Properties

Label 133.2.f.c.58.1
Level $133$
Weight $2$
Character 133.58
Analytic conductor $1.062$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [133,2,Mod(39,133)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("133.39"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(133, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 133.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06201034688\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 58.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 133.58
Dual form 133.2.f.c.39.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 + 0.358719i) q^{2} +(0.707107 + 1.22474i) q^{3} +(0.914214 + 1.58346i) q^{4} +(-0.500000 + 0.866025i) q^{5} -0.585786 q^{6} +(-2.62132 - 0.358719i) q^{7} -1.58579 q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.207107 - 0.358719i) q^{10} +(-1.20711 - 2.09077i) q^{11} +(-1.29289 + 2.23936i) q^{12} +6.24264 q^{13} +(0.671573 - 0.866025i) q^{14} -1.41421 q^{15} +(-1.50000 + 2.59808i) q^{16} +(2.00000 + 3.46410i) q^{17} +(0.207107 + 0.358719i) q^{18} +(0.500000 - 0.866025i) q^{19} -1.82843 q^{20} +(-1.41421 - 3.46410i) q^{21} +1.00000 q^{22} +(4.20711 - 7.28692i) q^{23} +(-1.12132 - 1.94218i) q^{24} +(2.00000 + 3.46410i) q^{25} +(-1.29289 + 2.23936i) q^{26} +5.65685 q^{27} +(-1.82843 - 4.47871i) q^{28} -9.41421 q^{29} +(0.292893 - 0.507306i) q^{30} +(-1.12132 - 1.94218i) q^{31} +(-2.20711 - 3.82282i) q^{32} +(1.70711 - 2.95680i) q^{33} -1.65685 q^{34} +(1.62132 - 2.09077i) q^{35} +1.82843 q^{36} +(2.53553 - 4.39167i) q^{37} +(0.207107 + 0.358719i) q^{38} +(4.41421 + 7.64564i) q^{39} +(0.792893 - 1.37333i) q^{40} -8.82843 q^{41} +(1.53553 + 0.210133i) q^{42} -6.07107 q^{43} +(2.20711 - 3.82282i) q^{44} +(0.500000 + 0.866025i) q^{45} +(1.74264 + 3.01834i) q^{46} +(0.792893 - 1.37333i) q^{47} -4.24264 q^{48} +(6.74264 + 1.88064i) q^{49} -1.65685 q^{50} +(-2.82843 + 4.89898i) q^{51} +(5.70711 + 9.88500i) q^{52} +(-2.12132 - 3.67423i) q^{53} +(-1.17157 + 2.02922i) q^{54} +2.41421 q^{55} +(4.15685 + 0.568852i) q^{56} +1.41421 q^{57} +(1.94975 - 3.37706i) q^{58} +(-0.585786 - 1.01461i) q^{59} +(-1.29289 - 2.23936i) q^{60} +(-3.08579 + 5.34474i) q^{61} +0.928932 q^{62} +(-1.62132 + 2.09077i) q^{63} -4.17157 q^{64} +(-3.12132 + 5.40629i) q^{65} +(0.707107 + 1.22474i) q^{66} +(-3.41421 - 5.91359i) q^{67} +(-3.65685 + 6.33386i) q^{68} +11.8995 q^{69} +(0.414214 + 1.01461i) q^{70} -5.75736 q^{71} +(-0.792893 + 1.37333i) q^{72} +(6.57107 + 11.3814i) q^{73} +(1.05025 + 1.81909i) q^{74} +(-2.82843 + 4.89898i) q^{75} +1.82843 q^{76} +(2.41421 + 5.91359i) q^{77} -3.65685 q^{78} +(0.707107 - 1.22474i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(2.50000 + 4.33013i) q^{81} +(1.82843 - 3.16693i) q^{82} +0.757359 q^{83} +(4.19239 - 5.40629i) q^{84} -4.00000 q^{85} +(1.25736 - 2.17781i) q^{86} +(-6.65685 - 11.5300i) q^{87} +(1.91421 + 3.31552i) q^{88} +(4.29289 - 7.43551i) q^{89} -0.414214 q^{90} +(-16.3640 - 2.23936i) q^{91} +15.3848 q^{92} +(1.58579 - 2.74666i) q^{93} +(0.328427 + 0.568852i) q^{94} +(0.500000 + 0.866025i) q^{95} +(3.12132 - 5.40629i) q^{96} -8.82843 q^{97} +(-2.07107 + 2.02922i) q^{98} -2.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 8 q^{6} - 2 q^{7} - 12 q^{8} + 2 q^{9} + 2 q^{10} - 2 q^{11} - 8 q^{12} + 8 q^{13} + 14 q^{14} - 6 q^{16} + 8 q^{17} - 2 q^{18} + 2 q^{19} + 4 q^{20} + 4 q^{22} + 14 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/133\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(115\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.207107 + 0.358719i −0.146447 + 0.253653i −0.929912 0.367783i \(-0.880117\pi\)
0.783465 + 0.621436i \(0.213450\pi\)
\(3\) 0.707107 + 1.22474i 0.408248 + 0.707107i 0.994694 0.102882i \(-0.0328064\pi\)
−0.586445 + 0.809989i \(0.699473\pi\)
\(4\) 0.914214 + 1.58346i 0.457107 + 0.791732i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) −0.585786 −0.239146
\(7\) −2.62132 0.358719i −0.990766 0.135583i
\(8\) −1.58579 −0.560660
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −0.207107 0.358719i −0.0654929 0.113437i
\(11\) −1.20711 2.09077i −0.363956 0.630391i 0.624652 0.780903i \(-0.285241\pi\)
−0.988608 + 0.150513i \(0.951908\pi\)
\(12\) −1.29289 + 2.23936i −0.373226 + 0.646447i
\(13\) 6.24264 1.73140 0.865699 0.500566i \(-0.166875\pi\)
0.865699 + 0.500566i \(0.166875\pi\)
\(14\) 0.671573 0.866025i 0.179485 0.231455i
\(15\) −1.41421 −0.365148
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) 0.207107 + 0.358719i 0.0488155 + 0.0845510i
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) −1.82843 −0.408849
\(21\) −1.41421 3.46410i −0.308607 0.755929i
\(22\) 1.00000 0.213201
\(23\) 4.20711 7.28692i 0.877242 1.51943i 0.0228877 0.999738i \(-0.492714\pi\)
0.854355 0.519690i \(-0.173953\pi\)
\(24\) −1.12132 1.94218i −0.228889 0.396447i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −1.29289 + 2.23936i −0.253557 + 0.439174i
\(27\) 5.65685 1.08866
\(28\) −1.82843 4.47871i −0.345540 0.846397i
\(29\) −9.41421 −1.74818 −0.874088 0.485768i \(-0.838540\pi\)
−0.874088 + 0.485768i \(0.838540\pi\)
\(30\) 0.292893 0.507306i 0.0534747 0.0926210i
\(31\) −1.12132 1.94218i −0.201395 0.348827i 0.747583 0.664168i \(-0.231214\pi\)
−0.948978 + 0.315342i \(0.897881\pi\)
\(32\) −2.20711 3.82282i −0.390165 0.675786i
\(33\) 1.70711 2.95680i 0.297169 0.514712i
\(34\) −1.65685 −0.284148
\(35\) 1.62132 2.09077i 0.274053 0.353405i
\(36\) 1.82843 0.304738
\(37\) 2.53553 4.39167i 0.416839 0.721987i −0.578780 0.815483i \(-0.696471\pi\)
0.995620 + 0.0934968i \(0.0298045\pi\)
\(38\) 0.207107 + 0.358719i 0.0335972 + 0.0581920i
\(39\) 4.41421 + 7.64564i 0.706840 + 1.22428i
\(40\) 0.792893 1.37333i 0.125367 0.217143i
\(41\) −8.82843 −1.37877 −0.689384 0.724396i \(-0.742119\pi\)
−0.689384 + 0.724396i \(0.742119\pi\)
\(42\) 1.53553 + 0.210133i 0.236938 + 0.0324242i
\(43\) −6.07107 −0.925829 −0.462915 0.886403i \(-0.653196\pi\)
−0.462915 + 0.886403i \(0.653196\pi\)
\(44\) 2.20711 3.82282i 0.332734 0.576312i
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 1.74264 + 3.01834i 0.256938 + 0.445030i
\(47\) 0.792893 1.37333i 0.115655 0.200321i −0.802386 0.596805i \(-0.796437\pi\)
0.918042 + 0.396484i \(0.129770\pi\)
\(48\) −4.24264 −0.612372
\(49\) 6.74264 + 1.88064i 0.963234 + 0.268662i
\(50\) −1.65685 −0.234315
\(51\) −2.82843 + 4.89898i −0.396059 + 0.685994i
\(52\) 5.70711 + 9.88500i 0.791433 + 1.37080i
\(53\) −2.12132 3.67423i −0.291386 0.504695i 0.682752 0.730650i \(-0.260783\pi\)
−0.974138 + 0.225955i \(0.927450\pi\)
\(54\) −1.17157 + 2.02922i −0.159431 + 0.276142i
\(55\) 2.41421 0.325532
\(56\) 4.15685 + 0.568852i 0.555483 + 0.0760161i
\(57\) 1.41421 0.187317
\(58\) 1.94975 3.37706i 0.256014 0.443430i
\(59\) −0.585786 1.01461i −0.0762629 0.132091i 0.825372 0.564589i \(-0.190965\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(60\) −1.29289 2.23936i −0.166912 0.289100i
\(61\) −3.08579 + 5.34474i −0.395094 + 0.684324i −0.993113 0.117158i \(-0.962621\pi\)
0.598019 + 0.801482i \(0.295955\pi\)
\(62\) 0.928932 0.117975
\(63\) −1.62132 + 2.09077i −0.204267 + 0.263412i
\(64\) −4.17157 −0.521447
\(65\) −3.12132 + 5.40629i −0.387152 + 0.670567i
\(66\) 0.707107 + 1.22474i 0.0870388 + 0.150756i
\(67\) −3.41421 5.91359i −0.417113 0.722460i 0.578535 0.815657i \(-0.303625\pi\)
−0.995648 + 0.0931973i \(0.970291\pi\)
\(68\) −3.65685 + 6.33386i −0.443459 + 0.768093i
\(69\) 11.8995 1.43253
\(70\) 0.414214 + 1.01461i 0.0495080 + 0.121269i
\(71\) −5.75736 −0.683273 −0.341636 0.939832i \(-0.610981\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(72\) −0.792893 + 1.37333i −0.0934434 + 0.161849i
\(73\) 6.57107 + 11.3814i 0.769085 + 1.33209i 0.938059 + 0.346474i \(0.112621\pi\)
−0.168974 + 0.985620i \(0.554045\pi\)
\(74\) 1.05025 + 1.81909i 0.122089 + 0.211465i
\(75\) −2.82843 + 4.89898i −0.326599 + 0.565685i
\(76\) 1.82843 0.209735
\(77\) 2.41421 + 5.91359i 0.275125 + 0.673916i
\(78\) −3.65685 −0.414057
\(79\) 0.707107 1.22474i 0.0795557 0.137795i −0.823503 0.567312i \(-0.807983\pi\)
0.903058 + 0.429518i \(0.141317\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) 1.82843 3.16693i 0.201916 0.349729i
\(83\) 0.757359 0.0831310 0.0415655 0.999136i \(-0.486765\pi\)
0.0415655 + 0.999136i \(0.486765\pi\)
\(84\) 4.19239 5.40629i 0.457427 0.589874i
\(85\) −4.00000 −0.433861
\(86\) 1.25736 2.17781i 0.135585 0.234839i
\(87\) −6.65685 11.5300i −0.713690 1.23615i
\(88\) 1.91421 + 3.31552i 0.204056 + 0.353435i
\(89\) 4.29289 7.43551i 0.455046 0.788162i −0.543645 0.839315i \(-0.682956\pi\)
0.998691 + 0.0511528i \(0.0162896\pi\)
\(90\) −0.414214 −0.0436619
\(91\) −16.3640 2.23936i −1.71541 0.234748i
\(92\) 15.3848 1.60397
\(93\) 1.58579 2.74666i 0.164438 0.284816i
\(94\) 0.328427 + 0.568852i 0.0338747 + 0.0586727i
\(95\) 0.500000 + 0.866025i 0.0512989 + 0.0888523i
\(96\) 3.12132 5.40629i 0.318568 0.551777i
\(97\) −8.82843 −0.896391 −0.448195 0.893936i \(-0.647933\pi\)
−0.448195 + 0.893936i \(0.647933\pi\)
\(98\) −2.07107 + 2.02922i −0.209209 + 0.204983i
\(99\) −2.41421 −0.242638
\(100\) −3.65685 + 6.33386i −0.365685 + 0.633386i
\(101\) 2.15685 + 3.73578i 0.214615 + 0.371724i 0.953153 0.302487i \(-0.0978170\pi\)
−0.738538 + 0.674211i \(0.764484\pi\)
\(102\) −1.17157 2.02922i −0.116003 0.200923i
\(103\) 3.00000 5.19615i 0.295599 0.511992i −0.679525 0.733652i \(-0.737814\pi\)
0.975124 + 0.221660i \(0.0711475\pi\)
\(104\) −9.89949 −0.970725
\(105\) 3.70711 + 0.507306i 0.361777 + 0.0495080i
\(106\) 1.75736 0.170690
\(107\) −2.94975 + 5.10911i −0.285163 + 0.493917i −0.972649 0.232281i \(-0.925381\pi\)
0.687486 + 0.726198i \(0.258714\pi\)
\(108\) 5.17157 + 8.95743i 0.497635 + 0.861929i
\(109\) −0.828427 1.43488i −0.0793489 0.137436i 0.823620 0.567142i \(-0.191951\pi\)
−0.902969 + 0.429705i \(0.858617\pi\)
\(110\) −0.500000 + 0.866025i −0.0476731 + 0.0825723i
\(111\) 7.17157 0.680696
\(112\) 4.86396 6.27231i 0.459601 0.592678i
\(113\) 8.24264 0.775402 0.387701 0.921785i \(-0.373269\pi\)
0.387701 + 0.921785i \(0.373269\pi\)
\(114\) −0.292893 + 0.507306i −0.0274320 + 0.0475136i
\(115\) 4.20711 + 7.28692i 0.392315 + 0.679509i
\(116\) −8.60660 14.9071i −0.799103 1.38409i
\(117\) 3.12132 5.40629i 0.288566 0.499811i
\(118\) 0.485281 0.0446738
\(119\) −4.00000 9.79796i −0.366679 0.898177i
\(120\) 2.24264 0.204724
\(121\) 2.58579 4.47871i 0.235071 0.407156i
\(122\) −1.27817 2.21386i −0.115720 0.200434i
\(123\) −6.24264 10.8126i −0.562880 0.974937i
\(124\) 2.05025 3.55114i 0.184118 0.318902i
\(125\) −9.00000 −0.804984
\(126\) −0.414214 1.01461i −0.0369011 0.0903888i
\(127\) −4.24264 −0.376473 −0.188237 0.982124i \(-0.560277\pi\)
−0.188237 + 0.982124i \(0.560277\pi\)
\(128\) 5.27817 9.14207i 0.466529 0.808052i
\(129\) −4.29289 7.43551i −0.377968 0.654660i
\(130\) −1.29289 2.23936i −0.113394 0.196405i
\(131\) −10.2426 + 17.7408i −0.894904 + 1.55002i −0.0609799 + 0.998139i \(0.519423\pi\)
−0.833924 + 0.551880i \(0.813911\pi\)
\(132\) 6.24264 0.543352
\(133\) −1.62132 + 2.09077i −0.140586 + 0.181293i
\(134\) 2.82843 0.244339
\(135\) −2.82843 + 4.89898i −0.243432 + 0.421637i
\(136\) −3.17157 5.49333i −0.271960 0.471049i
\(137\) 7.08579 + 12.2729i 0.605380 + 1.04855i 0.991991 + 0.126306i \(0.0403120\pi\)
−0.386612 + 0.922243i \(0.626355\pi\)
\(138\) −2.46447 + 4.26858i −0.209789 + 0.363366i
\(139\) 8.07107 0.684579 0.342290 0.939595i \(-0.388798\pi\)
0.342290 + 0.939595i \(0.388798\pi\)
\(140\) 4.79289 + 0.655892i 0.405073 + 0.0554330i
\(141\) 2.24264 0.188864
\(142\) 1.19239 2.06528i 0.100063 0.173314i
\(143\) −7.53553 13.0519i −0.630153 1.09146i
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 4.70711 8.15295i 0.390904 0.677065i
\(146\) −5.44365 −0.450520
\(147\) 2.46447 + 9.58783i 0.203266 + 0.790791i
\(148\) 9.27208 0.762160
\(149\) 2.91421 5.04757i 0.238742 0.413513i −0.721612 0.692298i \(-0.756598\pi\)
0.960353 + 0.278785i \(0.0899317\pi\)
\(150\) −1.17157 2.02922i −0.0956585 0.165685i
\(151\) −2.65685 4.60181i −0.216212 0.374490i 0.737435 0.675418i \(-0.236037\pi\)
−0.953647 + 0.300928i \(0.902703\pi\)
\(152\) −0.792893 + 1.37333i −0.0643121 + 0.111392i
\(153\) 4.00000 0.323381
\(154\) −2.62132 0.358719i −0.211232 0.0289064i
\(155\) 2.24264 0.180133
\(156\) −8.07107 + 13.9795i −0.646203 + 1.11926i
\(157\) −5.91421 10.2437i −0.472006 0.817538i 0.527481 0.849567i \(-0.323136\pi\)
−0.999487 + 0.0320289i \(0.989803\pi\)
\(158\) 0.292893 + 0.507306i 0.0233013 + 0.0403591i
\(159\) 3.00000 5.19615i 0.237915 0.412082i
\(160\) 4.41421 0.348974
\(161\) −13.6421 + 17.5922i −1.07515 + 1.38646i
\(162\) −2.07107 −0.162718
\(163\) −9.03553 + 15.6500i −0.707718 + 1.22580i 0.257984 + 0.966149i \(0.416942\pi\)
−0.965702 + 0.259654i \(0.916392\pi\)
\(164\) −8.07107 13.9795i −0.630245 1.09162i
\(165\) 1.70711 + 2.95680i 0.132898 + 0.230186i
\(166\) −0.156854 + 0.271680i −0.0121743 + 0.0210864i
\(167\) −1.07107 −0.0828817 −0.0414409 0.999141i \(-0.513195\pi\)
−0.0414409 + 0.999141i \(0.513195\pi\)
\(168\) 2.24264 + 5.49333i 0.173023 + 0.423819i
\(169\) 25.9706 1.99774
\(170\) 0.828427 1.43488i 0.0635375 0.110050i
\(171\) −0.500000 0.866025i −0.0382360 0.0662266i
\(172\) −5.55025 9.61332i −0.423203 0.733009i
\(173\) −7.65685 + 13.2621i −0.582140 + 1.00830i 0.413086 + 0.910692i \(0.364451\pi\)
−0.995225 + 0.0976036i \(0.968882\pi\)
\(174\) 5.51472 0.418070
\(175\) −4.00000 9.79796i −0.302372 0.740656i
\(176\) 7.24264 0.545935
\(177\) 0.828427 1.43488i 0.0622684 0.107852i
\(178\) 1.77817 + 3.07989i 0.133280 + 0.230847i
\(179\) 10.8995 + 18.8785i 0.814667 + 1.41104i 0.909567 + 0.415557i \(0.136413\pi\)
−0.0949006 + 0.995487i \(0.530253\pi\)
\(180\) −0.914214 + 1.58346i −0.0681415 + 0.118024i
\(181\) −9.89949 −0.735824 −0.367912 0.929861i \(-0.619927\pi\)
−0.367912 + 0.929861i \(0.619927\pi\)
\(182\) 4.19239 5.40629i 0.310760 0.400741i
\(183\) −8.72792 −0.645187
\(184\) −6.67157 + 11.5555i −0.491835 + 0.851883i
\(185\) 2.53553 + 4.39167i 0.186416 + 0.322882i
\(186\) 0.656854 + 1.13770i 0.0481629 + 0.0834206i
\(187\) 4.82843 8.36308i 0.353090 0.611569i
\(188\) 2.89949 0.211467
\(189\) −14.8284 2.02922i −1.07861 0.147604i
\(190\) −0.414214 −0.0300502
\(191\) −2.79289 + 4.83743i −0.202087 + 0.350024i −0.949201 0.314672i \(-0.898106\pi\)
0.747114 + 0.664696i \(0.231439\pi\)
\(192\) −2.94975 5.10911i −0.212880 0.368718i
\(193\) 5.94975 + 10.3053i 0.428272 + 0.741789i 0.996720 0.0809303i \(-0.0257891\pi\)
−0.568448 + 0.822719i \(0.692456\pi\)
\(194\) 1.82843 3.16693i 0.131273 0.227372i
\(195\) −8.82843 −0.632217
\(196\) 3.18629 + 12.3960i 0.227592 + 0.885431i
\(197\) 21.4853 1.53076 0.765381 0.643577i \(-0.222550\pi\)
0.765381 + 0.643577i \(0.222550\pi\)
\(198\) 0.500000 0.866025i 0.0355335 0.0615457i
\(199\) −0.964466 1.67050i −0.0683692 0.118419i 0.829814 0.558039i \(-0.188446\pi\)
−0.898184 + 0.439621i \(0.855113\pi\)
\(200\) −3.17157 5.49333i −0.224264 0.388437i
\(201\) 4.82843 8.36308i 0.340571 0.589886i
\(202\) −1.78680 −0.125719
\(203\) 24.6777 + 3.37706i 1.73203 + 0.237023i
\(204\) −10.3431 −0.724165
\(205\) 4.41421 7.64564i 0.308302 0.533995i
\(206\) 1.24264 + 2.15232i 0.0865789 + 0.149959i
\(207\) −4.20711 7.28692i −0.292414 0.506476i
\(208\) −9.36396 + 16.2189i −0.649274 + 1.12458i
\(209\) −2.41421 −0.166995
\(210\) −0.949747 + 1.22474i −0.0655388 + 0.0845154i
\(211\) −6.82843 −0.470088 −0.235044 0.971985i \(-0.575523\pi\)
−0.235044 + 0.971985i \(0.575523\pi\)
\(212\) 3.87868 6.71807i 0.266389 0.461399i
\(213\) −4.07107 7.05130i −0.278945 0.483147i
\(214\) −1.22183 2.11626i −0.0835223 0.144665i
\(215\) 3.03553 5.25770i 0.207022 0.358572i
\(216\) −8.97056 −0.610369
\(217\) 2.24264 + 5.49333i 0.152240 + 0.372911i
\(218\) 0.686292 0.0464815
\(219\) −9.29289 + 16.0958i −0.627956 + 1.08765i
\(220\) 2.20711 + 3.82282i 0.148803 + 0.257735i
\(221\) 12.4853 + 21.6251i 0.839851 + 1.45466i
\(222\) −1.48528 + 2.57258i −0.0996856 + 0.172660i
\(223\) −6.24264 −0.418038 −0.209019 0.977912i \(-0.567027\pi\)
−0.209019 + 0.977912i \(0.567027\pi\)
\(224\) 4.41421 + 10.8126i 0.294937 + 0.722445i
\(225\) 4.00000 0.266667
\(226\) −1.70711 + 2.95680i −0.113555 + 0.196683i
\(227\) 5.87868 + 10.1822i 0.390182 + 0.675814i 0.992473 0.122462i \(-0.0390789\pi\)
−0.602292 + 0.798276i \(0.705746\pi\)
\(228\) 1.29289 + 2.23936i 0.0856239 + 0.148305i
\(229\) 2.24264 3.88437i 0.148198 0.256686i −0.782364 0.622822i \(-0.785986\pi\)
0.930561 + 0.366136i \(0.119319\pi\)
\(230\) −3.48528 −0.229813
\(231\) −5.53553 + 7.13834i −0.364211 + 0.469668i
\(232\) 14.9289 0.980132
\(233\) 8.24264 14.2767i 0.539993 0.935296i −0.458910 0.888483i \(-0.651760\pi\)
0.998904 0.0468133i \(-0.0149066\pi\)
\(234\) 1.29289 + 2.23936i 0.0845191 + 0.146391i
\(235\) 0.792893 + 1.37333i 0.0517227 + 0.0895863i
\(236\) 1.07107 1.85514i 0.0697206 0.120760i
\(237\) 2.00000 0.129914
\(238\) 4.34315 + 0.594346i 0.281524 + 0.0385257i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 2.12132 3.67423i 0.136931 0.237171i
\(241\) −11.0208 19.0886i −0.709913 1.22961i −0.964889 0.262658i \(-0.915401\pi\)
0.254976 0.966947i \(-0.417932\pi\)
\(242\) 1.07107 + 1.85514i 0.0688508 + 0.119253i
\(243\) 4.94975 8.57321i 0.317526 0.549972i
\(244\) −11.2843 −0.722401
\(245\) −5.00000 + 4.89898i −0.319438 + 0.312984i
\(246\) 5.17157 0.329727
\(247\) 3.12132 5.40629i 0.198605 0.343994i
\(248\) 1.77817 + 3.07989i 0.112914 + 0.195573i
\(249\) 0.535534 + 0.927572i 0.0339381 + 0.0587825i
\(250\) 1.86396 3.22848i 0.117887 0.204187i
\(251\) 11.7279 0.740260 0.370130 0.928980i \(-0.379313\pi\)
0.370130 + 0.928980i \(0.379313\pi\)
\(252\) −4.79289 0.655892i −0.301924 0.0413173i
\(253\) −20.3137 −1.27711
\(254\) 0.878680 1.52192i 0.0551333 0.0954936i
\(255\) −2.82843 4.89898i −0.177123 0.306786i
\(256\) −1.98528 3.43861i −0.124080 0.214913i
\(257\) 6.65685 11.5300i 0.415243 0.719222i −0.580211 0.814466i \(-0.697030\pi\)
0.995454 + 0.0952441i \(0.0303632\pi\)
\(258\) 3.55635 0.221409
\(259\) −8.22183 + 10.6024i −0.510879 + 0.658803i
\(260\) −11.4142 −0.707879
\(261\) −4.70711 + 8.15295i −0.291363 + 0.504655i
\(262\) −4.24264 7.34847i −0.262111 0.453990i
\(263\) 0.242641 + 0.420266i 0.0149619 + 0.0259147i 0.873409 0.486987i \(-0.161904\pi\)
−0.858448 + 0.512901i \(0.828571\pi\)
\(264\) −2.70711 + 4.68885i −0.166611 + 0.288579i
\(265\) 4.24264 0.260623
\(266\) −0.414214 1.01461i −0.0253971 0.0622098i
\(267\) 12.1421 0.743087
\(268\) 6.24264 10.8126i 0.381330 0.660483i
\(269\) 2.00000 + 3.46410i 0.121942 + 0.211210i 0.920534 0.390664i \(-0.127754\pi\)
−0.798591 + 0.601874i \(0.794421\pi\)
\(270\) −1.17157 2.02922i −0.0712997 0.123495i
\(271\) 3.37868 5.85204i 0.205240 0.355486i −0.744969 0.667099i \(-0.767536\pi\)
0.950209 + 0.311613i \(0.100869\pi\)
\(272\) −12.0000 −0.727607
\(273\) −8.82843 21.6251i −0.534321 1.30881i
\(274\) −5.87006 −0.354623
\(275\) 4.82843 8.36308i 0.291165 0.504313i
\(276\) 10.8787 + 18.8424i 0.654820 + 1.13418i
\(277\) −14.2279 24.6435i −0.854873 1.48068i −0.876763 0.480923i \(-0.840302\pi\)
0.0218898 0.999760i \(-0.493032\pi\)
\(278\) −1.67157 + 2.89525i −0.100254 + 0.173646i
\(279\) −2.24264 −0.134263
\(280\) −2.57107 + 3.31552i −0.153651 + 0.198140i
\(281\) −19.7574 −1.17863 −0.589313 0.807905i \(-0.700601\pi\)
−0.589313 + 0.807905i \(0.700601\pi\)
\(282\) −0.464466 + 0.804479i −0.0276586 + 0.0479060i
\(283\) −7.96447 13.7949i −0.473438 0.820019i 0.526099 0.850423i \(-0.323654\pi\)
−0.999538 + 0.0304038i \(0.990321\pi\)
\(284\) −5.26346 9.11657i −0.312329 0.540969i
\(285\) −0.707107 + 1.22474i −0.0418854 + 0.0725476i
\(286\) 6.24264 0.369135
\(287\) 23.1421 + 3.16693i 1.36604 + 0.186938i
\(288\) −4.41421 −0.260110
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 1.94975 + 3.37706i 0.114493 + 0.198308i
\(291\) −6.24264 10.8126i −0.365950 0.633844i
\(292\) −12.0147 + 20.8101i −0.703108 + 1.21782i
\(293\) 8.82843 0.515762 0.257881 0.966177i \(-0.416976\pi\)
0.257881 + 0.966177i \(0.416976\pi\)
\(294\) −3.94975 1.10165i −0.230354 0.0642496i
\(295\) 1.17157 0.0682116
\(296\) −4.02082 + 6.96426i −0.233705 + 0.404789i
\(297\) −6.82843 11.8272i −0.396226 0.686283i
\(298\) 1.20711 + 2.09077i 0.0699258 + 0.121115i
\(299\) 26.2635 45.4896i 1.51885 2.63073i
\(300\) −10.3431 −0.597162
\(301\) 15.9142 + 2.17781i 0.917280 + 0.125527i
\(302\) 2.20101 0.126654
\(303\) −3.05025 + 5.28319i −0.175232 + 0.303511i
\(304\) 1.50000 + 2.59808i 0.0860309 + 0.149010i
\(305\) −3.08579 5.34474i −0.176692 0.306039i
\(306\) −0.828427 + 1.43488i −0.0473580 + 0.0820265i
\(307\) 6.68629 0.381607 0.190803 0.981628i \(-0.438891\pi\)
0.190803 + 0.981628i \(0.438891\pi\)
\(308\) −7.15685 + 9.22911i −0.407800 + 0.525877i
\(309\) 8.48528 0.482711
\(310\) −0.464466 + 0.804479i −0.0263799 + 0.0456913i
\(311\) −7.89949 13.6823i −0.447939 0.775854i 0.550312 0.834959i \(-0.314509\pi\)
−0.998252 + 0.0591052i \(0.981175\pi\)
\(312\) −7.00000 12.1244i −0.396297 0.686406i
\(313\) −2.32843 + 4.03295i −0.131610 + 0.227956i −0.924298 0.381673i \(-0.875348\pi\)
0.792687 + 0.609629i \(0.208681\pi\)
\(314\) 4.89949 0.276494
\(315\) −1.00000 2.44949i −0.0563436 0.138013i
\(316\) 2.58579 0.145462
\(317\) 5.87868 10.1822i 0.330180 0.571888i −0.652367 0.757903i \(-0.726224\pi\)
0.982547 + 0.186015i \(0.0595574\pi\)
\(318\) 1.24264 + 2.15232i 0.0696838 + 0.120696i
\(319\) 11.3640 + 19.6830i 0.636260 + 1.10203i
\(320\) 2.08579 3.61269i 0.116599 0.201955i
\(321\) −8.34315 −0.465669
\(322\) −3.48528 8.53716i −0.194227 0.475757i
\(323\) 4.00000 0.222566
\(324\) −4.57107 + 7.91732i −0.253948 + 0.439851i
\(325\) 12.4853 + 21.6251i 0.692559 + 1.19955i
\(326\) −3.74264 6.48244i −0.207286 0.359029i
\(327\) 1.17157 2.02922i 0.0647881 0.112216i
\(328\) 14.0000 0.773021
\(329\) −2.57107 + 3.31552i −0.141748 + 0.182790i
\(330\) −1.41421 −0.0778499
\(331\) −9.72792 + 16.8493i −0.534695 + 0.926119i 0.464483 + 0.885582i \(0.346240\pi\)
−0.999178 + 0.0405368i \(0.987093\pi\)
\(332\) 0.692388 + 1.19925i 0.0379997 + 0.0658175i
\(333\) −2.53553 4.39167i −0.138946 0.240662i
\(334\) 0.221825 0.384213i 0.0121377 0.0210232i
\(335\) 6.82843 0.373077
\(336\) 11.1213 + 1.52192i 0.606718 + 0.0830274i
\(337\) −11.5563 −0.629514 −0.314757 0.949172i \(-0.601923\pi\)
−0.314757 + 0.949172i \(0.601923\pi\)
\(338\) −5.37868 + 9.31615i −0.292562 + 0.506732i
\(339\) 5.82843 + 10.0951i 0.316557 + 0.548292i
\(340\) −3.65685 6.33386i −0.198321 0.343502i
\(341\) −2.70711 + 4.68885i −0.146598 + 0.253915i
\(342\) 0.414214 0.0223981
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) 9.62742 0.519076
\(345\) −5.94975 + 10.3053i −0.320324 + 0.554817i
\(346\) −3.17157 5.49333i −0.170505 0.295323i
\(347\) 10.5208 + 18.2226i 0.564787 + 0.978240i 0.997069 + 0.0765015i \(0.0243750\pi\)
−0.432283 + 0.901738i \(0.642292\pi\)
\(348\) 12.1716 21.0818i 0.652465 1.13010i
\(349\) −12.4853 −0.668322 −0.334161 0.942516i \(-0.608453\pi\)
−0.334161 + 0.942516i \(0.608453\pi\)
\(350\) 4.34315 + 0.594346i 0.232151 + 0.0317691i
\(351\) 35.3137 1.88491
\(352\) −5.32843 + 9.22911i −0.284006 + 0.491913i
\(353\) 8.24264 + 14.2767i 0.438711 + 0.759871i 0.997590 0.0693787i \(-0.0221017\pi\)
−0.558879 + 0.829249i \(0.688768\pi\)
\(354\) 0.343146 + 0.594346i 0.0182380 + 0.0315891i
\(355\) 2.87868 4.98602i 0.152784 0.264630i
\(356\) 15.6985 0.832018
\(357\) 9.17157 11.8272i 0.485411 0.625961i
\(358\) −9.02944 −0.477221
\(359\) 1.62132 2.80821i 0.0855700 0.148212i −0.820064 0.572272i \(-0.806062\pi\)
0.905634 + 0.424060i \(0.139396\pi\)
\(360\) −0.792893 1.37333i −0.0417891 0.0723809i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 2.05025 3.55114i 0.107759 0.186644i
\(363\) 7.31371 0.383870
\(364\) −11.4142 27.9590i −0.598267 1.46545i
\(365\) −13.1421 −0.687891
\(366\) 1.80761 3.13088i 0.0944854 0.163653i
\(367\) 17.8284 + 30.8797i 0.930636 + 1.61191i 0.782236 + 0.622982i \(0.214079\pi\)
0.148400 + 0.988927i \(0.452588\pi\)
\(368\) 12.6213 + 21.8608i 0.657932 + 1.13957i
\(369\) −4.41421 + 7.64564i −0.229795 + 0.398016i
\(370\) −2.10051 −0.109200
\(371\) 4.24264 + 10.3923i 0.220267 + 0.539542i
\(372\) 5.79899 0.300664
\(373\) 5.65685 9.79796i 0.292901 0.507319i −0.681594 0.731731i \(-0.738713\pi\)
0.974494 + 0.224412i \(0.0720461\pi\)
\(374\) 2.00000 + 3.46410i 0.103418 + 0.179124i
\(375\) −6.36396 11.0227i −0.328634 0.569210i
\(376\) −1.25736 + 2.17781i −0.0648434 + 0.112312i
\(377\) −58.7696 −3.02679
\(378\) 3.79899 4.89898i 0.195399 0.251976i
\(379\) −4.24264 −0.217930 −0.108965 0.994046i \(-0.534754\pi\)
−0.108965 + 0.994046i \(0.534754\pi\)
\(380\) −0.914214 + 1.58346i −0.0468982 + 0.0812300i
\(381\) −3.00000 5.19615i −0.153695 0.266207i
\(382\) −1.15685 2.00373i −0.0591898 0.102520i
\(383\) −14.1213 + 24.4588i −0.721566 + 1.24979i 0.238806 + 0.971067i \(0.423244\pi\)
−0.960372 + 0.278721i \(0.910089\pi\)
\(384\) 14.9289 0.761839
\(385\) −6.32843 0.866025i −0.322527 0.0441367i
\(386\) −4.92893 −0.250876
\(387\) −3.03553 + 5.25770i −0.154305 + 0.267264i
\(388\) −8.07107 13.9795i −0.409746 0.709702i
\(389\) 14.2426 + 24.6690i 0.722131 + 1.25077i 0.960144 + 0.279505i \(0.0901704\pi\)
−0.238014 + 0.971262i \(0.576496\pi\)
\(390\) 1.82843 3.16693i 0.0925860 0.160364i
\(391\) 33.6569 1.70210
\(392\) −10.6924 2.98229i −0.540047 0.150628i
\(393\) −28.9706 −1.46137
\(394\) −4.44975 + 7.70719i −0.224175 + 0.388283i
\(395\) 0.707107 + 1.22474i 0.0355784 + 0.0616236i
\(396\) −2.20711 3.82282i −0.110911 0.192104i
\(397\) −18.3137 + 31.7203i −0.919139 + 1.59199i −0.118412 + 0.992965i \(0.537780\pi\)
−0.800726 + 0.599030i \(0.795553\pi\)
\(398\) 0.798990 0.0400497
\(399\) −3.70711 0.507306i −0.185587 0.0253971i
\(400\) −12.0000 −0.600000
\(401\) 8.24264 14.2767i 0.411618 0.712943i −0.583449 0.812150i \(-0.698297\pi\)
0.995067 + 0.0992068i \(0.0316305\pi\)
\(402\) 2.00000 + 3.46410i 0.0997509 + 0.172774i
\(403\) −7.00000 12.1244i −0.348695 0.603957i
\(404\) −3.94365 + 6.83060i −0.196204 + 0.339835i
\(405\) −5.00000 −0.248452
\(406\) −6.32233 + 8.15295i −0.313772 + 0.404624i
\(407\) −12.2426 −0.606845
\(408\) 4.48528 7.76874i 0.222055 0.384610i
\(409\) 12.6569 + 21.9223i 0.625841 + 1.08399i 0.988378 + 0.152019i \(0.0485775\pi\)
−0.362536 + 0.931970i \(0.618089\pi\)
\(410\) 1.82843 + 3.16693i 0.0902996 + 0.156403i
\(411\) −10.0208 + 17.3566i −0.494290 + 0.856136i
\(412\) 10.9706 0.540481
\(413\) 1.17157 + 2.86976i 0.0576493 + 0.141211i
\(414\) 3.48528 0.171292
\(415\) −0.378680 + 0.655892i −0.0185887 + 0.0321965i
\(416\) −13.7782 23.8645i −0.675531 1.17005i
\(417\) 5.70711 + 9.88500i 0.279478 + 0.484070i
\(418\) 0.500000 0.866025i 0.0244558 0.0423587i
\(419\) −8.07107 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(420\) 2.58579 + 6.33386i 0.126173 + 0.309061i
\(421\) 5.21320 0.254076 0.127038 0.991898i \(-0.459453\pi\)
0.127038 + 0.991898i \(0.459453\pi\)
\(422\) 1.41421 2.44949i 0.0688428 0.119239i
\(423\) −0.792893 1.37333i −0.0385518 0.0667737i
\(424\) 3.36396 + 5.82655i 0.163368 + 0.282962i
\(425\) −8.00000 + 13.8564i −0.388057 + 0.672134i
\(426\) 3.37258 0.163402
\(427\) 10.0061 12.9033i 0.484229 0.624436i
\(428\) −10.7868 −0.521399
\(429\) 10.6569 18.4582i 0.514518 0.891171i
\(430\) 1.25736 + 2.17781i 0.0606353 + 0.105023i
\(431\) −19.0208 32.9450i −0.916200 1.58691i −0.805134 0.593093i \(-0.797907\pi\)
−0.111066 0.993813i \(-0.535427\pi\)
\(432\) −8.48528 + 14.6969i −0.408248 + 0.707107i
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) −2.43503 0.333226i −0.116885 0.0159954i
\(435\) 13.3137 0.638343
\(436\) 1.51472 2.62357i 0.0725419 0.125646i
\(437\) −4.20711 7.28692i −0.201253 0.348581i
\(438\) −3.84924 6.66708i −0.183924 0.318566i
\(439\) 3.75736 6.50794i 0.179329 0.310607i −0.762322 0.647198i \(-0.775941\pi\)
0.941651 + 0.336591i \(0.109274\pi\)
\(440\) −3.82843 −0.182513
\(441\) 5.00000 4.89898i 0.238095 0.233285i
\(442\) −10.3431 −0.491973
\(443\) −3.17157 + 5.49333i −0.150686 + 0.260996i −0.931480 0.363793i \(-0.881482\pi\)
0.780794 + 0.624789i \(0.214815\pi\)
\(444\) 6.55635 + 11.3559i 0.311151 + 0.538929i
\(445\) 4.29289 + 7.43551i 0.203503 + 0.352477i
\(446\) 1.29289 2.23936i 0.0612203 0.106037i
\(447\) 8.24264 0.389864
\(448\) 10.9350 + 1.49642i 0.516632 + 0.0706994i
\(449\) −1.65685 −0.0781918 −0.0390959 0.999235i \(-0.512448\pi\)
−0.0390959 + 0.999235i \(0.512448\pi\)
\(450\) −0.828427 + 1.43488i −0.0390524 + 0.0676408i
\(451\) 10.6569 + 18.4582i 0.501812 + 0.869163i
\(452\) 7.53553 + 13.0519i 0.354442 + 0.613911i
\(453\) 3.75736 6.50794i 0.176536 0.305770i
\(454\) −4.87006 −0.228563
\(455\) 10.1213 13.0519i 0.474495 0.611884i
\(456\) −2.24264 −0.105021
\(457\) 1.08579 1.88064i 0.0507909 0.0879725i −0.839512 0.543341i \(-0.817159\pi\)
0.890303 + 0.455368i \(0.150492\pi\)
\(458\) 0.928932 + 1.60896i 0.0434062 + 0.0751817i
\(459\) 11.3137 + 19.5959i 0.528079 + 0.914659i
\(460\) −7.69239 + 13.3236i −0.358659 + 0.621216i
\(461\) −3.97056 −0.184928 −0.0924638 0.995716i \(-0.529474\pi\)
−0.0924638 + 0.995716i \(0.529474\pi\)
\(462\) −1.41421 3.46410i −0.0657952 0.161165i
\(463\) 10.0711 0.468042 0.234021 0.972232i \(-0.424812\pi\)
0.234021 + 0.972232i \(0.424812\pi\)
\(464\) 14.1213 24.4588i 0.655566 1.13547i
\(465\) 1.58579 + 2.74666i 0.0735391 + 0.127373i
\(466\) 3.41421 + 5.91359i 0.158160 + 0.273942i
\(467\) −19.4497 + 33.6880i −0.900027 + 1.55889i −0.0725700 + 0.997363i \(0.523120\pi\)
−0.827457 + 0.561529i \(0.810213\pi\)
\(468\) 11.4142 0.527622
\(469\) 6.82843 + 16.7262i 0.315307 + 0.772342i
\(470\) −0.656854 −0.0302984
\(471\) 8.36396 14.4868i 0.385391 0.667517i
\(472\) 0.928932 + 1.60896i 0.0427576 + 0.0740583i
\(473\) 7.32843 + 12.6932i 0.336961 + 0.583634i
\(474\) −0.414214 + 0.717439i −0.0190255 + 0.0329531i
\(475\) 4.00000 0.183533
\(476\) 11.8579 15.2913i 0.543504 0.700875i
\(477\) −4.24264 −0.194257
\(478\) −0.414214 + 0.717439i −0.0189457 + 0.0328149i
\(479\) −5.69239 9.85951i −0.260092 0.450492i 0.706174 0.708038i \(-0.250420\pi\)
−0.966266 + 0.257546i \(0.917086\pi\)
\(480\) 3.12132 + 5.40629i 0.142468 + 0.246762i
\(481\) 15.8284 27.4156i 0.721714 1.25005i
\(482\) 9.12994 0.415857
\(483\) −31.1924 4.26858i −1.41930 0.194227i
\(484\) 9.45584 0.429811
\(485\) 4.41421 7.64564i 0.200439 0.347171i
\(486\) 2.05025 + 3.55114i 0.0930013 + 0.161083i
\(487\) −10.4142 18.0379i −0.471913 0.817377i 0.527571 0.849511i \(-0.323103\pi\)
−0.999484 + 0.0321338i \(0.989770\pi\)
\(488\) 4.89340 8.47561i 0.221514 0.383673i
\(489\) −25.5563 −1.15570
\(490\) −0.721825 2.80821i −0.0326087 0.126862i
\(491\) −32.5563 −1.46925 −0.734624 0.678475i \(-0.762641\pi\)
−0.734624 + 0.678475i \(0.762641\pi\)
\(492\) 11.4142 19.7700i 0.514592 0.891300i
\(493\) −18.8284 32.6118i −0.847990 1.46876i
\(494\) 1.29289 + 2.23936i 0.0581700 + 0.100753i
\(495\) 1.20711 2.09077i 0.0542554 0.0939731i
\(496\) 6.72792 0.302093
\(497\) 15.0919 + 2.06528i 0.676963 + 0.0926403i
\(498\) −0.443651 −0.0198805
\(499\) −1.72183 + 2.98229i −0.0770795 + 0.133506i −0.901989 0.431760i \(-0.857893\pi\)
0.824909 + 0.565265i \(0.191226\pi\)
\(500\) −8.22792 14.2512i −0.367964 0.637332i
\(501\) −0.757359 1.31178i −0.0338363 0.0586062i
\(502\) −2.42893 + 4.20703i −0.108409 + 0.187769i
\(503\) 19.0416 0.849024 0.424512 0.905422i \(-0.360446\pi\)
0.424512 + 0.905422i \(0.360446\pi\)
\(504\) 2.57107 3.31552i 0.114524 0.147685i
\(505\) −4.31371 −0.191958
\(506\) 4.20711 7.28692i 0.187029 0.323943i
\(507\) 18.3640 + 31.8073i 0.815572 + 1.41261i
\(508\) −3.87868 6.71807i −0.172089 0.298066i
\(509\) −9.48528 + 16.4290i −0.420428 + 0.728202i −0.995981 0.0895619i \(-0.971453\pi\)
0.575554 + 0.817764i \(0.304787\pi\)
\(510\) 2.34315 0.103756
\(511\) −13.1421 32.1915i −0.581374 1.42407i
\(512\) 22.7574 1.00574
\(513\) 2.82843 4.89898i 0.124878 0.216295i
\(514\) 2.75736 + 4.77589i 0.121622 + 0.210655i
\(515\) 3.00000 + 5.19615i 0.132196 + 0.228970i
\(516\) 7.84924 13.5953i 0.345544 0.598499i
\(517\) −3.82843 −0.168374
\(518\) −2.10051 5.14517i −0.0922909 0.226066i
\(519\) −21.6569 −0.950630
\(520\) 4.94975 8.57321i 0.217061 0.375960i
\(521\) −5.22183 9.04447i −0.228772 0.396245i 0.728672 0.684863i \(-0.240138\pi\)
−0.957445 + 0.288617i \(0.906804\pi\)
\(522\) −1.94975 3.37706i −0.0853381 0.147810i
\(523\) 11.8284 20.4874i 0.517221 0.895853i −0.482579 0.875852i \(-0.660300\pi\)
0.999800 0.0200006i \(-0.00636681\pi\)
\(524\) −37.4558 −1.63627
\(525\) 9.17157 11.8272i 0.400280 0.516181i
\(526\) −0.201010 −0.00876446
\(527\) 4.48528 7.76874i 0.195382 0.338411i
\(528\) 5.12132 + 8.87039i 0.222877 + 0.386034i
\(529\) −23.8995 41.3951i −1.03911 1.79979i
\(530\) −0.878680 + 1.52192i −0.0381674 + 0.0661079i
\(531\) −1.17157 −0.0508419
\(532\) −4.79289 0.655892i −0.207798 0.0284365i
\(533\) −55.1127 −2.38720
\(534\) −2.51472 + 4.35562i −0.108823 + 0.188486i
\(535\) −2.94975 5.10911i −0.127529 0.220886i
\(536\) 5.41421 + 9.37769i 0.233858 + 0.405055i
\(537\) −15.4142 + 26.6982i −0.665172 + 1.15211i
\(538\) −1.65685 −0.0714321
\(539\) −4.20711 16.3674i −0.181213 0.704996i
\(540\) −10.3431 −0.445098
\(541\) −2.57107 + 4.45322i −0.110539 + 0.191459i −0.915988 0.401206i \(-0.868591\pi\)
0.805449 + 0.592665i \(0.201924\pi\)
\(542\) 1.39949 + 2.42400i 0.0601135 + 0.104120i
\(543\) −7.00000 12.1244i −0.300399 0.520306i
\(544\) 8.82843 15.2913i 0.378516 0.655608i
\(545\) 1.65685 0.0709718
\(546\) 9.58579 + 1.31178i 0.410234 + 0.0561392i
\(547\) 29.5563 1.26374 0.631869 0.775075i \(-0.282288\pi\)
0.631869 + 0.775075i \(0.282288\pi\)
\(548\) −12.9558 + 22.4402i −0.553446 + 0.958597i
\(549\) 3.08579 + 5.34474i 0.131698 + 0.228108i
\(550\) 2.00000 + 3.46410i 0.0852803 + 0.147710i
\(551\) −4.70711 + 8.15295i −0.200529 + 0.347327i
\(552\) −18.8701 −0.803163
\(553\) −2.29289 + 2.95680i −0.0975037 + 0.125736i
\(554\) 11.7868 0.500773
\(555\) −3.58579 + 6.21076i −0.152208 + 0.263632i
\(556\) 7.37868 + 12.7802i 0.312926 + 0.542003i
\(557\) −5.08579 8.80884i −0.215492 0.373243i 0.737933 0.674874i \(-0.235802\pi\)
−0.953425 + 0.301632i \(0.902469\pi\)
\(558\) 0.464466 0.804479i 0.0196624 0.0340563i
\(559\) −37.8995 −1.60298
\(560\) 3.00000 + 7.34847i 0.126773 + 0.310530i
\(561\) 13.6569 0.576593
\(562\) 4.09188 7.08735i 0.172606 0.298962i
\(563\) 6.94975 + 12.0373i 0.292897 + 0.507312i 0.974493 0.224416i \(-0.0720474\pi\)
−0.681597 + 0.731728i \(0.738714\pi\)
\(564\) 2.05025 + 3.55114i 0.0863312 + 0.149530i
\(565\) −4.12132 + 7.13834i −0.173385 + 0.300312i
\(566\) 6.59798 0.277334
\(567\) −5.00000 12.2474i −0.209980 0.514344i
\(568\) 9.12994 0.383084
\(569\) 21.4853 37.2136i 0.900710 1.56008i 0.0741351 0.997248i \(-0.476380\pi\)
0.826575 0.562827i \(-0.190286\pi\)
\(570\) −0.292893 0.507306i −0.0122679 0.0212487i
\(571\) 9.44975 + 16.3674i 0.395460 + 0.684956i 0.993160 0.116764i \(-0.0372520\pi\)
−0.597700 + 0.801720i \(0.703919\pi\)
\(572\) 13.7782 23.8645i 0.576094 0.997825i
\(573\) −7.89949 −0.330006
\(574\) −5.92893 + 7.64564i −0.247469 + 0.319123i
\(575\) 33.6569 1.40359
\(576\) −2.08579 + 3.61269i −0.0869078 + 0.150529i
\(577\) −13.9853 24.2232i −0.582215 1.00843i −0.995216 0.0976954i \(-0.968853\pi\)
0.413001 0.910730i \(-0.364480\pi\)
\(578\) 0.207107 + 0.358719i 0.00861451 + 0.0149208i
\(579\) −8.41421 + 14.5738i −0.349683 + 0.605668i
\(580\) 17.2132 0.714739
\(581\) −1.98528 0.271680i −0.0823633 0.0112712i
\(582\) 5.17157 0.214369
\(583\) −5.12132 + 8.87039i −0.212103 + 0.367374i
\(584\) −10.4203 18.0485i −0.431196 0.746853i
\(585\) 3.12132 + 5.40629i 0.129051 + 0.223522i
\(586\) −1.82843 + 3.16693i −0.0755316 + 0.130825i
\(587\) 14.0000 0.577842 0.288921 0.957353i \(-0.406704\pi\)
0.288921 + 0.957353i \(0.406704\pi\)
\(588\) −12.9289 + 12.6677i −0.533180 + 0.522408i
\(589\) −2.24264 −0.0924064
\(590\) −0.242641 + 0.420266i −0.00998936 + 0.0173021i
\(591\) 15.1924 + 26.3140i 0.624931 + 1.08241i
\(592\) 7.60660 + 13.1750i 0.312629 + 0.541490i
\(593\) −3.08579 + 5.34474i −0.126718 + 0.219482i −0.922403 0.386228i \(-0.873778\pi\)
0.795685 + 0.605710i \(0.207111\pi\)
\(594\) 5.65685 0.232104
\(595\) 10.4853 + 1.43488i 0.429855 + 0.0588243i
\(596\) 10.6569 0.436522
\(597\) 1.36396 2.36245i 0.0558232 0.0966886i
\(598\) 10.8787 + 18.8424i 0.444862 + 0.770524i
\(599\) 15.8492 + 27.4517i 0.647582 + 1.12165i 0.983699 + 0.179825i \(0.0575532\pi\)
−0.336116 + 0.941821i \(0.609113\pi\)
\(600\) 4.48528 7.76874i 0.183111 0.317157i
\(601\) −9.27208 −0.378216 −0.189108 0.981956i \(-0.560560\pi\)
−0.189108 + 0.981956i \(0.560560\pi\)
\(602\) −4.07716 + 5.25770i −0.166173 + 0.214288i
\(603\) −6.82843 −0.278075
\(604\) 4.85786 8.41407i 0.197664 0.342364i
\(605\) 2.58579 + 4.47871i 0.105127 + 0.182086i
\(606\) −1.26346 2.18837i −0.0513244 0.0888965i
\(607\) −16.2635 + 28.1691i −0.660113 + 1.14335i 0.320472 + 0.947258i \(0.396158\pi\)
−0.980586 + 0.196092i \(0.937175\pi\)
\(608\) −4.41421 −0.179020
\(609\) 13.3137 + 32.6118i 0.539499 + 1.32150i
\(610\) 2.55635 0.103504
\(611\) 4.94975 8.57321i 0.200245 0.346835i
\(612\) 3.65685 + 6.33386i 0.147820 + 0.256031i
\(613\) 4.34315 + 7.52255i 0.175418 + 0.303833i 0.940306 0.340331i \(-0.110539\pi\)
−0.764888 + 0.644163i \(0.777206\pi\)
\(614\) −1.38478 + 2.39850i −0.0558850 + 0.0967957i
\(615\) 12.4853 0.503455
\(616\) −3.82843 9.37769i −0.154252 0.377838i
\(617\) −42.4558 −1.70921 −0.854604 0.519280i \(-0.826200\pi\)
−0.854604 + 0.519280i \(0.826200\pi\)
\(618\) −1.75736 + 3.04384i −0.0706914 + 0.122441i
\(619\) −1.72183 2.98229i −0.0692060 0.119868i 0.829346 0.558735i \(-0.188713\pi\)
−0.898552 + 0.438867i \(0.855380\pi\)
\(620\) 2.05025 + 3.55114i 0.0823401 + 0.142617i
\(621\) 23.7990 41.2211i 0.955021 1.65414i
\(622\) 6.54416 0.262397
\(623\) −13.9203 + 17.9509i −0.557705 + 0.719188i
\(624\) −26.4853 −1.06026
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −0.964466 1.67050i −0.0385478 0.0667668i
\(627\) −1.70711 2.95680i −0.0681753 0.118083i
\(628\) 10.8137 18.7299i 0.431514 0.747404i
\(629\) 20.2843 0.808787
\(630\) 1.08579 + 0.148586i 0.0432588 + 0.00591983i
\(631\) −5.44365 −0.216708 −0.108354 0.994112i \(-0.534558\pi\)
−0.108354 + 0.994112i \(0.534558\pi\)
\(632\) −1.12132 + 1.94218i −0.0446037 + 0.0772559i
\(633\) −4.82843 8.36308i −0.191913 0.332403i
\(634\) 2.43503 + 4.21759i 0.0967073 + 0.167502i
\(635\) 2.12132 3.67423i 0.0841820 0.145808i
\(636\) 10.9706 0.435011
\(637\) 42.0919 + 11.7401i 1.66774 + 0.465161i
\(638\) −9.41421 −0.372712
\(639\) −2.87868 + 4.98602i −0.113879 + 0.197244i
\(640\) 5.27817 + 9.14207i 0.208638 + 0.361372i
\(641\) −1.89949 3.29002i −0.0750255 0.129948i 0.826072 0.563565i \(-0.190570\pi\)
−0.901097 + 0.433617i \(0.857237\pi\)
\(642\) 1.72792 2.99285i 0.0681956 0.118118i
\(643\) 30.1421 1.18869 0.594345 0.804210i \(-0.297411\pi\)
0.594345 + 0.804210i \(0.297411\pi\)
\(644\) −40.3284 5.51882i −1.58916 0.217472i
\(645\) 8.58579 0.338065
\(646\) −0.828427 + 1.43488i −0.0325940 + 0.0564545i
\(647\) −3.10660 5.38079i −0.122133 0.211541i 0.798476 0.602027i \(-0.205640\pi\)
−0.920609 + 0.390486i \(0.872307\pi\)
\(648\) −3.96447 6.86666i −0.155739 0.269748i
\(649\) −1.41421 + 2.44949i −0.0555127 + 0.0961509i
\(650\) −10.3431 −0.405692
\(651\) −5.14214 + 6.63103i −0.201536 + 0.259891i
\(652\) −33.0416 −1.29401
\(653\) 0.928932 1.60896i 0.0363519 0.0629634i −0.847277 0.531151i \(-0.821760\pi\)
0.883629 + 0.468188i \(0.155093\pi\)
\(654\) 0.485281 + 0.840532i 0.0189760 + 0.0328674i
\(655\) −10.2426 17.7408i −0.400213 0.693189i
\(656\) 13.2426 22.9369i 0.517038 0.895537i
\(657\) 13.1421 0.512724
\(658\) −0.656854 1.60896i −0.0256068 0.0627237i
\(659\) −38.0416 −1.48189 −0.740946 0.671565i \(-0.765622\pi\)
−0.740946 + 0.671565i \(0.765622\pi\)
\(660\) −3.12132 + 5.40629i −0.121497 + 0.210439i
\(661\) 11.3640 + 19.6830i 0.442007 + 0.765578i 0.997838 0.0657167i \(-0.0209334\pi\)
−0.555831 + 0.831295i \(0.687600\pi\)
\(662\) −4.02944 6.97919i −0.156609 0.271254i
\(663\) −17.6569 + 30.5826i −0.685735 + 1.18773i
\(664\) −1.20101 −0.0466082
\(665\) −1.00000 2.44949i −0.0387783 0.0949871i
\(666\) 2.10051 0.0813929
\(667\) −39.6066 + 68.6006i −1.53357 + 2.65623i
\(668\) −0.979185 1.69600i −0.0378858 0.0656201i
\(669\) −4.41421 7.64564i −0.170663 0.295598i
\(670\) −1.41421 + 2.44949i −0.0546358 + 0.0946320i
\(671\) 14.8995 0.575189
\(672\) −10.1213 + 13.0519i −0.390438 + 0.503489i
\(673\) 35.7990 1.37995 0.689975 0.723833i \(-0.257622\pi\)
0.689975 + 0.723833i \(0.257622\pi\)
\(674\) 2.39340 4.14549i 0.0921903 0.159678i
\(675\) 11.3137 + 19.5959i 0.435465 + 0.754247i
\(676\) 23.7426 + 41.1235i 0.913178 + 1.58167i
\(677\) −0.343146 + 0.594346i −0.0131882 + 0.0228426i −0.872544 0.488535i \(-0.837531\pi\)
0.859356 + 0.511378i \(0.170865\pi\)
\(678\) −4.82843 −0.185435
\(679\) 23.1421 + 3.16693i 0.888114 + 0.121536i
\(680\) 6.34315 0.243249
\(681\) −8.31371 + 14.3998i −0.318582 + 0.551800i
\(682\) −1.12132 1.94218i −0.0429376 0.0743701i
\(683\) −5.24264 9.08052i −0.200604 0.347456i 0.748119 0.663564i \(-0.230957\pi\)
−0.948723 + 0.316108i \(0.897624\pi\)
\(684\) 0.914214 1.58346i 0.0349558 0.0605453i
\(685\) −14.1716 −0.541468
\(686\) 6.15685 4.57631i 0.235070 0.174724i
\(687\) 6.34315 0.242006
\(688\) 9.10660 15.7731i 0.347186 0.601344i
\(689\) −13.2426 22.9369i −0.504504 0.873827i
\(690\) −2.46447 4.26858i −0.0938206 0.162502i
\(691\) 1.48528 2.57258i 0.0565028 0.0978657i −0.836390 0.548134i \(-0.815338\pi\)
0.892893 + 0.450268i \(0.148672\pi\)
\(692\) −28.0000 −1.06440
\(693\) 6.32843 + 0.866025i 0.240397 + 0.0328976i
\(694\) −8.71573 −0.330845
\(695\) −4.03553 + 6.98975i −0.153077 + 0.265136i
\(696\) 10.5563 + 18.2841i 0.400137 + 0.693058i
\(697\) −17.6569 30.5826i −0.668801 1.15840i
\(698\) 2.58579 4.47871i 0.0978735 0.169522i
\(699\) 23.3137 0.881805
\(700\) 11.8579 15.2913i 0.448185 0.577956i
\(701\) 3.82843 0.144598 0.0722988 0.997383i \(-0.476966\pi\)
0.0722988 + 0.997383i \(0.476966\pi\)
\(702\) −7.31371 + 12.6677i −0.276038 + 0.478112i
\(703\) −2.53553 4.39167i −0.0956295 0.165635i
\(704\) 5.03553 + 8.72180i 0.189784 + 0.328715i
\(705\) −1.12132 + 1.94218i −0.0422314 + 0.0731469i
\(706\) −6.82843 −0.256991
\(707\) −4.31371 10.5664i −0.162234 0.397390i
\(708\) 3.02944 0.113853
\(709\) −12.4706 + 21.5996i −0.468342 + 0.811192i −0.999345 0.0361778i \(-0.988482\pi\)
0.531004 + 0.847370i \(0.321815\pi\)
\(710\) 1.19239 + 2.06528i 0.0447495 + 0.0775085i
\(711\) −0.707107 1.22474i −0.0265186 0.0459315i
\(712\) −6.80761 + 11.7911i −0.255126 + 0.441891i
\(713\) −18.8701 −0.706689
\(714\) 2.34315 + 5.73951i 0.0876900 + 0.214796i
\(715\) 15.0711 0.563626
\(716\) −19.9289 + 34.5179i −0.744779 + 1.29000i
\(717\) 1.41421 + 2.44949i 0.0528148 + 0.0914779i
\(718\) 0.671573 + 1.16320i 0.0250629 + 0.0434102i
\(719\) 22.0416 38.1772i 0.822014 1.42377i −0.0821659 0.996619i \(-0.526184\pi\)
0.904180 0.427152i \(-0.140483\pi\)
\(720\) −3.00000 −0.111803
\(721\) −9.72792 + 12.5446i −0.362287 + 0.467186i
\(722\) 0.414214 0.0154154
\(723\) 15.5858 26.9954i 0.579642 1.00397i
\(724\) −9.05025 15.6755i −0.336350 0.582575i
\(725\) −18.8284 32.6118i −0.699270 1.21117i
\(726\) −1.51472 + 2.62357i −0.0562165 + 0.0973698i
\(727\) 5.92893 0.219892 0.109946 0.993938i \(-0.464932\pi\)
0.109946 + 0.993938i \(0.464932\pi\)
\(728\) 25.9497 + 3.55114i 0.961762 + 0.131614i
\(729\) 29.0000 1.07407
\(730\) 2.72183 4.71434i 0.100739 0.174486i
\(731\) −12.1421 21.0308i −0.449093 0.777852i
\(732\) −7.97918 13.8204i −0.294919 0.510815i
\(733\) 14.7279 25.5095i 0.543988 0.942215i −0.454682 0.890654i \(-0.650247\pi\)
0.998670 0.0515612i \(-0.0164197\pi\)
\(734\) −14.7696 −0.545154
\(735\) −9.53553 2.65962i −0.351723 0.0981017i
\(736\) −37.1421 −1.36908
\(737\) −8.24264 + 14.2767i −0.303622 + 0.525888i
\(738\) −1.82843 3.16693i −0.0673053 0.116576i
\(739\) 9.82843 + 17.0233i 0.361545 + 0.626214i 0.988215 0.153071i \(-0.0489162\pi\)
−0.626671 + 0.779284i \(0.715583\pi\)
\(740\) −4.63604 + 8.02986i −0.170424 + 0.295183i
\(741\) 8.82843 0.324320
\(742\) −4.60660 0.630399i −0.169114 0.0231427i
\(743\) 50.8701 1.86624 0.933121 0.359563i \(-0.117074\pi\)
0.933121 + 0.359563i \(0.117074\pi\)
\(744\) −2.51472 + 4.35562i −0.0921941 + 0.159685i
\(745\) 2.91421 + 5.04757i 0.106769 + 0.184929i
\(746\) 2.34315 + 4.05845i 0.0857887 + 0.148590i
\(747\) 0.378680 0.655892i 0.0138552 0.0239978i
\(748\) 17.6569 0.645599
\(749\) 9.56497 12.3345i 0.349496 0.450692i
\(750\) 5.27208 0.192509
\(751\) 20.7279 35.9018i 0.756373 1.31008i −0.188316 0.982108i \(-0.560303\pi\)
0.944689 0.327967i \(-0.106364\pi\)
\(752\) 2.37868 + 4.11999i 0.0867415 + 0.150241i
\(753\) 8.29289 + 14.3637i 0.302210 + 0.523443i
\(754\) 12.1716 21.0818i 0.443263 0.767753i
\(755\) 5.31371 0.193386
\(756\) −10.3431 25.3354i −0.376177 0.921441i
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) 0.878680 1.52192i 0.0319151 0.0552785i
\(759\) −14.3640 24.8791i −0.521379 0.903054i
\(760\) −0.792893 1.37333i −0.0287613 0.0498160i
\(761\) −14.0563 + 24.3463i −0.509542 + 0.882553i 0.490397 + 0.871499i \(0.336852\pi\)
−0.999939 + 0.0110537i \(0.996481\pi\)
\(762\) 2.48528 0.0900322
\(763\) 1.65685 + 4.05845i 0.0599822 + 0.146926i
\(764\) −10.2132 −0.369501
\(765\) −2.00000 + 3.46410i −0.0723102 + 0.125245i
\(766\) −5.84924 10.1312i −0.211342 0.366055i
\(767\) −3.65685 6.33386i −0.132041 0.228702i
\(768\) 2.80761 4.86293i 0.101311 0.175476i
\(769\) 41.4264 1.49387 0.746937 0.664895i \(-0.231524\pi\)
0.746937 + 0.664895i \(0.231524\pi\)
\(770\) 1.62132 2.09077i 0.0584283 0.0753461i
\(771\) 18.8284 0.678089
\(772\) −10.8787 + 18.8424i −0.391532 + 0.678154i
\(773\) 12.8787 + 22.3065i 0.463214 + 0.802310i 0.999119 0.0419682i \(-0.0133628\pi\)
−0.535905 + 0.844278i \(0.680029\pi\)
\(774\) −1.25736 2.17781i −0.0451948 0.0782798i
\(775\) 4.48528 7.76874i 0.161116 0.279061i
\(776\) 14.0000 0.502571
\(777\) −18.7990 2.57258i −0.674410 0.0922909i
\(778\) −11.7990 −0.423014
\(779\) −4.41421 + 7.64564i −0.158156 + 0.273934i
\(780\) −8.07107 13.9795i −0.288991 0.500546i
\(781\) 6.94975 + 12.0373i 0.248682 + 0.430729i
\(782\) −6.97056 + 12.0734i −0.249267 + 0.431743i
\(783\) −53.2548 −1.90317
\(784\) −15.0000 + 14.6969i −0.535714 + 0.524891i
\(785\) 11.8284 0.422175
\(786\) 6.00000 10.3923i 0.214013 0.370681i
\(787\) 20.5061 + 35.5176i 0.730963 + 1.26607i 0.956472 + 0.291825i \(0.0942623\pi\)
−0.225508 + 0.974241i \(0.572404\pi\)
\(788\) 19.6421 + 34.0212i 0.699722 + 1.21195i
\(789\) −0.343146 + 0.594346i −0.0122163 + 0.0211593i
\(790\) −0.585786 −0.0208413
\(791\) −21.6066 2.95680i −0.768242 0.105132i
\(792\) 3.82843 0.136037
\(793\) −19.2635 + 33.3653i −0.684065 + 1.18484i
\(794\) −7.58579 13.1390i −0.269209 0.466285i
\(795\) 3.00000 + 5.19615i 0.106399 + 0.184289i
\(796\) 1.76346 3.05440i 0.0625040 0.108260i
\(797\) −21.7574 −0.770685 −0.385343 0.922774i \(-0.625917\pi\)
−0.385343 + 0.922774i \(0.625917\pi\)
\(798\) 0.949747 1.22474i 0.0336207 0.0433555i
\(799\) 6.34315 0.224404
\(800\) 8.82843 15.2913i 0.312132 0.540629i
\(801\) −4.29289 7.43551i −0.151682 0.262721i
\(802\) 3.41421 + 5.91359i 0.120560 + 0.208816i
\(803\) 15.8640 27.4772i 0.559827 0.969649i
\(804\) 17.6569 0.622709
\(805\) −8.41421 20.6105i −0.296562 0.726426i
\(806\) 5.79899 0.204261
\(807\) −2.82843 + 4.89898i −0.0995654 + 0.172452i
\(808\) −3.42031 5.92415i −0.120326 0.208411i
\(809\) −1.42893 2.47498i −0.0502386 0.0870158i 0.839813 0.542877i \(-0.182665\pi\)
−0.890051 + 0.455861i \(0.849332\pi\)
\(810\) 1.03553 1.79360i 0.0363850 0.0630206i
\(811\) −51.4558 −1.80686 −0.903430 0.428737i \(-0.858959\pi\)
−0.903430 + 0.428737i \(0.858959\pi\)
\(812\) 17.2132 + 42.1636i 0.604065 + 1.47965i
\(813\) 9.55635 0.335156
\(814\) 2.53553 4.39167i 0.0888704 0.153928i
\(815\) −9.03553 15.6500i −0.316501 0.548196i
\(816\) −8.48528 14.6969i −0.297044 0.514496i
\(817\) −3.03553 + 5.25770i −0.106200 + 0.183944i
\(818\) −10.4853 −0.366609
\(819\) −10.1213 + 13.0519i −0.353668 + 0.456071i
\(820\) 16.1421 0.563708
\(821\) 26.0563 45.1309i 0.909373 1.57508i 0.0944355 0.995531i \(-0.469895\pi\)
0.814937 0.579549i \(-0.196771\pi\)
\(822\) −4.15076 7.18932i −0.144774 0.250756i
\(823\) −18.1066 31.3616i −0.631156 1.09320i −0.987316 0.158770i \(-0.949247\pi\)
0.356159 0.934425i \(-0.384086\pi\)
\(824\) −4.75736 + 8.23999i −0.165730 + 0.287054i
\(825\) 13.6569 0.475471
\(826\) −1.27208 0.174080i −0.0442613 0.00605701i
\(827\) −44.2843 −1.53991 −0.769957 0.638095i \(-0.779723\pi\)
−0.769957 + 0.638095i \(0.779723\pi\)
\(828\) 7.69239 13.3236i 0.267329 0.463027i
\(829\) −14.1421 24.4949i −0.491177 0.850743i 0.508772 0.860901i \(-0.330100\pi\)
−0.999948 + 0.0101585i \(0.996766\pi\)
\(830\) −0.156854 0.271680i −0.00544449 0.00943013i
\(831\) 20.1213 34.8511i 0.698001 1.20897i
\(832\) −26.0416 −0.902831
\(833\) 6.97056 + 27.1185i 0.241516 + 0.939599i
\(834\) −4.72792 −0.163715
\(835\) 0.535534 0.927572i 0.0185329 0.0321000i
\(836\) −2.20711 3.82282i −0.0763344 0.132215i
\(837\) −6.34315 10.9867i −0.219251 0.379754i
\(838\) 1.67157 2.89525i 0.0577435 0.100015i
\(839\) 19.7990 0.683537 0.341769 0.939784i \(-0.388974\pi\)
0.341769 + 0.939784i \(0.388974\pi\)
\(840\) −5.87868 0.804479i −0.202834 0.0277572i
\(841\) 59.6274 2.05612
\(842\) −1.07969 + 1.87008i −0.0372086 + 0.0644471i
\(843\) −13.9706 24.1977i −0.481172 0.833414i
\(844\) −6.24264 10.8126i −0.214881 0.372184i
\(845\) −12.9853 + 22.4912i −0.446707 + 0.773720i
\(846\) 0.656854 0.0225831
\(847\) −8.38478 + 10.8126i −0.288104 + 0.371524i
\(848\) 12.7279 0.437079
\(849\) 11.2635 19.5089i 0.386561 0.669543i
\(850\) −3.31371 5.73951i −0.113659 0.196864i
\(851\) −21.3345 36.9525i −0.731338 1.26671i
\(852\) 7.44365 12.8928i 0.255015 0.441699i
\(853\) 10.0294 0.343401 0.171701 0.985149i \(-0.445074\pi\)
0.171701 + 0.985149i \(0.445074\pi\)
\(854\) 2.55635 + 6.26175i 0.0874765 + 0.214273i
\(855\) 1.00000 0.0341993
\(856\) 4.67767 8.10196i 0.159879 0.276919i
\(857\) −10.4853 18.1610i −0.358170 0.620369i 0.629485 0.777013i \(-0.283266\pi\)
−0.987655 + 0.156643i \(0.949933\pi\)
\(858\) 4.41421 + 7.64564i 0.150699 + 0.261018i
\(859\) −1.03553 + 1.79360i −0.0353320 + 0.0611968i −0.883151 0.469089i \(-0.844582\pi\)
0.847819 + 0.530286i \(0.177916\pi\)
\(860\) 11.1005 0.378524
\(861\) 12.4853 + 30.5826i 0.425497 + 1.04225i
\(862\) 15.7574 0.536698
\(863\) −3.70711 + 6.42090i −0.126191 + 0.218570i −0.922198 0.386718i \(-0.873609\pi\)
0.796007 + 0.605288i \(0.206942\pi\)
\(864\) −12.4853 21.6251i −0.424758 0.735702i
\(865\) −7.65685 13.2621i −0.260341 0.450924i
\(866\) −5.79899 + 10.0441i −0.197058 + 0.341314i
\(867\) 1.41421 0.0480292
\(868\) −6.64823 + 8.57321i −0.225656 + 0.290994i
\(869\) −3.41421 −0.115819
\(870\) −2.75736 + 4.77589i −0.0934832 + 0.161918i
\(871\) −21.3137 36.9164i −0.722187 1.25087i
\(872\) 1.31371 + 2.27541i 0.0444878 + 0.0770551i
\(873\) −4.41421 + 7.64564i −0.149398 + 0.258766i
\(874\) 3.48528 0.117891
\(875\) 23.5919 + 3.22848i 0.797551 + 0.109142i
\(876\) −33.9828 −1.14817
\(877\) 4.05025 7.01524i 0.136767 0.236888i −0.789504 0.613746i \(-0.789662\pi\)
0.926271 + 0.376858i \(0.122995\pi\)
\(878\) 1.55635 + 2.69568i 0.0525242 + 0.0909747i
\(879\) 6.24264 + 10.8126i 0.210559 + 0.364699i
\(880\) −3.62132 + 6.27231i −0.122075 + 0.211440i
\(881\) 4.28427 0.144341 0.0721704 0.997392i \(-0.477007\pi\)
0.0721704 + 0.997392i \(0.477007\pi\)
\(882\) 0.721825 + 2.80821i 0.0243051 + 0.0945573i
\(883\) 5.65685 0.190368 0.0951842 0.995460i \(-0.469656\pi\)
0.0951842 + 0.995460i \(0.469656\pi\)
\(884\) −22.8284 + 39.5400i −0.767803 + 1.32987i
\(885\) 0.828427 + 1.43488i 0.0278473 + 0.0482329i
\(886\) −1.31371 2.27541i −0.0441349 0.0764439i
\(887\) −0.656854 + 1.13770i −0.0220550 + 0.0382004i −0.876842 0.480778i \(-0.840354\pi\)
0.854787 + 0.518979i \(0.173688\pi\)
\(888\) −11.3726 −0.381639
\(889\) 11.1213 + 1.52192i 0.372997 + 0.0510435i
\(890\) −3.55635 −0.119209
\(891\) 6.03553 10.4539i 0.202198 0.350217i
\(892\) −5.70711 9.88500i −0.191088 0.330974i
\(893\) −0.792893 1.37333i −0.0265332 0.0459568i
\(894\) −1.70711 + 2.95680i −0.0570942 + 0.0988900i
\(895\) −21.7990 −0.728660
\(896\) −17.1152 + 22.0709i −0.571779 + 0.737337i
\(897\) 74.2843 2.48028
\(898\) 0.343146 0.594346i 0.0114509 0.0198336i
\(899\) 10.5563 + 18.2841i 0.352074 + 0.609810i
\(900\) 3.65685 + 6.33386i 0.121895 + 0.211129i
\(901\) 8.48528 14.6969i 0.282686 0.489626i
\(902\) −8.82843 −0.293954
\(903\) 8.58579 + 21.0308i 0.285717 + 0.699861i
\(904\) −13.0711 −0.434737
\(905\) 4.94975 8.57321i 0.164535 0.284983i
\(906\) 1.55635 + 2.69568i 0.0517062 + 0.0895578i
\(907\) −14.2929 24.7560i −0.474588 0.822010i 0.524989 0.851109i \(-0.324070\pi\)
−0.999577 + 0.0290991i \(0.990736\pi\)
\(908\) −10.7487 + 18.6174i −0.356709 + 0.617839i
\(909\) 4.31371 0.143077
\(910\) 2.58579 + 6.33386i 0.0857180 + 0.209965i
\(911\) 34.7279 1.15059 0.575294 0.817947i \(-0.304888\pi\)
0.575294 + 0.817947i \(0.304888\pi\)
\(912\) −2.12132 + 3.67423i −0.0702439 + 0.121666i
\(913\) −0.914214 1.58346i −0.0302561 0.0524050i
\(914\) 0.449747 + 0.778985i 0.0148763 + 0.0257665i
\(915\) 4.36396 7.55860i 0.144268 0.249880i
\(916\) 8.20101 0.270969
\(917\) 33.2132 42.8300i 1.09680 1.41437i
\(918\) −9.37258 −0.309341
\(919\) −14.5208 + 25.1508i −0.478997 + 0.829648i −0.999710 0.0240841i \(-0.992333\pi\)
0.520712 + 0.853732i \(0.325666\pi\)
\(920\) −6.67157 11.5555i −0.219955 0.380974i
\(921\) 4.72792 + 8.18900i 0.155790 + 0.269837i
\(922\) 0.822330 1.42432i 0.0270820 0.0469074i
\(923\) −35.9411 −1.18302
\(924\) −16.3640 2.23936i −0.538335 0.0736694i
\(925\) 20.2843 0.666943
\(926\) −2.08579 + 3.61269i −0.0685432 + 0.118720i
\(927\) −3.00000 5.19615i −0.0985329 0.170664i
\(928\) 20.7782 + 35.9889i 0.682077 + 1.18139i
\(929\) −7.50000 + 12.9904i −0.246067 + 0.426201i −0.962431 0.271526i \(-0.912472\pi\)
0.716364 + 0.697727i \(0.245805\pi\)
\(930\) −1.31371 −0.0430782
\(931\) 5.00000 4.89898i 0.163868 0.160558i
\(932\) 30.1421 0.987338
\(933\) 11.1716 19.3497i 0.365741 0.633482i
\(934\) −8.05635 13.9540i −0.263612 0.456589i
\(935\) 4.82843 + 8.36308i 0.157906 + 0.273502i
\(936\) −4.94975 + 8.57321i −0.161788 + 0.280224i
\(937\) −56.3137 −1.83969 −0.919844 0.392284i \(-0.871685\pi\)
−0.919844 + 0.392284i \(0.871685\pi\)
\(938\) −7.41421 1.01461i −0.242083 0.0331283i
\(939\) −6.58579 −0.214919
\(940\) −1.44975 + 2.51104i −0.0472855 + 0.0819010i
\(941\) 22.0208 + 38.1412i 0.717858 + 1.24337i 0.961847 + 0.273589i \(0.0882107\pi\)
−0.243989 + 0.969778i \(0.578456\pi\)
\(942\) 3.46447 + 6.00063i 0.112878 + 0.195511i
\(943\) −37.1421 + 64.3321i −1.20951 + 2.09494i
\(944\) 3.51472 0.114394
\(945\) 9.17157 11.8272i 0.298351 0.384738i
\(946\) −6.07107 −0.197387
\(947\) 3.82843 6.63103i 0.124407 0.215480i −0.797094 0.603855i \(-0.793630\pi\)
0.921501 + 0.388376i \(0.126964\pi\)
\(948\) 1.82843 + 3.16693i 0.0593846 + 0.102857i
\(949\) 41.0208 + 71.0501i 1.33159 + 2.30639i
\(950\) −0.828427 + 1.43488i −0.0268777 + 0.0465536i
\(951\) 16.6274 0.539181
\(952\) 6.34315 + 15.5375i 0.205583 + 0.503572i
\(953\) −0.585786 −0.0189755 −0.00948774 0.999955i \(-0.503020\pi\)
−0.00948774 + 0.999955i \(0.503020\pi\)
\(954\) 0.878680 1.52192i 0.0284483 0.0492739i
\(955\) −2.79289 4.83743i −0.0903759 0.156536i
\(956\) 1.82843 + 3.16693i 0.0591356 + 0.102426i
\(957\) −16.0711 + 27.8359i −0.519504 + 0.899807i
\(958\) 4.71573 0.152358
\(959\) −14.1716 34.7131i −0.457624 1.12095i
\(960\) 5.89949 0.190405
\(961\) 12.9853 22.4912i 0.418880 0.725522i
\(962\) 6.55635 + 11.3559i 0.211385 + 0.366130i
\(963\) 2.94975 + 5.10911i 0.0950543 + 0.164639i
\(964\) 20.1508 34.9021i 0.649012 1.12412i
\(965\) −11.8995 −0.383058
\(966\) 7.99138 10.3053i 0.257118 0.331566i
\(967\) 20.2843 0.652298 0.326149 0.945318i \(-0.394249\pi\)
0.326149 + 0.945318i \(0.394249\pi\)
\(968\) −4.10051 + 7.10228i −0.131795 + 0.228276i
\(969\) 2.82843 + 4.89898i 0.0908622 + 0.157378i
\(970\) 1.82843 + 3.16693i 0.0587073 + 0.101684i
\(971\) 13.4350 23.2702i 0.431151 0.746775i −0.565822 0.824527i \(-0.691441\pi\)
0.996973 + 0.0777526i \(0.0247744\pi\)
\(972\) 18.1005 0.580574
\(973\) −21.1569 2.89525i −0.678258 0.0928174i
\(974\) 8.62742 0.276440
\(975\) −17.6569 + 30.5826i −0.565472 + 0.979426i
\(976\) −9.25736 16.0342i −0.296321 0.513243i
\(977\) −14.3848 24.9152i −0.460210 0.797107i 0.538761 0.842458i \(-0.318892\pi\)
−0.998971 + 0.0453518i \(0.985559\pi\)
\(978\) 5.29289 9.16756i 0.169248 0.293146i
\(979\) −20.7279 −0.662467
\(980\) −12.3284 3.43861i −0.393817 0.109842i
\(981\) −1.65685 −0.0528993
\(982\) 6.74264 11.6786i 0.215166 0.372679i
\(983\) 23.0000 + 39.8372i 0.733586 + 1.27061i 0.955341 + 0.295506i \(0.0954882\pi\)
−0.221755 + 0.975102i \(0.571178\pi\)
\(984\) 9.89949 + 17.1464i 0.315584 + 0.546608i
\(985\) −10.7426 + 18.6068i −0.342289 + 0.592862i
\(986\) 15.5980 0.496741
\(987\) −5.87868 0.804479i −0.187120 0.0256068i
\(988\) 11.4142 0.363135
\(989\) −25.5416 + 44.2394i −0.812177 + 1.40673i
\(990\) 0.500000 + 0.866025i 0.0158910 + 0.0275241i
\(991\) 17.8995 + 31.0028i 0.568596 + 0.984837i 0.996705 + 0.0811104i \(0.0258466\pi\)
−0.428109 + 0.903727i \(0.640820\pi\)
\(992\) −4.94975 + 8.57321i −0.157155 + 0.272200i
\(993\) −27.5147 −0.873153
\(994\) −3.86649 + 4.98602i −0.122638 + 0.158147i
\(995\) 1.92893 0.0611513
\(996\) −0.979185 + 1.69600i −0.0310267 + 0.0537397i
\(997\) −14.1421 24.4949i −0.447886 0.775761i 0.550362 0.834926i \(-0.314490\pi\)
−0.998248 + 0.0591648i \(0.981156\pi\)
\(998\) −0.713203 1.23530i −0.0225761 0.0391029i
\(999\) 14.3431 24.8431i 0.453797 0.786000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 133.2.f.c.58.1 yes 4
3.2 odd 2 1197.2.j.e.856.2 4
7.2 even 3 931.2.a.f.1.2 2
7.3 odd 6 931.2.f.i.704.1 4
7.4 even 3 inner 133.2.f.c.39.1 4
7.5 odd 6 931.2.a.e.1.2 2
7.6 odd 2 931.2.f.i.324.1 4
21.2 odd 6 8379.2.a.bi.1.1 2
21.5 even 6 8379.2.a.bl.1.1 2
21.11 odd 6 1197.2.j.e.172.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.f.c.39.1 4 7.4 even 3 inner
133.2.f.c.58.1 yes 4 1.1 even 1 trivial
931.2.a.e.1.2 2 7.5 odd 6
931.2.a.f.1.2 2 7.2 even 3
931.2.f.i.324.1 4 7.6 odd 2
931.2.f.i.704.1 4 7.3 odd 6
1197.2.j.e.172.2 4 21.11 odd 6
1197.2.j.e.856.2 4 3.2 odd 2
8379.2.a.bi.1.1 2 21.2 odd 6
8379.2.a.bl.1.1 2 21.5 even 6