Defining parameters
Level: | \( N \) | \(=\) | \( 133 = 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 133.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(26\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(133))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 9 | 5 |
Cusp forms | 11 | 9 | 2 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(133))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 19 | |||||||
133.2.a.a | $2$ | $1.062$ | \(\Q(\sqrt{5}) \) | None | \(-3\) | \(-3\) | \(0\) | \(-2\) | $+$ | $+$ | \(q+(-1-\beta )q^{2}+(-1-\beta )q^{3}+3\beta q^{4}+\cdots\) | |
133.2.a.b | $2$ | $1.062$ | \(\Q(\sqrt{13}) \) | None | \(-1\) | \(-3\) | \(-6\) | \(2\) | $-$ | $-$ | \(q-\beta q^{2}+(-2+\beta )q^{3}+(1+\beta )q^{4}-3q^{5}+\cdots\) | |
133.2.a.c | $2$ | $1.062$ | \(\Q(\sqrt{5}) \) | None | \(1\) | \(3\) | \(2\) | \(2\) | $-$ | $+$ | \(q+\beta q^{2}+(2-\beta )q^{3}+(-1+\beta )q^{4}+q^{5}+\cdots\) | |
133.2.a.d | $3$ | $1.062$ | 3.3.229.1 | None | \(2\) | \(3\) | \(-2\) | \(-3\) | $+$ | $-$ | \(q+(1+\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(133))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(133)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)