Properties

Label 133.2.a
Level $133$
Weight $2$
Character orbit 133.a
Rep. character $\chi_{133}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $26$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 133.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(26\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(133))\).

Total New Old
Modular forms 14 9 5
Cusp forms 11 9 2
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(5\)

Trace form

\( 9 q - q^{2} + 11 q^{4} - 6 q^{5} - q^{7} - 9 q^{8} + 9 q^{9} - 10 q^{10} - 8 q^{11} - 16 q^{12} - 6 q^{13} + q^{14} + 3 q^{16} - 2 q^{17} + 7 q^{18} + q^{19} + 6 q^{20} + 8 q^{22} + 20 q^{24} - q^{25}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(133))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 19
133.2.a.a 133.a 1.a $2$ $1.062$ \(\Q(\sqrt{5}) \) None 133.2.a.a \(-3\) \(-3\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(-1-\beta )q^{3}+3\beta q^{4}+\cdots\)
133.2.a.b 133.a 1.a $2$ $1.062$ \(\Q(\sqrt{13}) \) None 133.2.a.b \(-1\) \(-3\) \(-6\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-2+\beta )q^{3}+(1+\beta )q^{4}-3q^{5}+\cdots\)
133.2.a.c 133.a 1.a $2$ $1.062$ \(\Q(\sqrt{5}) \) None 133.2.a.c \(1\) \(3\) \(2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(2-\beta )q^{3}+(-1+\beta )q^{4}+q^{5}+\cdots\)
133.2.a.d 133.a 1.a $3$ $1.062$ 3.3.229.1 None 133.2.a.d \(2\) \(3\) \(-2\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(133))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(133)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)