Properties

Label 1323.4.a.u.1.1
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.79129\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.58258 q^{2} +13.0000 q^{4} +4.58258 q^{5} -22.9129 q^{8} +O(q^{10})\) \(q-4.58258 q^{2} +13.0000 q^{4} +4.58258 q^{5} -22.9129 q^{8} -21.0000 q^{10} -22.9129 q^{11} -44.0000 q^{13} +1.00000 q^{16} +64.1561 q^{17} +49.0000 q^{19} +59.5735 q^{20} +105.000 q^{22} +77.9038 q^{23} -104.000 q^{25} +201.633 q^{26} +219.964 q^{29} -191.000 q^{31} +178.720 q^{32} -294.000 q^{34} +29.0000 q^{37} -224.546 q^{38} -105.000 q^{40} -371.189 q^{41} +386.000 q^{43} -297.867 q^{44} -357.000 q^{46} -64.1561 q^{47} +476.588 q^{50} -572.000 q^{52} +128.312 q^{53} -105.000 q^{55} -1008.00 q^{58} -705.717 q^{59} -128.000 q^{61} +875.272 q^{62} -827.000 q^{64} -201.633 q^{65} -988.000 q^{67} +834.029 q^{68} +811.116 q^{71} -266.000 q^{73} -132.895 q^{74} +637.000 q^{76} +146.000 q^{79} +4.58258 q^{80} +1701.00 q^{82} +1429.76 q^{83} +294.000 q^{85} -1768.87 q^{86} +525.000 q^{88} +801.951 q^{89} +1012.75 q^{92} +294.000 q^{94} +224.546 q^{95} -152.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 26 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 26 q^{4} - 42 q^{10} - 88 q^{13} + 2 q^{16} + 98 q^{19} + 210 q^{22} - 208 q^{25} - 382 q^{31} - 588 q^{34} + 58 q^{37} - 210 q^{40} + 772 q^{43} - 714 q^{46} - 1144 q^{52} - 210 q^{55} - 2016 q^{58} - 256 q^{61} - 1654 q^{64} - 1976 q^{67} - 532 q^{73} + 1274 q^{76} + 292 q^{79} + 3402 q^{82} + 588 q^{85} + 1050 q^{88} + 588 q^{94} - 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.58258 −1.62019 −0.810093 0.586302i \(-0.800583\pi\)
−0.810093 + 0.586302i \(0.800583\pi\)
\(3\) 0 0
\(4\) 13.0000 1.62500
\(5\) 4.58258 0.409878 0.204939 0.978775i \(-0.434300\pi\)
0.204939 + 0.978775i \(0.434300\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −22.9129 −1.01262
\(9\) 0 0
\(10\) −21.0000 −0.664078
\(11\) −22.9129 −0.628045 −0.314022 0.949416i \(-0.601677\pi\)
−0.314022 + 0.949416i \(0.601677\pi\)
\(12\) 0 0
\(13\) −44.0000 −0.938723 −0.469362 0.883006i \(-0.655516\pi\)
−0.469362 + 0.883006i \(0.655516\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.0156250
\(17\) 64.1561 0.915302 0.457651 0.889132i \(-0.348691\pi\)
0.457651 + 0.889132i \(0.348691\pi\)
\(18\) 0 0
\(19\) 49.0000 0.591651 0.295826 0.955242i \(-0.404405\pi\)
0.295826 + 0.955242i \(0.404405\pi\)
\(20\) 59.5735 0.666052
\(21\) 0 0
\(22\) 105.000 1.01755
\(23\) 77.9038 0.706264 0.353132 0.935574i \(-0.385117\pi\)
0.353132 + 0.935574i \(0.385117\pi\)
\(24\) 0 0
\(25\) −104.000 −0.832000
\(26\) 201.633 1.52091
\(27\) 0 0
\(28\) 0 0
\(29\) 219.964 1.40849 0.704245 0.709957i \(-0.251286\pi\)
0.704245 + 0.709957i \(0.251286\pi\)
\(30\) 0 0
\(31\) −191.000 −1.10660 −0.553300 0.832982i \(-0.686632\pi\)
−0.553300 + 0.832982i \(0.686632\pi\)
\(32\) 178.720 0.987300
\(33\) 0 0
\(34\) −294.000 −1.48296
\(35\) 0 0
\(36\) 0 0
\(37\) 29.0000 0.128853 0.0644266 0.997922i \(-0.479478\pi\)
0.0644266 + 0.997922i \(0.479478\pi\)
\(38\) −224.546 −0.958584
\(39\) 0 0
\(40\) −105.000 −0.415049
\(41\) −371.189 −1.41390 −0.706950 0.707263i \(-0.749930\pi\)
−0.706950 + 0.707263i \(0.749930\pi\)
\(42\) 0 0
\(43\) 386.000 1.36894 0.684470 0.729041i \(-0.260034\pi\)
0.684470 + 0.729041i \(0.260034\pi\)
\(44\) −297.867 −1.02057
\(45\) 0 0
\(46\) −357.000 −1.14428
\(47\) −64.1561 −0.199109 −0.0995545 0.995032i \(-0.531742\pi\)
−0.0995545 + 0.995032i \(0.531742\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 476.588 1.34799
\(51\) 0 0
\(52\) −572.000 −1.52543
\(53\) 128.312 0.332548 0.166274 0.986080i \(-0.446826\pi\)
0.166274 + 0.986080i \(0.446826\pi\)
\(54\) 0 0
\(55\) −105.000 −0.257422
\(56\) 0 0
\(57\) 0 0
\(58\) −1008.00 −2.28202
\(59\) −705.717 −1.55723 −0.778614 0.627503i \(-0.784077\pi\)
−0.778614 + 0.627503i \(0.784077\pi\)
\(60\) 0 0
\(61\) −128.000 −0.268668 −0.134334 0.990936i \(-0.542889\pi\)
−0.134334 + 0.990936i \(0.542889\pi\)
\(62\) 875.272 1.79290
\(63\) 0 0
\(64\) −827.000 −1.61523
\(65\) −201.633 −0.384762
\(66\) 0 0
\(67\) −988.000 −1.80154 −0.900772 0.434293i \(-0.856998\pi\)
−0.900772 + 0.434293i \(0.856998\pi\)
\(68\) 834.029 1.48737
\(69\) 0 0
\(70\) 0 0
\(71\) 811.116 1.35580 0.677900 0.735154i \(-0.262890\pi\)
0.677900 + 0.735154i \(0.262890\pi\)
\(72\) 0 0
\(73\) −266.000 −0.426479 −0.213239 0.977000i \(-0.568401\pi\)
−0.213239 + 0.977000i \(0.568401\pi\)
\(74\) −132.895 −0.208766
\(75\) 0 0
\(76\) 637.000 0.961433
\(77\) 0 0
\(78\) 0 0
\(79\) 146.000 0.207928 0.103964 0.994581i \(-0.466847\pi\)
0.103964 + 0.994581i \(0.466847\pi\)
\(80\) 4.58258 0.00640434
\(81\) 0 0
\(82\) 1701.00 2.29078
\(83\) 1429.76 1.89081 0.945403 0.325903i \(-0.105668\pi\)
0.945403 + 0.325903i \(0.105668\pi\)
\(84\) 0 0
\(85\) 294.000 0.375162
\(86\) −1768.87 −2.21794
\(87\) 0 0
\(88\) 525.000 0.635968
\(89\) 801.951 0.955130 0.477565 0.878596i \(-0.341519\pi\)
0.477565 + 0.878596i \(0.341519\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1012.75 1.14768
\(93\) 0 0
\(94\) 294.000 0.322593
\(95\) 224.546 0.242505
\(96\) 0 0
\(97\) −152.000 −0.159106 −0.0795529 0.996831i \(-0.525349\pi\)
−0.0795529 + 0.996831i \(0.525349\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1352.00 −1.35200
\(101\) −1255.63 −1.23702 −0.618512 0.785775i \(-0.712264\pi\)
−0.618512 + 0.785775i \(0.712264\pi\)
\(102\) 0 0
\(103\) −2063.00 −1.97353 −0.986764 0.162162i \(-0.948153\pi\)
−0.986764 + 0.162162i \(0.948153\pi\)
\(104\) 1008.17 0.950566
\(105\) 0 0
\(106\) −588.000 −0.538789
\(107\) −73.3212 −0.0662451 −0.0331226 0.999451i \(-0.510545\pi\)
−0.0331226 + 0.999451i \(0.510545\pi\)
\(108\) 0 0
\(109\) 2171.00 1.90774 0.953872 0.300214i \(-0.0970580\pi\)
0.953872 + 0.300214i \(0.0970580\pi\)
\(110\) 481.170 0.417071
\(111\) 0 0
\(112\) 0 0
\(113\) 1182.30 0.984264 0.492132 0.870521i \(-0.336218\pi\)
0.492132 + 0.870521i \(0.336218\pi\)
\(114\) 0 0
\(115\) 357.000 0.289482
\(116\) 2859.53 2.28880
\(117\) 0 0
\(118\) 3234.00 2.52300
\(119\) 0 0
\(120\) 0 0
\(121\) −806.000 −0.605560
\(122\) 586.570 0.435291
\(123\) 0 0
\(124\) −2483.00 −1.79823
\(125\) −1049.41 −0.750897
\(126\) 0 0
\(127\) −1324.00 −0.925087 −0.462543 0.886597i \(-0.653063\pi\)
−0.462543 + 0.886597i \(0.653063\pi\)
\(128\) 2360.03 1.62968
\(129\) 0 0
\(130\) 924.000 0.623386
\(131\) 925.680 0.617382 0.308691 0.951162i \(-0.400109\pi\)
0.308691 + 0.951162i \(0.400109\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4527.58 2.91883
\(135\) 0 0
\(136\) −1470.00 −0.926849
\(137\) −2511.25 −1.56606 −0.783032 0.621982i \(-0.786328\pi\)
−0.783032 + 0.621982i \(0.786328\pi\)
\(138\) 0 0
\(139\) −404.000 −0.246524 −0.123262 0.992374i \(-0.539336\pi\)
−0.123262 + 0.992374i \(0.539336\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3717.00 −2.19665
\(143\) 1008.17 0.589560
\(144\) 0 0
\(145\) 1008.00 0.577309
\(146\) 1218.97 0.690974
\(147\) 0 0
\(148\) 377.000 0.209387
\(149\) 669.056 0.367860 0.183930 0.982939i \(-0.441118\pi\)
0.183930 + 0.982939i \(0.441118\pi\)
\(150\) 0 0
\(151\) 2738.00 1.47560 0.737799 0.675021i \(-0.235865\pi\)
0.737799 + 0.675021i \(0.235865\pi\)
\(152\) −1122.73 −0.599115
\(153\) 0 0
\(154\) 0 0
\(155\) −875.272 −0.453571
\(156\) 0 0
\(157\) 1372.00 0.697436 0.348718 0.937228i \(-0.386617\pi\)
0.348718 + 0.937228i \(0.386617\pi\)
\(158\) −669.056 −0.336881
\(159\) 0 0
\(160\) 819.000 0.404673
\(161\) 0 0
\(162\) 0 0
\(163\) 2792.00 1.34163 0.670817 0.741623i \(-0.265944\pi\)
0.670817 + 0.741623i \(0.265944\pi\)
\(164\) −4825.45 −2.29759
\(165\) 0 0
\(166\) −6552.00 −3.06346
\(167\) 412.432 0.191107 0.0955537 0.995424i \(-0.469538\pi\)
0.0955537 + 0.995424i \(0.469538\pi\)
\(168\) 0 0
\(169\) −261.000 −0.118798
\(170\) −1347.28 −0.607832
\(171\) 0 0
\(172\) 5018.00 2.22453
\(173\) 2396.69 1.05328 0.526638 0.850090i \(-0.323452\pi\)
0.526638 + 0.850090i \(0.323452\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −22.9129 −0.00981320
\(177\) 0 0
\(178\) −3675.00 −1.54749
\(179\) −751.542 −0.313815 −0.156908 0.987613i \(-0.550152\pi\)
−0.156908 + 0.987613i \(0.550152\pi\)
\(180\) 0 0
\(181\) 70.0000 0.0287462 0.0143731 0.999897i \(-0.495425\pi\)
0.0143731 + 0.999897i \(0.495425\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1785.00 −0.715174
\(185\) 132.895 0.0528141
\(186\) 0 0
\(187\) −1470.00 −0.574851
\(188\) −834.029 −0.323552
\(189\) 0 0
\(190\) −1029.00 −0.392903
\(191\) −2369.19 −0.897532 −0.448766 0.893649i \(-0.648136\pi\)
−0.448766 + 0.893649i \(0.648136\pi\)
\(192\) 0 0
\(193\) −1042.00 −0.388626 −0.194313 0.980940i \(-0.562248\pi\)
−0.194313 + 0.980940i \(0.562248\pi\)
\(194\) 696.552 0.257781
\(195\) 0 0
\(196\) 0 0
\(197\) −2447.10 −0.885017 −0.442508 0.896764i \(-0.645911\pi\)
−0.442508 + 0.896764i \(0.645911\pi\)
\(198\) 0 0
\(199\) −3575.00 −1.27349 −0.636746 0.771073i \(-0.719720\pi\)
−0.636746 + 0.771073i \(0.719720\pi\)
\(200\) 2382.94 0.842496
\(201\) 0 0
\(202\) 5754.00 2.00421
\(203\) 0 0
\(204\) 0 0
\(205\) −1701.00 −0.579527
\(206\) 9453.85 3.19748
\(207\) 0 0
\(208\) −44.0000 −0.0146676
\(209\) −1122.73 −0.371583
\(210\) 0 0
\(211\) −118.000 −0.0384998 −0.0192499 0.999815i \(-0.506128\pi\)
−0.0192499 + 0.999815i \(0.506128\pi\)
\(212\) 1668.06 0.540390
\(213\) 0 0
\(214\) 336.000 0.107329
\(215\) 1768.87 0.561099
\(216\) 0 0
\(217\) 0 0
\(218\) −9948.77 −3.09090
\(219\) 0 0
\(220\) −1365.00 −0.418310
\(221\) −2822.87 −0.859215
\(222\) 0 0
\(223\) 511.000 0.153449 0.0767244 0.997052i \(-0.475554\pi\)
0.0767244 + 0.997052i \(0.475554\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5418.00 −1.59469
\(227\) −5654.90 −1.65343 −0.826715 0.562620i \(-0.809793\pi\)
−0.826715 + 0.562620i \(0.809793\pi\)
\(228\) 0 0
\(229\) 2140.00 0.617534 0.308767 0.951138i \(-0.400084\pi\)
0.308767 + 0.951138i \(0.400084\pi\)
\(230\) −1635.98 −0.469014
\(231\) 0 0
\(232\) −5040.00 −1.42626
\(233\) −5159.98 −1.45082 −0.725411 0.688316i \(-0.758350\pi\)
−0.725411 + 0.688316i \(0.758350\pi\)
\(234\) 0 0
\(235\) −294.000 −0.0816104
\(236\) −9174.32 −2.53050
\(237\) 0 0
\(238\) 0 0
\(239\) 4124.32 1.11623 0.558117 0.829762i \(-0.311524\pi\)
0.558117 + 0.829762i \(0.311524\pi\)
\(240\) 0 0
\(241\) 1510.00 0.403600 0.201800 0.979427i \(-0.435321\pi\)
0.201800 + 0.979427i \(0.435321\pi\)
\(242\) 3693.56 0.981119
\(243\) 0 0
\(244\) −1664.00 −0.436585
\(245\) 0 0
\(246\) 0 0
\(247\) −2156.00 −0.555397
\(248\) 4376.36 1.12056
\(249\) 0 0
\(250\) 4809.00 1.21659
\(251\) −2749.55 −0.691433 −0.345717 0.938339i \(-0.612364\pi\)
−0.345717 + 0.938339i \(0.612364\pi\)
\(252\) 0 0
\(253\) −1785.00 −0.443565
\(254\) 6067.33 1.49881
\(255\) 0 0
\(256\) −4199.00 −1.02515
\(257\) −7666.65 −1.86083 −0.930413 0.366512i \(-0.880552\pi\)
−0.930413 + 0.366512i \(0.880552\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2621.23 −0.625238
\(261\) 0 0
\(262\) −4242.00 −1.00027
\(263\) −6319.37 −1.48163 −0.740816 0.671708i \(-0.765561\pi\)
−0.740816 + 0.671708i \(0.765561\pi\)
\(264\) 0 0
\(265\) 588.000 0.136304
\(266\) 0 0
\(267\) 0 0
\(268\) −12844.0 −2.92751
\(269\) −691.969 −0.156840 −0.0784202 0.996920i \(-0.524988\pi\)
−0.0784202 + 0.996920i \(0.524988\pi\)
\(270\) 0 0
\(271\) −2504.00 −0.561281 −0.280641 0.959813i \(-0.590547\pi\)
−0.280641 + 0.959813i \(0.590547\pi\)
\(272\) 64.1561 0.0143016
\(273\) 0 0
\(274\) 11508.0 2.53731
\(275\) 2382.94 0.522533
\(276\) 0 0
\(277\) −6595.00 −1.43052 −0.715262 0.698856i \(-0.753693\pi\)
−0.715262 + 0.698856i \(0.753693\pi\)
\(278\) 1851.36 0.399414
\(279\) 0 0
\(280\) 0 0
\(281\) −5911.52 −1.25499 −0.627494 0.778621i \(-0.715919\pi\)
−0.627494 + 0.778621i \(0.715919\pi\)
\(282\) 0 0
\(283\) −1244.00 −0.261301 −0.130650 0.991429i \(-0.541707\pi\)
−0.130650 + 0.991429i \(0.541707\pi\)
\(284\) 10544.5 2.20317
\(285\) 0 0
\(286\) −4620.00 −0.955197
\(287\) 0 0
\(288\) 0 0
\(289\) −797.000 −0.162223
\(290\) −4619.24 −0.935348
\(291\) 0 0
\(292\) −3458.00 −0.693028
\(293\) −5911.52 −1.17869 −0.589343 0.807883i \(-0.700613\pi\)
−0.589343 + 0.807883i \(0.700613\pi\)
\(294\) 0 0
\(295\) −3234.00 −0.638274
\(296\) −664.473 −0.130479
\(297\) 0 0
\(298\) −3066.00 −0.596002
\(299\) −3427.77 −0.662986
\(300\) 0 0
\(301\) 0 0
\(302\) −12547.1 −2.39074
\(303\) 0 0
\(304\) 49.0000 0.00924455
\(305\) −586.570 −0.110121
\(306\) 0 0
\(307\) −6659.00 −1.23795 −0.618973 0.785413i \(-0.712451\pi\)
−0.618973 + 0.785413i \(0.712451\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4011.00 0.734869
\(311\) 971.506 0.177135 0.0885676 0.996070i \(-0.471771\pi\)
0.0885676 + 0.996070i \(0.471771\pi\)
\(312\) 0 0
\(313\) 4900.00 0.884870 0.442435 0.896801i \(-0.354115\pi\)
0.442435 + 0.896801i \(0.354115\pi\)
\(314\) −6287.29 −1.12998
\(315\) 0 0
\(316\) 1898.00 0.337882
\(317\) 9302.63 1.64823 0.824113 0.566425i \(-0.191674\pi\)
0.824113 + 0.566425i \(0.191674\pi\)
\(318\) 0 0
\(319\) −5040.00 −0.884595
\(320\) −3789.79 −0.662049
\(321\) 0 0
\(322\) 0 0
\(323\) 3143.65 0.541539
\(324\) 0 0
\(325\) 4576.00 0.781018
\(326\) −12794.6 −2.17370
\(327\) 0 0
\(328\) 8505.00 1.43174
\(329\) 0 0
\(330\) 0 0
\(331\) 68.0000 0.0112919 0.00564595 0.999984i \(-0.498203\pi\)
0.00564595 + 0.999984i \(0.498203\pi\)
\(332\) 18586.9 3.07256
\(333\) 0 0
\(334\) −1890.00 −0.309629
\(335\) −4527.58 −0.738413
\(336\) 0 0
\(337\) −6757.00 −1.09222 −0.546109 0.837714i \(-0.683891\pi\)
−0.546109 + 0.837714i \(0.683891\pi\)
\(338\) 1196.05 0.192475
\(339\) 0 0
\(340\) 3822.00 0.609638
\(341\) 4376.36 0.694995
\(342\) 0 0
\(343\) 0 0
\(344\) −8844.37 −1.38621
\(345\) 0 0
\(346\) −10983.0 −1.70650
\(347\) −9536.34 −1.47532 −0.737662 0.675170i \(-0.764070\pi\)
−0.737662 + 0.675170i \(0.764070\pi\)
\(348\) 0 0
\(349\) 1090.00 0.167182 0.0835908 0.996500i \(-0.473361\pi\)
0.0835908 + 0.996500i \(0.473361\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4095.00 −0.620069
\(353\) −1626.81 −0.245288 −0.122644 0.992451i \(-0.539137\pi\)
−0.122644 + 0.992451i \(0.539137\pi\)
\(354\) 0 0
\(355\) 3717.00 0.555712
\(356\) 10425.4 1.55209
\(357\) 0 0
\(358\) 3444.00 0.508439
\(359\) 3666.06 0.538962 0.269481 0.963006i \(-0.413148\pi\)
0.269481 + 0.963006i \(0.413148\pi\)
\(360\) 0 0
\(361\) −4458.00 −0.649949
\(362\) −320.780 −0.0465741
\(363\) 0 0
\(364\) 0 0
\(365\) −1218.97 −0.174804
\(366\) 0 0
\(367\) −4487.00 −0.638200 −0.319100 0.947721i \(-0.603381\pi\)
−0.319100 + 0.947721i \(0.603381\pi\)
\(368\) 77.9038 0.0110354
\(369\) 0 0
\(370\) −609.000 −0.0855687
\(371\) 0 0
\(372\) 0 0
\(373\) −229.000 −0.0317887 −0.0158943 0.999874i \(-0.505060\pi\)
−0.0158943 + 0.999874i \(0.505060\pi\)
\(374\) 6736.39 0.931364
\(375\) 0 0
\(376\) 1470.00 0.201621
\(377\) −9678.40 −1.32218
\(378\) 0 0
\(379\) 4166.00 0.564625 0.282313 0.959322i \(-0.408898\pi\)
0.282313 + 0.959322i \(0.408898\pi\)
\(380\) 2919.10 0.394070
\(381\) 0 0
\(382\) 10857.0 1.45417
\(383\) 11648.9 1.55413 0.777064 0.629421i \(-0.216708\pi\)
0.777064 + 0.629421i \(0.216708\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4775.04 0.629646
\(387\) 0 0
\(388\) −1976.00 −0.258547
\(389\) −5370.78 −0.700024 −0.350012 0.936745i \(-0.613822\pi\)
−0.350012 + 0.936745i \(0.613822\pi\)
\(390\) 0 0
\(391\) 4998.00 0.646444
\(392\) 0 0
\(393\) 0 0
\(394\) 11214.0 1.43389
\(395\) 669.056 0.0852250
\(396\) 0 0
\(397\) −12962.0 −1.63865 −0.819325 0.573329i \(-0.805652\pi\)
−0.819325 + 0.573329i \(0.805652\pi\)
\(398\) 16382.7 2.06329
\(399\) 0 0
\(400\) −104.000 −0.0130000
\(401\) −9971.68 −1.24180 −0.620900 0.783889i \(-0.713233\pi\)
−0.620900 + 0.783889i \(0.713233\pi\)
\(402\) 0 0
\(403\) 8404.00 1.03879
\(404\) −16323.1 −2.01016
\(405\) 0 0
\(406\) 0 0
\(407\) −664.473 −0.0809256
\(408\) 0 0
\(409\) 12238.0 1.47954 0.739768 0.672862i \(-0.234935\pi\)
0.739768 + 0.672862i \(0.234935\pi\)
\(410\) 7794.96 0.938941
\(411\) 0 0
\(412\) −26819.0 −3.20698
\(413\) 0 0
\(414\) 0 0
\(415\) 6552.00 0.775000
\(416\) −7863.70 −0.926802
\(417\) 0 0
\(418\) 5145.00 0.602034
\(419\) −10860.7 −1.26630 −0.633151 0.774029i \(-0.718239\pi\)
−0.633151 + 0.774029i \(0.718239\pi\)
\(420\) 0 0
\(421\) −6235.00 −0.721794 −0.360897 0.932606i \(-0.617529\pi\)
−0.360897 + 0.932606i \(0.617529\pi\)
\(422\) 540.744 0.0623768
\(423\) 0 0
\(424\) −2940.00 −0.336743
\(425\) −6672.23 −0.761531
\(426\) 0 0
\(427\) 0 0
\(428\) −953.176 −0.107648
\(429\) 0 0
\(430\) −8106.00 −0.909084
\(431\) 7400.86 0.827116 0.413558 0.910478i \(-0.364286\pi\)
0.413558 + 0.910478i \(0.364286\pi\)
\(432\) 0 0
\(433\) 4384.00 0.486563 0.243281 0.969956i \(-0.421776\pi\)
0.243281 + 0.969956i \(0.421776\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 28223.0 3.10008
\(437\) 3817.29 0.417862
\(438\) 0 0
\(439\) −5432.00 −0.590559 −0.295279 0.955411i \(-0.595413\pi\)
−0.295279 + 0.955411i \(0.595413\pi\)
\(440\) 2405.85 0.260669
\(441\) 0 0
\(442\) 12936.0 1.39209
\(443\) −1846.78 −0.198066 −0.0990328 0.995084i \(-0.531575\pi\)
−0.0990328 + 0.995084i \(0.531575\pi\)
\(444\) 0 0
\(445\) 3675.00 0.391487
\(446\) −2341.70 −0.248616
\(447\) 0 0
\(448\) 0 0
\(449\) 15315.0 1.60971 0.804853 0.593474i \(-0.202244\pi\)
0.804853 + 0.593474i \(0.202244\pi\)
\(450\) 0 0
\(451\) 8505.00 0.887993
\(452\) 15370.0 1.59943
\(453\) 0 0
\(454\) 25914.0 2.67886
\(455\) 0 0
\(456\) 0 0
\(457\) −979.000 −0.100209 −0.0501047 0.998744i \(-0.515955\pi\)
−0.0501047 + 0.998744i \(0.515955\pi\)
\(458\) −9806.71 −1.00052
\(459\) 0 0
\(460\) 4641.00 0.470408
\(461\) 6832.62 0.690297 0.345148 0.938548i \(-0.387829\pi\)
0.345148 + 0.938548i \(0.387829\pi\)
\(462\) 0 0
\(463\) −10078.0 −1.01159 −0.505793 0.862655i \(-0.668800\pi\)
−0.505793 + 0.862655i \(0.668800\pi\)
\(464\) 219.964 0.0220077
\(465\) 0 0
\(466\) 23646.0 2.35060
\(467\) 14233.5 1.41038 0.705189 0.709019i \(-0.250862\pi\)
0.705189 + 0.709019i \(0.250862\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1347.28 0.132224
\(471\) 0 0
\(472\) 16170.0 1.57687
\(473\) −8844.37 −0.859756
\(474\) 0 0
\(475\) −5096.00 −0.492254
\(476\) 0 0
\(477\) 0 0
\(478\) −18900.0 −1.80851
\(479\) −17120.5 −1.63310 −0.816551 0.577273i \(-0.804117\pi\)
−0.816551 + 0.577273i \(0.804117\pi\)
\(480\) 0 0
\(481\) −1276.00 −0.120958
\(482\) −6919.69 −0.653907
\(483\) 0 0
\(484\) −10478.0 −0.984035
\(485\) −696.552 −0.0652140
\(486\) 0 0
\(487\) 446.000 0.0414994 0.0207497 0.999785i \(-0.493395\pi\)
0.0207497 + 0.999785i \(0.493395\pi\)
\(488\) 2932.85 0.272057
\(489\) 0 0
\(490\) 0 0
\(491\) 783.620 0.0720250 0.0360125 0.999351i \(-0.488534\pi\)
0.0360125 + 0.999351i \(0.488534\pi\)
\(492\) 0 0
\(493\) 14112.0 1.28919
\(494\) 9880.03 0.899846
\(495\) 0 0
\(496\) −191.000 −0.0172906
\(497\) 0 0
\(498\) 0 0
\(499\) 16598.0 1.48904 0.744518 0.667603i \(-0.232680\pi\)
0.744518 + 0.667603i \(0.232680\pi\)
\(500\) −13642.3 −1.22021
\(501\) 0 0
\(502\) 12600.0 1.12025
\(503\) 10888.2 0.965171 0.482585 0.875849i \(-0.339698\pi\)
0.482585 + 0.875849i \(0.339698\pi\)
\(504\) 0 0
\(505\) −5754.00 −0.507029
\(506\) 8179.90 0.718658
\(507\) 0 0
\(508\) −17212.0 −1.50327
\(509\) 3510.25 0.305676 0.152838 0.988251i \(-0.451159\pi\)
0.152838 + 0.988251i \(0.451159\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 362.023 0.0312487
\(513\) 0 0
\(514\) 35133.0 3.01488
\(515\) −9453.85 −0.808906
\(516\) 0 0
\(517\) 1470.00 0.125049
\(518\) 0 0
\(519\) 0 0
\(520\) 4620.00 0.389616
\(521\) −1626.81 −0.136799 −0.0683993 0.997658i \(-0.521789\pi\)
−0.0683993 + 0.997658i \(0.521789\pi\)
\(522\) 0 0
\(523\) −18335.0 −1.53295 −0.766476 0.642273i \(-0.777991\pi\)
−0.766476 + 0.642273i \(0.777991\pi\)
\(524\) 12033.8 1.00325
\(525\) 0 0
\(526\) 28959.0 2.40052
\(527\) −12253.8 −1.01287
\(528\) 0 0
\(529\) −6098.00 −0.501192
\(530\) −2694.55 −0.220838
\(531\) 0 0
\(532\) 0 0
\(533\) 16332.3 1.32726
\(534\) 0 0
\(535\) −336.000 −0.0271524
\(536\) 22637.9 1.82427
\(537\) 0 0
\(538\) 3171.00 0.254111
\(539\) 0 0
\(540\) 0 0
\(541\) −11947.0 −0.949430 −0.474715 0.880140i \(-0.657449\pi\)
−0.474715 + 0.880140i \(0.657449\pi\)
\(542\) 11474.8 0.909379
\(543\) 0 0
\(544\) 11466.0 0.903678
\(545\) 9948.77 0.781942
\(546\) 0 0
\(547\) 6236.00 0.487444 0.243722 0.969845i \(-0.421631\pi\)
0.243722 + 0.969845i \(0.421631\pi\)
\(548\) −32646.3 −2.54485
\(549\) 0 0
\(550\) −10920.0 −0.846601
\(551\) 10778.2 0.833335
\(552\) 0 0
\(553\) 0 0
\(554\) 30222.1 2.31771
\(555\) 0 0
\(556\) −5252.00 −0.400601
\(557\) −16121.5 −1.22637 −0.613187 0.789938i \(-0.710113\pi\)
−0.613187 + 0.789938i \(0.710113\pi\)
\(558\) 0 0
\(559\) −16984.0 −1.28506
\(560\) 0 0
\(561\) 0 0
\(562\) 27090.0 2.03331
\(563\) 2786.21 0.208569 0.104285 0.994547i \(-0.466745\pi\)
0.104285 + 0.994547i \(0.466745\pi\)
\(564\) 0 0
\(565\) 5418.00 0.403428
\(566\) 5700.72 0.423356
\(567\) 0 0
\(568\) −18585.0 −1.37290
\(569\) −20227.5 −1.49030 −0.745150 0.666897i \(-0.767622\pi\)
−0.745150 + 0.666897i \(0.767622\pi\)
\(570\) 0 0
\(571\) 12938.0 0.948228 0.474114 0.880463i \(-0.342768\pi\)
0.474114 + 0.880463i \(0.342768\pi\)
\(572\) 13106.2 0.958036
\(573\) 0 0
\(574\) 0 0
\(575\) −8101.99 −0.587611
\(576\) 0 0
\(577\) −19514.0 −1.40793 −0.703967 0.710232i \(-0.748590\pi\)
−0.703967 + 0.710232i \(0.748590\pi\)
\(578\) 3652.31 0.262831
\(579\) 0 0
\(580\) 13104.0 0.938128
\(581\) 0 0
\(582\) 0 0
\(583\) −2940.00 −0.208855
\(584\) 6094.83 0.431859
\(585\) 0 0
\(586\) 27090.0 1.90969
\(587\) −12070.5 −0.848727 −0.424364 0.905492i \(-0.639502\pi\)
−0.424364 + 0.905492i \(0.639502\pi\)
\(588\) 0 0
\(589\) −9359.00 −0.654721
\(590\) 14820.0 1.03412
\(591\) 0 0
\(592\) 29.0000 0.00201333
\(593\) 24915.5 1.72539 0.862694 0.505726i \(-0.168775\pi\)
0.862694 + 0.505726i \(0.168775\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8697.73 0.597773
\(597\) 0 0
\(598\) 15708.0 1.07416
\(599\) −4422.19 −0.301645 −0.150823 0.988561i \(-0.548192\pi\)
−0.150823 + 0.988561i \(0.548192\pi\)
\(600\) 0 0
\(601\) −22724.0 −1.54231 −0.771157 0.636644i \(-0.780322\pi\)
−0.771157 + 0.636644i \(0.780322\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 35594.0 2.39785
\(605\) −3693.56 −0.248206
\(606\) 0 0
\(607\) 3388.00 0.226548 0.113274 0.993564i \(-0.463866\pi\)
0.113274 + 0.993564i \(0.463866\pi\)
\(608\) 8757.30 0.584137
\(609\) 0 0
\(610\) 2688.00 0.178416
\(611\) 2822.87 0.186908
\(612\) 0 0
\(613\) −12643.0 −0.833028 −0.416514 0.909129i \(-0.636748\pi\)
−0.416514 + 0.909129i \(0.636748\pi\)
\(614\) 30515.4 2.00570
\(615\) 0 0
\(616\) 0 0
\(617\) 12125.5 0.791174 0.395587 0.918429i \(-0.370541\pi\)
0.395587 + 0.918429i \(0.370541\pi\)
\(618\) 0 0
\(619\) 2455.00 0.159410 0.0797050 0.996818i \(-0.474602\pi\)
0.0797050 + 0.996818i \(0.474602\pi\)
\(620\) −11378.5 −0.737053
\(621\) 0 0
\(622\) −4452.00 −0.286992
\(623\) 0 0
\(624\) 0 0
\(625\) 8191.00 0.524224
\(626\) −22454.6 −1.43365
\(627\) 0 0
\(628\) 17836.0 1.13333
\(629\) 1860.53 0.117940
\(630\) 0 0
\(631\) −8758.00 −0.552536 −0.276268 0.961081i \(-0.589098\pi\)
−0.276268 + 0.961081i \(0.589098\pi\)
\(632\) −3345.28 −0.210551
\(633\) 0 0
\(634\) −42630.0 −2.67043
\(635\) −6067.33 −0.379173
\(636\) 0 0
\(637\) 0 0
\(638\) 23096.2 1.43321
\(639\) 0 0
\(640\) 10815.0 0.667969
\(641\) 9889.20 0.609360 0.304680 0.952455i \(-0.401450\pi\)
0.304680 + 0.952455i \(0.401450\pi\)
\(642\) 0 0
\(643\) 5581.00 0.342291 0.171146 0.985246i \(-0.445253\pi\)
0.171146 + 0.985246i \(0.445253\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −14406.0 −0.877394
\(647\) −6644.73 −0.403758 −0.201879 0.979410i \(-0.564705\pi\)
−0.201879 + 0.979410i \(0.564705\pi\)
\(648\) 0 0
\(649\) 16170.0 0.978009
\(650\) −20969.9 −1.26539
\(651\) 0 0
\(652\) 36296.0 2.18016
\(653\) 11667.2 0.699195 0.349597 0.936900i \(-0.386318\pi\)
0.349597 + 0.936900i \(0.386318\pi\)
\(654\) 0 0
\(655\) 4242.00 0.253051
\(656\) −371.189 −0.0220922
\(657\) 0 0
\(658\) 0 0
\(659\) 10847.0 0.641180 0.320590 0.947218i \(-0.396119\pi\)
0.320590 + 0.947218i \(0.396119\pi\)
\(660\) 0 0
\(661\) −12488.0 −0.734836 −0.367418 0.930056i \(-0.619758\pi\)
−0.367418 + 0.930056i \(0.619758\pi\)
\(662\) −311.615 −0.0182950
\(663\) 0 0
\(664\) −32760.0 −1.91466
\(665\) 0 0
\(666\) 0 0
\(667\) 17136.0 0.994765
\(668\) 5361.61 0.310549
\(669\) 0 0
\(670\) 20748.0 1.19637
\(671\) 2932.85 0.168735
\(672\) 0 0
\(673\) −21310.0 −1.22056 −0.610282 0.792184i \(-0.708944\pi\)
−0.610282 + 0.792184i \(0.708944\pi\)
\(674\) 30964.5 1.76959
\(675\) 0 0
\(676\) −3393.00 −0.193047
\(677\) −14870.5 −0.844192 −0.422096 0.906551i \(-0.638706\pi\)
−0.422096 + 0.906551i \(0.638706\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6736.39 −0.379895
\(681\) 0 0
\(682\) −20055.0 −1.12602
\(683\) 16501.9 0.924489 0.462244 0.886753i \(-0.347044\pi\)
0.462244 + 0.886753i \(0.347044\pi\)
\(684\) 0 0
\(685\) −11508.0 −0.641895
\(686\) 0 0
\(687\) 0 0
\(688\) 386.000 0.0213897
\(689\) −5645.73 −0.312170
\(690\) 0 0
\(691\) −21404.0 −1.17836 −0.589180 0.808002i \(-0.700549\pi\)
−0.589180 + 0.808002i \(0.700549\pi\)
\(692\) 31156.9 1.71157
\(693\) 0 0
\(694\) 43701.0 2.39030
\(695\) −1851.36 −0.101045
\(696\) 0 0
\(697\) −23814.0 −1.29415
\(698\) −4995.01 −0.270865
\(699\) 0 0
\(700\) 0 0
\(701\) −12208.0 −0.657759 −0.328880 0.944372i \(-0.606671\pi\)
−0.328880 + 0.944372i \(0.606671\pi\)
\(702\) 0 0
\(703\) 1421.00 0.0762362
\(704\) 18949.0 1.01444
\(705\) 0 0
\(706\) 7455.00 0.397412
\(707\) 0 0
\(708\) 0 0
\(709\) 15779.0 0.835815 0.417907 0.908490i \(-0.362764\pi\)
0.417907 + 0.908490i \(0.362764\pi\)
\(710\) −17033.4 −0.900357
\(711\) 0 0
\(712\) −18375.0 −0.967180
\(713\) −14879.6 −0.781552
\(714\) 0 0
\(715\) 4620.00 0.241648
\(716\) −9770.05 −0.509950
\(717\) 0 0
\(718\) −16800.0 −0.873218
\(719\) −12767.1 −0.662213 −0.331106 0.943593i \(-0.607422\pi\)
−0.331106 + 0.943593i \(0.607422\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 20429.1 1.05304
\(723\) 0 0
\(724\) 910.000 0.0467125
\(725\) −22876.2 −1.17186
\(726\) 0 0
\(727\) −24848.0 −1.26762 −0.633811 0.773488i \(-0.718510\pi\)
−0.633811 + 0.773488i \(0.718510\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 5586.00 0.283215
\(731\) 24764.2 1.25299
\(732\) 0 0
\(733\) −34634.0 −1.74521 −0.872603 0.488430i \(-0.837570\pi\)
−0.872603 + 0.488430i \(0.837570\pi\)
\(734\) 20562.0 1.03400
\(735\) 0 0
\(736\) 13923.0 0.697294
\(737\) 22637.9 1.13145
\(738\) 0 0
\(739\) 4178.00 0.207971 0.103985 0.994579i \(-0.466841\pi\)
0.103985 + 0.994579i \(0.466841\pi\)
\(740\) 1727.63 0.0858229
\(741\) 0 0
\(742\) 0 0
\(743\) 14118.9 0.697137 0.348568 0.937283i \(-0.386668\pi\)
0.348568 + 0.937283i \(0.386668\pi\)
\(744\) 0 0
\(745\) 3066.00 0.150778
\(746\) 1049.41 0.0515035
\(747\) 0 0
\(748\) −19110.0 −0.934132
\(749\) 0 0
\(750\) 0 0
\(751\) 950.000 0.0461598 0.0230799 0.999734i \(-0.492653\pi\)
0.0230799 + 0.999734i \(0.492653\pi\)
\(752\) −64.1561 −0.00311108
\(753\) 0 0
\(754\) 44352.0 2.14218
\(755\) 12547.1 0.604815
\(756\) 0 0
\(757\) −5158.00 −0.247650 −0.123825 0.992304i \(-0.539516\pi\)
−0.123825 + 0.992304i \(0.539516\pi\)
\(758\) −19091.0 −0.914798
\(759\) 0 0
\(760\) −5145.00 −0.245564
\(761\) −20135.8 −0.959164 −0.479582 0.877497i \(-0.659212\pi\)
−0.479582 + 0.877497i \(0.659212\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −30799.5 −1.45849
\(765\) 0 0
\(766\) −53382.0 −2.51798
\(767\) 31051.5 1.46181
\(768\) 0 0
\(769\) −21476.0 −1.00708 −0.503540 0.863972i \(-0.667969\pi\)
−0.503540 + 0.863972i \(0.667969\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13546.0 −0.631517
\(773\) −40202.9 −1.87063 −0.935316 0.353812i \(-0.884885\pi\)
−0.935316 + 0.353812i \(0.884885\pi\)
\(774\) 0 0
\(775\) 19864.0 0.920692
\(776\) 3482.76 0.161113
\(777\) 0 0
\(778\) 24612.0 1.13417
\(779\) −18188.2 −0.836536
\(780\) 0 0
\(781\) −18585.0 −0.851503
\(782\) −22903.7 −1.04736
\(783\) 0 0
\(784\) 0 0
\(785\) 6287.29 0.285864
\(786\) 0 0
\(787\) 22192.0 1.00516 0.502579 0.864531i \(-0.332385\pi\)
0.502579 + 0.864531i \(0.332385\pi\)
\(788\) −31812.2 −1.43815
\(789\) 0 0
\(790\) −3066.00 −0.138080
\(791\) 0 0
\(792\) 0 0
\(793\) 5632.00 0.252205
\(794\) 59399.3 2.65492
\(795\) 0 0
\(796\) −46475.0 −2.06943
\(797\) −7080.08 −0.314667 −0.157333 0.987546i \(-0.550290\pi\)
−0.157333 + 0.987546i \(0.550290\pi\)
\(798\) 0 0
\(799\) −4116.00 −0.182245
\(800\) −18586.9 −0.821434
\(801\) 0 0
\(802\) 45696.0 2.01195
\(803\) 6094.83 0.267848
\(804\) 0 0
\(805\) 0 0
\(806\) −38512.0 −1.68303
\(807\) 0 0
\(808\) 28770.0 1.25263
\(809\) 14041.0 0.610205 0.305102 0.952320i \(-0.401309\pi\)
0.305102 + 0.952320i \(0.401309\pi\)
\(810\) 0 0
\(811\) 12355.0 0.534948 0.267474 0.963565i \(-0.413811\pi\)
0.267474 + 0.963565i \(0.413811\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3045.00 0.131114
\(815\) 12794.6 0.549906
\(816\) 0 0
\(817\) 18914.0 0.809935
\(818\) −56081.6 −2.39712
\(819\) 0 0
\(820\) −22113.0 −0.941731
\(821\) −21712.2 −0.922975 −0.461488 0.887147i \(-0.652684\pi\)
−0.461488 + 0.887147i \(0.652684\pi\)
\(822\) 0 0
\(823\) −6910.00 −0.292670 −0.146335 0.989235i \(-0.546748\pi\)
−0.146335 + 0.989235i \(0.546748\pi\)
\(824\) 47269.3 1.99843
\(825\) 0 0
\(826\) 0 0
\(827\) −40597.0 −1.70701 −0.853505 0.521085i \(-0.825528\pi\)
−0.853505 + 0.521085i \(0.825528\pi\)
\(828\) 0 0
\(829\) 5530.00 0.231683 0.115841 0.993268i \(-0.463044\pi\)
0.115841 + 0.993268i \(0.463044\pi\)
\(830\) −30025.0 −1.25564
\(831\) 0 0
\(832\) 36388.0 1.51626
\(833\) 0 0
\(834\) 0 0
\(835\) 1890.00 0.0783307
\(836\) −14595.5 −0.603823
\(837\) 0 0
\(838\) 49770.0 2.05164
\(839\) 7918.69 0.325845 0.162922 0.986639i \(-0.447908\pi\)
0.162922 + 0.986639i \(0.447908\pi\)
\(840\) 0 0
\(841\) 23995.0 0.983845
\(842\) 28572.4 1.16944
\(843\) 0 0
\(844\) −1534.00 −0.0625622
\(845\) −1196.05 −0.0486928
\(846\) 0 0
\(847\) 0 0
\(848\) 128.312 0.00519606
\(849\) 0 0
\(850\) 30576.0 1.23382
\(851\) 2259.21 0.0910044
\(852\) 0 0
\(853\) 21112.0 0.847434 0.423717 0.905795i \(-0.360725\pi\)
0.423717 + 0.905795i \(0.360725\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1680.00 0.0670809
\(857\) 39313.9 1.56702 0.783511 0.621378i \(-0.213427\pi\)
0.783511 + 0.621378i \(0.213427\pi\)
\(858\) 0 0
\(859\) −31295.0 −1.24304 −0.621520 0.783398i \(-0.713485\pi\)
−0.621520 + 0.783398i \(0.713485\pi\)
\(860\) 22995.4 0.911785
\(861\) 0 0
\(862\) −33915.0 −1.34008
\(863\) 31216.5 1.23131 0.615656 0.788015i \(-0.288891\pi\)
0.615656 + 0.788015i \(0.288891\pi\)
\(864\) 0 0
\(865\) 10983.0 0.431715
\(866\) −20090.0 −0.788321
\(867\) 0 0
\(868\) 0 0
\(869\) −3345.28 −0.130588
\(870\) 0 0
\(871\) 43472.0 1.69115
\(872\) −49743.9 −1.93181
\(873\) 0 0
\(874\) −17493.0 −0.677013
\(875\) 0 0
\(876\) 0 0
\(877\) −106.000 −0.00408137 −0.00204069 0.999998i \(-0.500650\pi\)
−0.00204069 + 0.999998i \(0.500650\pi\)
\(878\) 24892.6 0.956814
\(879\) 0 0
\(880\) −105.000 −0.00402222
\(881\) 20277.9 0.775459 0.387730 0.921773i \(-0.373259\pi\)
0.387730 + 0.921773i \(0.373259\pi\)
\(882\) 0 0
\(883\) −37816.0 −1.44123 −0.720617 0.693333i \(-0.756141\pi\)
−0.720617 + 0.693333i \(0.756141\pi\)
\(884\) −36697.3 −1.39622
\(885\) 0 0
\(886\) 8463.00 0.320903
\(887\) −48758.6 −1.84572 −0.922860 0.385135i \(-0.874155\pi\)
−0.922860 + 0.385135i \(0.874155\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −16841.0 −0.634281
\(891\) 0 0
\(892\) 6643.00 0.249354
\(893\) −3143.65 −0.117803
\(894\) 0 0
\(895\) −3444.00 −0.128626
\(896\) 0 0
\(897\) 0 0
\(898\) −70182.0 −2.60802
\(899\) −42013.1 −1.55864
\(900\) 0 0
\(901\) 8232.00 0.304381
\(902\) −38974.8 −1.43871
\(903\) 0 0
\(904\) −27090.0 −0.996681
\(905\) 320.780 0.0117824
\(906\) 0 0
\(907\) 24158.0 0.884403 0.442201 0.896916i \(-0.354198\pi\)
0.442201 + 0.896916i \(0.354198\pi\)
\(908\) −73513.7 −2.68683
\(909\) 0 0
\(910\) 0 0
\(911\) −13142.8 −0.477982 −0.238991 0.971022i \(-0.576817\pi\)
−0.238991 + 0.971022i \(0.576817\pi\)
\(912\) 0 0
\(913\) −32760.0 −1.18751
\(914\) 4486.34 0.162358
\(915\) 0 0
\(916\) 27820.0 1.00349
\(917\) 0 0
\(918\) 0 0
\(919\) 22772.0 0.817387 0.408694 0.912672i \(-0.365984\pi\)
0.408694 + 0.912672i \(0.365984\pi\)
\(920\) −8179.90 −0.293134
\(921\) 0 0
\(922\) −31311.0 −1.11841
\(923\) −35689.1 −1.27272
\(924\) 0 0
\(925\) −3016.00 −0.107206
\(926\) 46183.2 1.63896
\(927\) 0 0
\(928\) 39312.0 1.39060
\(929\) 18852.7 0.665810 0.332905 0.942960i \(-0.391971\pi\)
0.332905 + 0.942960i \(0.391971\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −67079.7 −2.35759
\(933\) 0 0
\(934\) −65226.0 −2.28507
\(935\) −6736.39 −0.235619
\(936\) 0 0
\(937\) 49492.0 1.72554 0.862771 0.505595i \(-0.168727\pi\)
0.862771 + 0.505595i \(0.168727\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −3822.00 −0.132617
\(941\) 11021.1 0.381804 0.190902 0.981609i \(-0.438859\pi\)
0.190902 + 0.981609i \(0.438859\pi\)
\(942\) 0 0
\(943\) −28917.0 −0.998587
\(944\) −705.717 −0.0243317
\(945\) 0 0
\(946\) 40530.0 1.39296
\(947\) 32687.5 1.12165 0.560824 0.827935i \(-0.310484\pi\)
0.560824 + 0.827935i \(0.310484\pi\)
\(948\) 0 0
\(949\) 11704.0 0.400346
\(950\) 23352.8 0.797542
\(951\) 0 0
\(952\) 0 0
\(953\) −28925.2 −0.983190 −0.491595 0.870824i \(-0.663586\pi\)
−0.491595 + 0.870824i \(0.663586\pi\)
\(954\) 0 0
\(955\) −10857.0 −0.367879
\(956\) 53616.1 1.81388
\(957\) 0 0
\(958\) 78456.0 2.64593
\(959\) 0 0
\(960\) 0 0
\(961\) 6690.00 0.224564
\(962\) 5847.37 0.195974
\(963\) 0 0
\(964\) 19630.0 0.655850
\(965\) −4775.04 −0.159289
\(966\) 0 0
\(967\) −39502.0 −1.31365 −0.656825 0.754043i \(-0.728101\pi\)
−0.656825 + 0.754043i \(0.728101\pi\)
\(968\) 18467.8 0.613199
\(969\) 0 0
\(970\) 3192.00 0.105659
\(971\) 33837.7 1.11834 0.559168 0.829054i \(-0.311121\pi\)
0.559168 + 0.829054i \(0.311121\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2043.83 −0.0672367
\(975\) 0 0
\(976\) −128.000 −0.00419793
\(977\) 31693.1 1.03782 0.518911 0.854828i \(-0.326338\pi\)
0.518911 + 0.854828i \(0.326338\pi\)
\(978\) 0 0
\(979\) −18375.0 −0.599865
\(980\) 0 0
\(981\) 0 0
\(982\) −3591.00 −0.116694
\(983\) 17661.2 0.573048 0.286524 0.958073i \(-0.407500\pi\)
0.286524 + 0.958073i \(0.407500\pi\)
\(984\) 0 0
\(985\) −11214.0 −0.362749
\(986\) −64669.3 −2.08873
\(987\) 0 0
\(988\) −28028.0 −0.902520
\(989\) 30070.9 0.966833
\(990\) 0 0
\(991\) 14456.0 0.463380 0.231690 0.972790i \(-0.425574\pi\)
0.231690 + 0.972790i \(0.425574\pi\)
\(992\) −34135.6 −1.09255
\(993\) 0 0
\(994\) 0 0
\(995\) −16382.7 −0.521977
\(996\) 0 0
\(997\) 35170.0 1.11720 0.558598 0.829438i \(-0.311339\pi\)
0.558598 + 0.829438i \(0.311339\pi\)
\(998\) −76061.6 −2.41251
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.u.1.1 2
3.2 odd 2 inner 1323.4.a.u.1.2 2
7.6 odd 2 189.4.a.h.1.1 2
21.20 even 2 189.4.a.h.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.a.h.1.1 2 7.6 odd 2
189.4.a.h.1.2 yes 2 21.20 even 2
1323.4.a.u.1.1 2 1.1 even 1 trivial
1323.4.a.u.1.2 2 3.2 odd 2 inner