Properties

Label 133.1.r
Level 133
Weight 1
Character orbit r
Rep. character \(\chi_{133}(18,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 2
Newform subspaces 1
Sturm bound 13
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 133.r (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(13\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(133, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2q - q^{4} + q^{5} - q^{7} - q^{9} + O(q^{10}) \) \( 2q - q^{4} + q^{5} - q^{7} - q^{9} + q^{11} - q^{16} - 2q^{17} - q^{19} - 2q^{20} + q^{23} + 2q^{28} + q^{35} + 2q^{36} - 2q^{43} + q^{44} + q^{45} + q^{47} - q^{49} + 2q^{55} + q^{61} - q^{63} + 2q^{64} - 2q^{68} + q^{73} + 2q^{76} - 2q^{77} + q^{80} - q^{81} - 2q^{83} - 4q^{85} - 2q^{92} + q^{95} - 2q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(133, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
133.1.r.a \(2\) \(0.066\) \(\Q(\sqrt{-3}) \) \(D_{3}\) \(\Q(\sqrt{-19}) \) None \(0\) \(0\) \(1\) \(-1\) \(q-\zeta_{6}q^{4}-\zeta_{6}^{2}q^{5}+\zeta_{6}^{2}q^{7}+\zeta_{6}^{2}q^{9}+\cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$3$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$5$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
$7$ \( 1 + T + T^{2} \)
$11$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
$13$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$17$ \( ( 1 + T + T^{2} )^{2} \)
$19$ \( 1 + T + T^{2} \)
$23$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
$29$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$31$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$37$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$41$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$43$ \( ( 1 + T + T^{2} )^{2} \)
$47$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
$53$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$59$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$61$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
$67$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$71$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$73$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
$79$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$83$ \( ( 1 + T + T^{2} )^{2} \)
$89$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
$97$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less