(-0.731643\pi\)
0.979238 + 0.202715i \(0.0649764\pi\)
\(920\) −12.3284 21.3535i −0.406456 0.704003i
\(921\) −20.7279 35.9018i −0.683008 1.18300i
\(922\) 36.1777 62.6616i 1.19145 2.06365i
\(923\) 31.9411 1.05135
\(924\) −3.63604 4.68885i −0.119617 0.154252i
\(925\) −36.2843 −1.19302
\(926\) −4.91421 + 8.51167i −0.161491 + 0.279711i
\(927\) −3.00000 5.19615i −0.0985329 0.170664i
\(928\) 5.22183 + 9.04447i 0.171415 + 0.296899i
\(929\) −7.50000 + 12.9904i −0.246067 + 0.426201i −0.962431 0.271526i \(-0.912472\pi\)
0.716364 + 0.697727i \(0.245805\pi\)
\(930\) 21.3137 0.698904
\(931\) 5.00000 + 4.89898i 0.163868 + 0.160558i
\(932\) 1.85786 0.0608564
\(933\) 16.8284 29.1477i 0.550938 0.954253i
\(934\) 23.0563 + 39.9348i 0.754427 + 1.30671i
\(935\) −0.828427 1.43488i −0.0270925 0.0469255i
\(936\) 4.94975 8.57321i 0.161788 0.280224i
\(937\) −33.6863 −1.10048 −0.550242 0.835006i \(-0.685464\pi\)
−0.550242 + 0.835006i \(0.685464\pi\)
\(938\) −4.58579 5.91359i −0.149731 0.193086i
\(939\) −9.41421 −0.307221
\(940\) 8.44975 14.6354i 0.275600 0.477354i
\(941\) −2.02082 3.50015i −0.0658767 0.114102i 0.831206 0.555965i \(-0.187651\pi\)
−0.897083 + 0.441863i \(0.854318\pi\)
\(942\) 10.5355 + 18.2481i 0.343266 + 0.594555i
\(943\) −8.85786 + 15.3423i −0.288452 + 0.499613i
\(944\) 20.4853 0.666739
\(945\) 14.8284 2.02922i 0.482369 0.0660107i
\(946\) 8.07107 0.262413
\(947\) −1.82843 + 3.16693i −0.0594159 + 0.102911i −0.894203 0.447661i \(-0.852257\pi\)
0.834787 + 0.550572i \(0.185590\pi\)
\(948\) −3.82843 6.63103i −0.124342 0.215366i
\(949\) 16.9792 + 29.4088i 0.551168 + 0.954650i
\(950\) 4.82843 8.36308i 0.156655 0.271334i
\(951\) −28.6274 −0.928308
\(952\) 17.6569 43.2503i 0.572262 1.40175i
\(953\) −3.41421 −0.110597 −0.0552986 0.998470i \(-0.517611\pi\)
−0.0552986 + 0.998470i \(0.517611\pi\)
\(954\) 5.12132 8.87039i 0.165809 0.287189i
\(955\) −4.20711 7.28692i −0.136139 0.235799i
\(956\) −3.82843 6.63103i −0.123820 0.214463i
\(957\) −1.92893 + 3.34101i −0.0623535 + 0.107999i
\(958\) 61.2843 1.98000
\(959\) −19.8284 + 48.5695i −0.640293 + 1.56839i
\(960\) −13.8995 −0.448604
\(961\) −3.98528 + 6.90271i −0.128557 + 0.222668i
\(962\) −24.5563 42.5328i −0.791728 1.37131i
\(963\) −6.94975 12.0373i −0.223952 0.387897i
\(964\) 49.8492 86.3414i 1.60554 2.78087i
\(965\) 7.89949 0.254294
\(966\) −49.9914 + 6.84116i −1.60845 + 0.220111i
\(967\) −36.2843 −1.16682 −0.583412 0.812177i \(-0.698283\pi\)
−0.583412 + 0.812177i \(0.698283\pi\)
\(968\) −23.8995 + 41.3951i −0.768159 + 1.33049i
\(969\) −2.82843 4.89898i −0.0908622 0.157378i
\(970\) −3.82843 6.63103i −0.122923 0.212910i
\(971\) −13.4350 + 23.2702i −0.431151 + 0.746775i −0.996973 0.0777526i \(-0.975226\pi\)
0.565822 + 0.824527i \(0.308559\pi\)
\(972\) 37.8995 1.21563
\(973\) −9.84315 12.6932i −0.315557 0.406926i
\(974\) −36.6274 −1.17362
\(975\) −6.34315 + 10.9867i −0.203143 + 0.351854i
\(976\) −17.7426 30.7312i −0.567928 0.983680i
\(977\) 22.3848 + 38.7716i 0.716152 + 1.24041i 0.962513 + 0.271234i \(0.0874318\pi\)
−0.246361 + 0.969178i \(0.579235\pi\)
\(978\) 6.70711 11.6170i 0.214470 0.371472i
\(979\) 4.72792 0.151105
\(980\) −6.67157 + 25.9553i −0.213116 + 0.829111i
\(981\) 9.65685 0.308320
\(982\) −1.74264 + 3.01834i −0.0556099 + 0.0963192i
\(983\) 23.0000 + 39.8372i 0.733586 + 1.27061i 0.955341 + 0.295506i \(0.0954882\pi\)
−0.221755 + 0.975102i \(0.571178\pi\)
\(984\) −9.89949 17.1464i −0.315584 0.546608i
\(985\) −2.25736 + 3.90986i −0.0719254 + 0.124579i
\(986\) −63.5980 −2.02537
\(987\) −10.1213 13.0519i −0.322165 0.415447i
\(988\) 8.58579 0.273150
\(989\) 22.5416 39.0432i 0.716782 1.24150i
\(990\) 0.500000 + 0.866025i 0.0158910 + 0.0275241i
\(991\) −1.89949 3.29002i −0.0603394 0.104511i 0.834278 0.551344i \(-0.185885\pi\)
−0.894617 + 0.446833i \(0.852552\pi\)
\(992\) 4.94975 8.57321i 0.157155 0.272200i
\(993\) −44.4853 −1.41170
\(994\) −90.1335 + 12.3345i −2.85886 + 0.391226i
\(995\) 16.0711 0.509487
\(996\) −25.0208 + 43.3373i −0.792815 + 1.37320i
\(997\) 14.1421 + 24.4949i 0.447886 + 0.775761i 0.998248 0.0591648i \(-0.0188437\pi\)
−0.550362 + 0.834926i \(0.685510\pi\)
\(998\) 41.7132 + 72.2494i 1.32041 + 2.28701i
\(999\) 25.6569 44.4390i 0.811747 1.40599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 133.2.f.c.58.2 yes 4
3.2 odd 2 1197.2.j.e.856.1 4
7.2 even 3 931.2.a.f.1.1 2
7.3 odd 6 931.2.f.i.704.2 4
7.4 even 3 inner 133.2.f.c.39.2 4
7.5 odd 6 931.2.a.e.1.1 2
7.6 odd 2 931.2.f.i.324.2 4
21.2 odd 6 8379.2.a.bi.1.2 2
21.5 even 6 8379.2.a.bl.1.2 2
21.11 odd 6 1197.2.j.e.172.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.f.c.39.2 4 7.4 even 3 inner
133.2.f.c.58.2 yes 4 1.1 even 1 trivial
931.2.a.e.1.1 2 7.5 odd 6
931.2.a.f.1.1 2 7.2 even 3
931.2.f.i.324.2 4 7.6 odd 2
931.2.f.i.704.2 4 7.3 odd 6
1197.2.j.e.172.1 4 21.11 odd 6
1197.2.j.e.856.1 4 3.2 odd 2
8379.2.a.bi.1.2 2 21.2 odd 6
8379.2.a.bl.1.2 2 21.5 even 6