Properties

Label 1323.4.a.t.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.24264 q^{2} +10.0000 q^{4} +16.9706 q^{5} +8.48528 q^{8} +O(q^{10})\) \(q+4.24264 q^{2} +10.0000 q^{4} +16.9706 q^{5} +8.48528 q^{8} +72.0000 q^{10} +16.9706 q^{11} -29.0000 q^{13} -44.0000 q^{16} +50.9117 q^{17} -29.0000 q^{19} +169.706 q^{20} +72.0000 q^{22} +84.8528 q^{23} +163.000 q^{25} -123.037 q^{26} +271.529 q^{29} +268.000 q^{31} -254.558 q^{32} +216.000 q^{34} +83.0000 q^{37} -123.037 q^{38} +144.000 q^{40} +271.529 q^{41} -232.000 q^{43} +169.706 q^{44} +360.000 q^{46} +390.323 q^{47} +691.550 q^{50} -290.000 q^{52} +305.470 q^{53} +288.000 q^{55} +1152.00 q^{58} -288.500 q^{59} -767.000 q^{61} +1137.03 q^{62} -728.000 q^{64} -492.146 q^{65} -511.000 q^{67} +509.117 q^{68} +712.764 q^{71} -137.000 q^{73} +352.139 q^{74} -290.000 q^{76} -475.000 q^{79} -746.705 q^{80} +1152.00 q^{82} -576.999 q^{83} +864.000 q^{85} -984.293 q^{86} +144.000 q^{88} +254.558 q^{89} +848.528 q^{92} +1656.00 q^{94} -492.146 q^{95} -821.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 20 q^{4} + 144 q^{10} - 58 q^{13} - 88 q^{16} - 58 q^{19} + 144 q^{22} + 326 q^{25} + 536 q^{31} + 432 q^{34} + 166 q^{37} + 288 q^{40} - 464 q^{43} + 720 q^{46} - 580 q^{52} + 576 q^{55} + 2304 q^{58} - 1534 q^{61} - 1456 q^{64} - 1022 q^{67} - 274 q^{73} - 580 q^{76} - 950 q^{79} + 2304 q^{82} + 1728 q^{85} + 288 q^{88} + 3312 q^{94} - 1642 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.24264 1.50000 0.750000 0.661438i \(-0.230053\pi\)
0.750000 + 0.661438i \(0.230053\pi\)
\(3\) 0 0
\(4\) 10.0000 1.25000
\(5\) 16.9706 1.51789 0.758947 0.651153i \(-0.225714\pi\)
0.758947 + 0.651153i \(0.225714\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 8.48528 0.375000
\(9\) 0 0
\(10\) 72.0000 2.27684
\(11\) 16.9706 0.465165 0.232583 0.972577i \(-0.425282\pi\)
0.232583 + 0.972577i \(0.425282\pi\)
\(12\) 0 0
\(13\) −29.0000 −0.618704 −0.309352 0.950948i \(-0.600112\pi\)
−0.309352 + 0.950948i \(0.600112\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −44.0000 −0.687500
\(17\) 50.9117 0.726347 0.363173 0.931722i \(-0.381693\pi\)
0.363173 + 0.931722i \(0.381693\pi\)
\(18\) 0 0
\(19\) −29.0000 −0.350161 −0.175080 0.984554i \(-0.556019\pi\)
−0.175080 + 0.984554i \(0.556019\pi\)
\(20\) 169.706 1.89737
\(21\) 0 0
\(22\) 72.0000 0.697748
\(23\) 84.8528 0.769262 0.384631 0.923070i \(-0.374329\pi\)
0.384631 + 0.923070i \(0.374329\pi\)
\(24\) 0 0
\(25\) 163.000 1.30400
\(26\) −123.037 −0.928056
\(27\) 0 0
\(28\) 0 0
\(29\) 271.529 1.73868 0.869339 0.494216i \(-0.164545\pi\)
0.869339 + 0.494216i \(0.164545\pi\)
\(30\) 0 0
\(31\) 268.000 1.55272 0.776358 0.630292i \(-0.217065\pi\)
0.776358 + 0.630292i \(0.217065\pi\)
\(32\) −254.558 −1.40625
\(33\) 0 0
\(34\) 216.000 1.08952
\(35\) 0 0
\(36\) 0 0
\(37\) 83.0000 0.368787 0.184393 0.982853i \(-0.440968\pi\)
0.184393 + 0.982853i \(0.440968\pi\)
\(38\) −123.037 −0.525241
\(39\) 0 0
\(40\) 144.000 0.569210
\(41\) 271.529 1.03429 0.517143 0.855899i \(-0.326996\pi\)
0.517143 + 0.855899i \(0.326996\pi\)
\(42\) 0 0
\(43\) −232.000 −0.822783 −0.411391 0.911459i \(-0.634957\pi\)
−0.411391 + 0.911459i \(0.634957\pi\)
\(44\) 169.706 0.581456
\(45\) 0 0
\(46\) 360.000 1.15389
\(47\) 390.323 1.21137 0.605686 0.795704i \(-0.292899\pi\)
0.605686 + 0.795704i \(0.292899\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 691.550 1.95600
\(51\) 0 0
\(52\) −290.000 −0.773380
\(53\) 305.470 0.791690 0.395845 0.918317i \(-0.370452\pi\)
0.395845 + 0.918317i \(0.370452\pi\)
\(54\) 0 0
\(55\) 288.000 0.706071
\(56\) 0 0
\(57\) 0 0
\(58\) 1152.00 2.60802
\(59\) −288.500 −0.636601 −0.318300 0.947990i \(-0.603112\pi\)
−0.318300 + 0.947990i \(0.603112\pi\)
\(60\) 0 0
\(61\) −767.000 −1.60991 −0.804953 0.593338i \(-0.797810\pi\)
−0.804953 + 0.593338i \(0.797810\pi\)
\(62\) 1137.03 2.32908
\(63\) 0 0
\(64\) −728.000 −1.42188
\(65\) −492.146 −0.939127
\(66\) 0 0
\(67\) −511.000 −0.931770 −0.465885 0.884845i \(-0.654264\pi\)
−0.465885 + 0.884845i \(0.654264\pi\)
\(68\) 509.117 0.907934
\(69\) 0 0
\(70\) 0 0
\(71\) 712.764 1.19140 0.595701 0.803207i \(-0.296874\pi\)
0.595701 + 0.803207i \(0.296874\pi\)
\(72\) 0 0
\(73\) −137.000 −0.219653 −0.109826 0.993951i \(-0.535029\pi\)
−0.109826 + 0.993951i \(0.535029\pi\)
\(74\) 352.139 0.553180
\(75\) 0 0
\(76\) −290.000 −0.437701
\(77\) 0 0
\(78\) 0 0
\(79\) −475.000 −0.676477 −0.338238 0.941060i \(-0.609831\pi\)
−0.338238 + 0.941060i \(0.609831\pi\)
\(80\) −746.705 −1.04355
\(81\) 0 0
\(82\) 1152.00 1.55143
\(83\) −576.999 −0.763059 −0.381529 0.924357i \(-0.624603\pi\)
−0.381529 + 0.924357i \(0.624603\pi\)
\(84\) 0 0
\(85\) 864.000 1.10252
\(86\) −984.293 −1.23417
\(87\) 0 0
\(88\) 144.000 0.174437
\(89\) 254.558 0.303181 0.151591 0.988443i \(-0.451560\pi\)
0.151591 + 0.988443i \(0.451560\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 848.528 0.961578
\(93\) 0 0
\(94\) 1656.00 1.81706
\(95\) −492.146 −0.531507
\(96\) 0 0
\(97\) −821.000 −0.859381 −0.429690 0.902976i \(-0.641377\pi\)
−0.429690 + 0.902976i \(0.641377\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1630.00 1.63000
\(101\) 543.058 0.535013 0.267506 0.963556i \(-0.413800\pi\)
0.267506 + 0.963556i \(0.413800\pi\)
\(102\) 0 0
\(103\) −839.000 −0.802613 −0.401306 0.915944i \(-0.631444\pi\)
−0.401306 + 0.915944i \(0.631444\pi\)
\(104\) −246.073 −0.232014
\(105\) 0 0
\(106\) 1296.00 1.18753
\(107\) −763.675 −0.689975 −0.344987 0.938607i \(-0.612117\pi\)
−0.344987 + 0.938607i \(0.612117\pi\)
\(108\) 0 0
\(109\) 218.000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 1221.88 1.05911
\(111\) 0 0
\(112\) 0 0
\(113\) 1510.38 1.25739 0.628693 0.777654i \(-0.283590\pi\)
0.628693 + 0.777654i \(0.283590\pi\)
\(114\) 0 0
\(115\) 1440.00 1.16766
\(116\) 2715.29 2.17335
\(117\) 0 0
\(118\) −1224.00 −0.954901
\(119\) 0 0
\(120\) 0 0
\(121\) −1043.00 −0.783621
\(122\) −3254.11 −2.41486
\(123\) 0 0
\(124\) 2680.00 1.94090
\(125\) 644.881 0.461440
\(126\) 0 0
\(127\) 1244.00 0.869190 0.434595 0.900626i \(-0.356891\pi\)
0.434595 + 0.900626i \(0.356891\pi\)
\(128\) −1052.17 −0.726562
\(129\) 0 0
\(130\) −2088.00 −1.40869
\(131\) 2511.64 1.67514 0.837570 0.546330i \(-0.183976\pi\)
0.837570 + 0.546330i \(0.183976\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2167.99 −1.39765
\(135\) 0 0
\(136\) 432.000 0.272380
\(137\) 1340.67 0.836070 0.418035 0.908431i \(-0.362719\pi\)
0.418035 + 0.908431i \(0.362719\pi\)
\(138\) 0 0
\(139\) −947.000 −0.577867 −0.288933 0.957349i \(-0.593301\pi\)
−0.288933 + 0.957349i \(0.593301\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3024.00 1.78710
\(143\) −492.146 −0.287800
\(144\) 0 0
\(145\) 4608.00 2.63913
\(146\) −581.242 −0.329479
\(147\) 0 0
\(148\) 830.000 0.460984
\(149\) −576.999 −0.317246 −0.158623 0.987339i \(-0.550705\pi\)
−0.158623 + 0.987339i \(0.550705\pi\)
\(150\) 0 0
\(151\) −2311.00 −1.24547 −0.622737 0.782431i \(-0.713979\pi\)
−0.622737 + 0.782431i \(0.713979\pi\)
\(152\) −246.073 −0.131310
\(153\) 0 0
\(154\) 0 0
\(155\) 4548.11 2.35686
\(156\) 0 0
\(157\) −1622.00 −0.824520 −0.412260 0.911066i \(-0.635261\pi\)
−0.412260 + 0.911066i \(0.635261\pi\)
\(158\) −2015.25 −1.01472
\(159\) 0 0
\(160\) −4320.00 −2.13454
\(161\) 0 0
\(162\) 0 0
\(163\) 2243.00 1.07782 0.538912 0.842362i \(-0.318836\pi\)
0.538912 + 0.842362i \(0.318836\pi\)
\(164\) 2715.29 1.29286
\(165\) 0 0
\(166\) −2448.00 −1.14459
\(167\) −2732.26 −1.26604 −0.633020 0.774135i \(-0.718185\pi\)
−0.633020 + 0.774135i \(0.718185\pi\)
\(168\) 0 0
\(169\) −1356.00 −0.617205
\(170\) 3665.64 1.65378
\(171\) 0 0
\(172\) −2320.00 −1.02848
\(173\) 1357.65 0.596646 0.298323 0.954465i \(-0.403573\pi\)
0.298323 + 0.954465i \(0.403573\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −746.705 −0.319801
\(177\) 0 0
\(178\) 1080.00 0.454772
\(179\) −2341.94 −0.977903 −0.488952 0.872311i \(-0.662621\pi\)
−0.488952 + 0.872311i \(0.662621\pi\)
\(180\) 0 0
\(181\) 1591.00 0.653360 0.326680 0.945135i \(-0.394070\pi\)
0.326680 + 0.945135i \(0.394070\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 720.000 0.288473
\(185\) 1408.56 0.559779
\(186\) 0 0
\(187\) 864.000 0.337871
\(188\) 3903.23 1.51421
\(189\) 0 0
\(190\) −2088.00 −0.797260
\(191\) −4768.73 −1.80656 −0.903280 0.429051i \(-0.858848\pi\)
−0.903280 + 0.429051i \(0.858848\pi\)
\(192\) 0 0
\(193\) −3481.00 −1.29828 −0.649140 0.760669i \(-0.724871\pi\)
−0.649140 + 0.760669i \(0.724871\pi\)
\(194\) −3483.21 −1.28907
\(195\) 0 0
\(196\) 0 0
\(197\) −2392.85 −0.865398 −0.432699 0.901538i \(-0.642439\pi\)
−0.432699 + 0.901538i \(0.642439\pi\)
\(198\) 0 0
\(199\) −2351.00 −0.837477 −0.418739 0.908107i \(-0.637528\pi\)
−0.418739 + 0.908107i \(0.637528\pi\)
\(200\) 1383.10 0.489000
\(201\) 0 0
\(202\) 2304.00 0.802519
\(203\) 0 0
\(204\) 0 0
\(205\) 4608.00 1.56994
\(206\) −3559.58 −1.20392
\(207\) 0 0
\(208\) 1276.00 0.425359
\(209\) −492.146 −0.162883
\(210\) 0 0
\(211\) 1703.00 0.555637 0.277818 0.960634i \(-0.410389\pi\)
0.277818 + 0.960634i \(0.410389\pi\)
\(212\) 3054.70 0.989612
\(213\) 0 0
\(214\) −3240.00 −1.03496
\(215\) −3937.17 −1.24890
\(216\) 0 0
\(217\) 0 0
\(218\) 924.896 0.287348
\(219\) 0 0
\(220\) 2880.00 0.882589
\(221\) −1476.44 −0.449394
\(222\) 0 0
\(223\) −1388.00 −0.416804 −0.208402 0.978043i \(-0.566826\pi\)
−0.208402 + 0.978043i \(0.566826\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6408.00 1.88608
\(227\) 4717.82 1.37944 0.689719 0.724077i \(-0.257734\pi\)
0.689719 + 0.724077i \(0.257734\pi\)
\(228\) 0 0
\(229\) −434.000 −0.125238 −0.0626191 0.998038i \(-0.519945\pi\)
−0.0626191 + 0.998038i \(0.519945\pi\)
\(230\) 6109.40 1.75149
\(231\) 0 0
\(232\) 2304.00 0.652004
\(233\) 3461.99 0.973403 0.486701 0.873568i \(-0.338200\pi\)
0.486701 + 0.873568i \(0.338200\pi\)
\(234\) 0 0
\(235\) 6624.00 1.83873
\(236\) −2885.00 −0.795751
\(237\) 0 0
\(238\) 0 0
\(239\) −2817.11 −0.762443 −0.381222 0.924484i \(-0.624497\pi\)
−0.381222 + 0.924484i \(0.624497\pi\)
\(240\) 0 0
\(241\) 2095.00 0.559962 0.279981 0.960006i \(-0.409672\pi\)
0.279981 + 0.960006i \(0.409672\pi\)
\(242\) −4425.07 −1.17543
\(243\) 0 0
\(244\) −7670.00 −2.01238
\(245\) 0 0
\(246\) 0 0
\(247\) 841.000 0.216646
\(248\) 2274.06 0.582269
\(249\) 0 0
\(250\) 2736.00 0.692159
\(251\) −203.647 −0.0512114 −0.0256057 0.999672i \(-0.508151\pi\)
−0.0256057 + 0.999672i \(0.508151\pi\)
\(252\) 0 0
\(253\) 1440.00 0.357834
\(254\) 5277.85 1.30379
\(255\) 0 0
\(256\) 1360.00 0.332031
\(257\) 1798.88 0.436619 0.218309 0.975880i \(-0.429946\pi\)
0.218309 + 0.975880i \(0.429946\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4921.46 −1.17391
\(261\) 0 0
\(262\) 10656.0 2.51271
\(263\) 373.352 0.0875357 0.0437679 0.999042i \(-0.486064\pi\)
0.0437679 + 0.999042i \(0.486064\pi\)
\(264\) 0 0
\(265\) 5184.00 1.20170
\(266\) 0 0
\(267\) 0 0
\(268\) −5110.00 −1.16471
\(269\) −7484.02 −1.69631 −0.848157 0.529744i \(-0.822288\pi\)
−0.848157 + 0.529744i \(0.822288\pi\)
\(270\) 0 0
\(271\) 3319.00 0.743966 0.371983 0.928239i \(-0.378678\pi\)
0.371983 + 0.928239i \(0.378678\pi\)
\(272\) −2240.11 −0.499364
\(273\) 0 0
\(274\) 5688.00 1.25410
\(275\) 2766.20 0.606575
\(276\) 0 0
\(277\) 8354.00 1.81207 0.906035 0.423203i \(-0.139094\pi\)
0.906035 + 0.423203i \(0.139094\pi\)
\(278\) −4017.78 −0.866800
\(279\) 0 0
\(280\) 0 0
\(281\) −2579.53 −0.547621 −0.273811 0.961784i \(-0.588284\pi\)
−0.273811 + 0.961784i \(0.588284\pi\)
\(282\) 0 0
\(283\) 6208.00 1.30398 0.651992 0.758226i \(-0.273934\pi\)
0.651992 + 0.758226i \(0.273934\pi\)
\(284\) 7127.64 1.48925
\(285\) 0 0
\(286\) −2088.00 −0.431699
\(287\) 0 0
\(288\) 0 0
\(289\) −2321.00 −0.472420
\(290\) 19550.1 3.95869
\(291\) 0 0
\(292\) −1370.00 −0.274566
\(293\) −6194.26 −1.23506 −0.617529 0.786548i \(-0.711866\pi\)
−0.617529 + 0.786548i \(0.711866\pi\)
\(294\) 0 0
\(295\) −4896.00 −0.966292
\(296\) 704.278 0.138295
\(297\) 0 0
\(298\) −2448.00 −0.475869
\(299\) −2460.73 −0.475946
\(300\) 0 0
\(301\) 0 0
\(302\) −9804.74 −1.86821
\(303\) 0 0
\(304\) 1276.00 0.240736
\(305\) −13016.4 −2.44367
\(306\) 0 0
\(307\) 2320.00 0.431301 0.215650 0.976471i \(-0.430813\pi\)
0.215650 + 0.976471i \(0.430813\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 19296.0 3.53529
\(311\) −797.616 −0.145430 −0.0727149 0.997353i \(-0.523166\pi\)
−0.0727149 + 0.997353i \(0.523166\pi\)
\(312\) 0 0
\(313\) −1307.00 −0.236026 −0.118013 0.993012i \(-0.537652\pi\)
−0.118013 + 0.993012i \(0.537652\pi\)
\(314\) −6881.56 −1.23678
\(315\) 0 0
\(316\) −4750.00 −0.845596
\(317\) −2070.41 −0.366832 −0.183416 0.983035i \(-0.558716\pi\)
−0.183416 + 0.983035i \(0.558716\pi\)
\(318\) 0 0
\(319\) 4608.00 0.808773
\(320\) −12354.6 −2.15825
\(321\) 0 0
\(322\) 0 0
\(323\) −1476.44 −0.254338
\(324\) 0 0
\(325\) −4727.00 −0.806790
\(326\) 9516.24 1.61674
\(327\) 0 0
\(328\) 2304.00 0.387857
\(329\) 0 0
\(330\) 0 0
\(331\) −5173.00 −0.859014 −0.429507 0.903063i \(-0.641313\pi\)
−0.429507 + 0.903063i \(0.641313\pi\)
\(332\) −5769.99 −0.953824
\(333\) 0 0
\(334\) −11592.0 −1.89906
\(335\) −8671.96 −1.41433
\(336\) 0 0
\(337\) 2621.00 0.423665 0.211832 0.977306i \(-0.432057\pi\)
0.211832 + 0.977306i \(0.432057\pi\)
\(338\) −5753.02 −0.925808
\(339\) 0 0
\(340\) 8640.00 1.37815
\(341\) 4548.11 0.722270
\(342\) 0 0
\(343\) 0 0
\(344\) −1968.59 −0.308544
\(345\) 0 0
\(346\) 5760.00 0.894970
\(347\) −7704.64 −1.19195 −0.595975 0.803003i \(-0.703234\pi\)
−0.595975 + 0.803003i \(0.703234\pi\)
\(348\) 0 0
\(349\) −1955.00 −0.299853 −0.149927 0.988697i \(-0.547904\pi\)
−0.149927 + 0.988697i \(0.547904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4320.00 −0.654139
\(353\) −1187.94 −0.179115 −0.0895576 0.995982i \(-0.528545\pi\)
−0.0895576 + 0.995982i \(0.528545\pi\)
\(354\) 0 0
\(355\) 12096.0 1.80842
\(356\) 2545.58 0.378977
\(357\) 0 0
\(358\) −9936.00 −1.46685
\(359\) −560.029 −0.0823320 −0.0411660 0.999152i \(-0.513107\pi\)
−0.0411660 + 0.999152i \(0.513107\pi\)
\(360\) 0 0
\(361\) −6018.00 −0.877387
\(362\) 6750.04 0.980039
\(363\) 0 0
\(364\) 0 0
\(365\) −2324.97 −0.333409
\(366\) 0 0
\(367\) −7895.00 −1.12293 −0.561465 0.827500i \(-0.689762\pi\)
−0.561465 + 0.827500i \(0.689762\pi\)
\(368\) −3733.52 −0.528868
\(369\) 0 0
\(370\) 5976.00 0.839669
\(371\) 0 0
\(372\) 0 0
\(373\) 9803.00 1.36080 0.680402 0.732839i \(-0.261805\pi\)
0.680402 + 0.732839i \(0.261805\pi\)
\(374\) 3665.64 0.506807
\(375\) 0 0
\(376\) 3312.00 0.454264
\(377\) −7874.34 −1.07573
\(378\) 0 0
\(379\) 10505.0 1.42376 0.711881 0.702300i \(-0.247844\pi\)
0.711881 + 0.702300i \(0.247844\pi\)
\(380\) −4921.46 −0.664384
\(381\) 0 0
\(382\) −20232.0 −2.70984
\(383\) 1086.12 0.144903 0.0724516 0.997372i \(-0.476918\pi\)
0.0724516 + 0.997372i \(0.476918\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14768.6 −1.94742
\(387\) 0 0
\(388\) −8210.00 −1.07423
\(389\) 2155.26 0.280915 0.140458 0.990087i \(-0.455143\pi\)
0.140458 + 0.990087i \(0.455143\pi\)
\(390\) 0 0
\(391\) 4320.00 0.558751
\(392\) 0 0
\(393\) 0 0
\(394\) −10152.0 −1.29810
\(395\) −8061.02 −1.02682
\(396\) 0 0
\(397\) −12422.0 −1.57038 −0.785192 0.619253i \(-0.787436\pi\)
−0.785192 + 0.619253i \(0.787436\pi\)
\(398\) −9974.45 −1.25622
\(399\) 0 0
\(400\) −7172.00 −0.896500
\(401\) 15511.1 1.93164 0.965819 0.259216i \(-0.0834642\pi\)
0.965819 + 0.259216i \(0.0834642\pi\)
\(402\) 0 0
\(403\) −7772.00 −0.960672
\(404\) 5430.58 0.668766
\(405\) 0 0
\(406\) 0 0
\(407\) 1408.56 0.171547
\(408\) 0 0
\(409\) −7265.00 −0.878316 −0.439158 0.898410i \(-0.644723\pi\)
−0.439158 + 0.898410i \(0.644723\pi\)
\(410\) 19550.1 2.35490
\(411\) 0 0
\(412\) −8390.00 −1.00327
\(413\) 0 0
\(414\) 0 0
\(415\) −9792.00 −1.15824
\(416\) 7382.19 0.870053
\(417\) 0 0
\(418\) −2088.00 −0.244324
\(419\) 3173.50 0.370013 0.185006 0.982737i \(-0.440769\pi\)
0.185006 + 0.982737i \(0.440769\pi\)
\(420\) 0 0
\(421\) 3413.00 0.395106 0.197553 0.980292i \(-0.436701\pi\)
0.197553 + 0.980292i \(0.436701\pi\)
\(422\) 7225.22 0.833455
\(423\) 0 0
\(424\) 2592.00 0.296884
\(425\) 8298.61 0.947156
\(426\) 0 0
\(427\) 0 0
\(428\) −7636.75 −0.862468
\(429\) 0 0
\(430\) −16704.0 −1.87335
\(431\) −12677.0 −1.41678 −0.708388 0.705824i \(-0.750577\pi\)
−0.708388 + 0.705824i \(0.750577\pi\)
\(432\) 0 0
\(433\) −8642.00 −0.959141 −0.479570 0.877503i \(-0.659208\pi\)
−0.479570 + 0.877503i \(0.659208\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2180.00 0.239457
\(437\) −2460.73 −0.269366
\(438\) 0 0
\(439\) −524.000 −0.0569685 −0.0284842 0.999594i \(-0.509068\pi\)
−0.0284842 + 0.999594i \(0.509068\pi\)
\(440\) 2443.76 0.264777
\(441\) 0 0
\(442\) −6264.00 −0.674091
\(443\) −18158.5 −1.94749 −0.973743 0.227649i \(-0.926896\pi\)
−0.973743 + 0.227649i \(0.926896\pi\)
\(444\) 0 0
\(445\) 4320.00 0.460197
\(446\) −5888.79 −0.625206
\(447\) 0 0
\(448\) 0 0
\(449\) 3309.26 0.347825 0.173913 0.984761i \(-0.444359\pi\)
0.173913 + 0.984761i \(0.444359\pi\)
\(450\) 0 0
\(451\) 4608.00 0.481114
\(452\) 15103.8 1.57173
\(453\) 0 0
\(454\) 20016.0 2.06916
\(455\) 0 0
\(456\) 0 0
\(457\) −9466.00 −0.968930 −0.484465 0.874811i \(-0.660986\pi\)
−0.484465 + 0.874811i \(0.660986\pi\)
\(458\) −1841.31 −0.187857
\(459\) 0 0
\(460\) 14400.0 1.45957
\(461\) 3241.38 0.327475 0.163738 0.986504i \(-0.447645\pi\)
0.163738 + 0.986504i \(0.447645\pi\)
\(462\) 0 0
\(463\) 11315.0 1.13575 0.567875 0.823115i \(-0.307766\pi\)
0.567875 + 0.823115i \(0.307766\pi\)
\(464\) −11947.3 −1.19534
\(465\) 0 0
\(466\) 14688.0 1.46010
\(467\) −17462.7 −1.73036 −0.865180 0.501462i \(-0.832796\pi\)
−0.865180 + 0.501462i \(0.832796\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 28103.3 2.75810
\(471\) 0 0
\(472\) −2448.00 −0.238725
\(473\) −3937.17 −0.382730
\(474\) 0 0
\(475\) −4727.00 −0.456610
\(476\) 0 0
\(477\) 0 0
\(478\) −11952.0 −1.14366
\(479\) −8926.52 −0.851488 −0.425744 0.904844i \(-0.639988\pi\)
−0.425744 + 0.904844i \(0.639988\pi\)
\(480\) 0 0
\(481\) −2407.00 −0.228170
\(482\) 8888.33 0.839943
\(483\) 0 0
\(484\) −10430.0 −0.979527
\(485\) −13932.8 −1.30445
\(486\) 0 0
\(487\) −18493.0 −1.72073 −0.860367 0.509674i \(-0.829766\pi\)
−0.860367 + 0.509674i \(0.829766\pi\)
\(488\) −6508.21 −0.603715
\(489\) 0 0
\(490\) 0 0
\(491\) 12812.8 1.17766 0.588831 0.808256i \(-0.299588\pi\)
0.588831 + 0.808256i \(0.299588\pi\)
\(492\) 0 0
\(493\) 13824.0 1.26288
\(494\) 3568.06 0.324969
\(495\) 0 0
\(496\) −11792.0 −1.06749
\(497\) 0 0
\(498\) 0 0
\(499\) −12256.0 −1.09951 −0.549753 0.835327i \(-0.685278\pi\)
−0.549753 + 0.835327i \(0.685278\pi\)
\(500\) 6448.81 0.576799
\(501\) 0 0
\(502\) −864.000 −0.0768171
\(503\) 7382.19 0.654385 0.327193 0.944958i \(-0.393897\pi\)
0.327193 + 0.944958i \(0.393897\pi\)
\(504\) 0 0
\(505\) 9216.00 0.812092
\(506\) 6109.40 0.536751
\(507\) 0 0
\(508\) 12440.0 1.08649
\(509\) 20992.6 1.82806 0.914028 0.405652i \(-0.132956\pi\)
0.914028 + 0.405652i \(0.132956\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 14187.4 1.22461
\(513\) 0 0
\(514\) 7632.00 0.654928
\(515\) −14238.3 −1.21828
\(516\) 0 0
\(517\) 6624.00 0.563488
\(518\) 0 0
\(519\) 0 0
\(520\) −4176.00 −0.352173
\(521\) −12269.7 −1.03176 −0.515879 0.856661i \(-0.672535\pi\)
−0.515879 + 0.856661i \(0.672535\pi\)
\(522\) 0 0
\(523\) −6833.00 −0.571293 −0.285646 0.958335i \(-0.592208\pi\)
−0.285646 + 0.958335i \(0.592208\pi\)
\(524\) 25116.4 2.09392
\(525\) 0 0
\(526\) 1584.00 0.131304
\(527\) 13644.3 1.12781
\(528\) 0 0
\(529\) −4967.00 −0.408235
\(530\) 21993.8 1.80255
\(531\) 0 0
\(532\) 0 0
\(533\) −7874.34 −0.639917
\(534\) 0 0
\(535\) −12960.0 −1.04731
\(536\) −4335.98 −0.349414
\(537\) 0 0
\(538\) −31752.0 −2.54447
\(539\) 0 0
\(540\) 0 0
\(541\) −10555.0 −0.838808 −0.419404 0.907800i \(-0.637761\pi\)
−0.419404 + 0.907800i \(0.637761\pi\)
\(542\) 14081.3 1.11595
\(543\) 0 0
\(544\) −12960.0 −1.02143
\(545\) 3699.58 0.290776
\(546\) 0 0
\(547\) 17291.0 1.35157 0.675786 0.737098i \(-0.263804\pi\)
0.675786 + 0.737098i \(0.263804\pi\)
\(548\) 13406.7 1.04509
\(549\) 0 0
\(550\) 11736.0 0.909863
\(551\) −7874.34 −0.608817
\(552\) 0 0
\(553\) 0 0
\(554\) 35443.0 2.71810
\(555\) 0 0
\(556\) −9470.00 −0.722334
\(557\) 10335.1 0.786196 0.393098 0.919497i \(-0.371403\pi\)
0.393098 + 0.919497i \(0.371403\pi\)
\(558\) 0 0
\(559\) 6728.00 0.509059
\(560\) 0 0
\(561\) 0 0
\(562\) −10944.0 −0.821432
\(563\) −16427.5 −1.22973 −0.614864 0.788633i \(-0.710789\pi\)
−0.614864 + 0.788633i \(0.710789\pi\)
\(564\) 0 0
\(565\) 25632.0 1.90858
\(566\) 26338.3 1.95598
\(567\) 0 0
\(568\) 6048.00 0.446775
\(569\) 15697.8 1.15656 0.578282 0.815837i \(-0.303723\pi\)
0.578282 + 0.815837i \(0.303723\pi\)
\(570\) 0 0
\(571\) −4075.00 −0.298658 −0.149329 0.988788i \(-0.547711\pi\)
−0.149329 + 0.988788i \(0.547711\pi\)
\(572\) −4921.46 −0.359749
\(573\) 0 0
\(574\) 0 0
\(575\) 13831.0 1.00312
\(576\) 0 0
\(577\) −6995.00 −0.504689 −0.252345 0.967637i \(-0.581202\pi\)
−0.252345 + 0.967637i \(0.581202\pi\)
\(578\) −9847.17 −0.708630
\(579\) 0 0
\(580\) 46080.0 3.29891
\(581\) 0 0
\(582\) 0 0
\(583\) 5184.00 0.368266
\(584\) −1162.48 −0.0823697
\(585\) 0 0
\(586\) −26280.0 −1.85259
\(587\) 5583.32 0.392586 0.196293 0.980545i \(-0.437110\pi\)
0.196293 + 0.980545i \(0.437110\pi\)
\(588\) 0 0
\(589\) −7772.00 −0.543701
\(590\) −20772.0 −1.44944
\(591\) 0 0
\(592\) −3652.00 −0.253541
\(593\) 14968.0 1.03653 0.518266 0.855219i \(-0.326578\pi\)
0.518266 + 0.855219i \(0.326578\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5769.99 −0.396557
\(597\) 0 0
\(598\) −10440.0 −0.713919
\(599\) −18192.4 −1.24094 −0.620470 0.784230i \(-0.713058\pi\)
−0.620470 + 0.784230i \(0.713058\pi\)
\(600\) 0 0
\(601\) 6550.00 0.444559 0.222280 0.974983i \(-0.428650\pi\)
0.222280 + 0.974983i \(0.428650\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −23110.0 −1.55684
\(605\) −17700.3 −1.18945
\(606\) 0 0
\(607\) −12827.0 −0.857713 −0.428857 0.903373i \(-0.641083\pi\)
−0.428857 + 0.903373i \(0.641083\pi\)
\(608\) 7382.19 0.492414
\(609\) 0 0
\(610\) −55224.0 −3.66550
\(611\) −11319.4 −0.749480
\(612\) 0 0
\(613\) 18767.0 1.23653 0.618264 0.785970i \(-0.287836\pi\)
0.618264 + 0.785970i \(0.287836\pi\)
\(614\) 9842.93 0.646951
\(615\) 0 0
\(616\) 0 0
\(617\) −7551.90 −0.492752 −0.246376 0.969174i \(-0.579240\pi\)
−0.246376 + 0.969174i \(0.579240\pi\)
\(618\) 0 0
\(619\) −24581.0 −1.59611 −0.798056 0.602583i \(-0.794138\pi\)
−0.798056 + 0.602583i \(0.794138\pi\)
\(620\) 45481.1 2.94607
\(621\) 0 0
\(622\) −3384.00 −0.218145
\(623\) 0 0
\(624\) 0 0
\(625\) −9431.00 −0.603584
\(626\) −5545.13 −0.354038
\(627\) 0 0
\(628\) −16220.0 −1.03065
\(629\) 4225.67 0.267867
\(630\) 0 0
\(631\) −18223.0 −1.14968 −0.574838 0.818267i \(-0.694935\pi\)
−0.574838 + 0.818267i \(0.694935\pi\)
\(632\) −4030.51 −0.253679
\(633\) 0 0
\(634\) −8784.00 −0.550248
\(635\) 21111.4 1.31934
\(636\) 0 0
\(637\) 0 0
\(638\) 19550.1 1.21316
\(639\) 0 0
\(640\) −17856.0 −1.10284
\(641\) 1595.23 0.0982963 0.0491481 0.998792i \(-0.484349\pi\)
0.0491481 + 0.998792i \(0.484349\pi\)
\(642\) 0 0
\(643\) 26296.0 1.61277 0.806386 0.591389i \(-0.201420\pi\)
0.806386 + 0.591389i \(0.201420\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6264.00 −0.381507
\(647\) 25659.5 1.55916 0.779582 0.626301i \(-0.215432\pi\)
0.779582 + 0.626301i \(0.215432\pi\)
\(648\) 0 0
\(649\) −4896.00 −0.296125
\(650\) −20055.0 −1.21019
\(651\) 0 0
\(652\) 22430.0 1.34728
\(653\) 441.235 0.0264423 0.0132212 0.999913i \(-0.495791\pi\)
0.0132212 + 0.999913i \(0.495791\pi\)
\(654\) 0 0
\(655\) 42624.0 2.54268
\(656\) −11947.3 −0.711071
\(657\) 0 0
\(658\) 0 0
\(659\) 27051.1 1.59903 0.799515 0.600647i \(-0.205090\pi\)
0.799515 + 0.600647i \(0.205090\pi\)
\(660\) 0 0
\(661\) −623.000 −0.0366594 −0.0183297 0.999832i \(-0.505835\pi\)
−0.0183297 + 0.999832i \(0.505835\pi\)
\(662\) −21947.2 −1.28852
\(663\) 0 0
\(664\) −4896.00 −0.286147
\(665\) 0 0
\(666\) 0 0
\(667\) 23040.0 1.33750
\(668\) −27322.6 −1.58255
\(669\) 0 0
\(670\) −36792.0 −2.12149
\(671\) −13016.4 −0.748872
\(672\) 0 0
\(673\) 27875.0 1.59659 0.798293 0.602269i \(-0.205737\pi\)
0.798293 + 0.602269i \(0.205737\pi\)
\(674\) 11120.0 0.635497
\(675\) 0 0
\(676\) −13560.0 −0.771507
\(677\) 6601.55 0.374768 0.187384 0.982287i \(-0.439999\pi\)
0.187384 + 0.982287i \(0.439999\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 7331.28 0.413444
\(681\) 0 0
\(682\) 19296.0 1.08340
\(683\) −15680.8 −0.878491 −0.439245 0.898367i \(-0.644754\pi\)
−0.439245 + 0.898367i \(0.644754\pi\)
\(684\) 0 0
\(685\) 22752.0 1.26906
\(686\) 0 0
\(687\) 0 0
\(688\) 10208.0 0.565663
\(689\) −8858.63 −0.489822
\(690\) 0 0
\(691\) 10600.0 0.583564 0.291782 0.956485i \(-0.405752\pi\)
0.291782 + 0.956485i \(0.405752\pi\)
\(692\) 13576.5 0.745808
\(693\) 0 0
\(694\) −32688.0 −1.78792
\(695\) −16071.1 −0.877140
\(696\) 0 0
\(697\) 13824.0 0.751250
\(698\) −8294.36 −0.449780
\(699\) 0 0
\(700\) 0 0
\(701\) 13593.4 0.732406 0.366203 0.930535i \(-0.380658\pi\)
0.366203 + 0.930535i \(0.380658\pi\)
\(702\) 0 0
\(703\) −2407.00 −0.129135
\(704\) −12354.6 −0.661407
\(705\) 0 0
\(706\) −5040.00 −0.268673
\(707\) 0 0
\(708\) 0 0
\(709\) −33523.0 −1.77572 −0.887858 0.460117i \(-0.847807\pi\)
−0.887858 + 0.460117i \(0.847807\pi\)
\(710\) 51319.0 2.71263
\(711\) 0 0
\(712\) 2160.00 0.113693
\(713\) 22740.6 1.19445
\(714\) 0 0
\(715\) −8352.00 −0.436849
\(716\) −23419.4 −1.22238
\(717\) 0 0
\(718\) −2376.00 −0.123498
\(719\) −31870.7 −1.65310 −0.826549 0.562865i \(-0.809699\pi\)
−0.826549 + 0.562865i \(0.809699\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −25532.2 −1.31608
\(723\) 0 0
\(724\) 15910.0 0.816700
\(725\) 44259.2 2.26724
\(726\) 0 0
\(727\) 13084.0 0.667481 0.333741 0.942665i \(-0.391689\pi\)
0.333741 + 0.942665i \(0.391689\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −9864.00 −0.500114
\(731\) −11811.5 −0.597626
\(732\) 0 0
\(733\) 19222.0 0.968596 0.484298 0.874903i \(-0.339075\pi\)
0.484298 + 0.874903i \(0.339075\pi\)
\(734\) −33495.6 −1.68440
\(735\) 0 0
\(736\) −21600.0 −1.08178
\(737\) −8671.96 −0.433427
\(738\) 0 0
\(739\) 6320.00 0.314594 0.157297 0.987551i \(-0.449722\pi\)
0.157297 + 0.987551i \(0.449722\pi\)
\(740\) 14085.6 0.699724
\(741\) 0 0
\(742\) 0 0
\(743\) 4157.79 0.205295 0.102648 0.994718i \(-0.467269\pi\)
0.102648 + 0.994718i \(0.467269\pi\)
\(744\) 0 0
\(745\) −9792.00 −0.481545
\(746\) 41590.6 2.04121
\(747\) 0 0
\(748\) 8640.00 0.422339
\(749\) 0 0
\(750\) 0 0
\(751\) 20333.0 0.987965 0.493982 0.869472i \(-0.335541\pi\)
0.493982 + 0.869472i \(0.335541\pi\)
\(752\) −17174.2 −0.832818
\(753\) 0 0
\(754\) −33408.0 −1.61359
\(755\) −39219.0 −1.89050
\(756\) 0 0
\(757\) −14011.0 −0.672706 −0.336353 0.941736i \(-0.609194\pi\)
−0.336353 + 0.941736i \(0.609194\pi\)
\(758\) 44568.9 2.13564
\(759\) 0 0
\(760\) −4176.00 −0.199315
\(761\) 25981.9 1.23764 0.618820 0.785533i \(-0.287611\pi\)
0.618820 + 0.785533i \(0.287611\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −47687.3 −2.25820
\(765\) 0 0
\(766\) 4608.00 0.217355
\(767\) 8366.49 0.393867
\(768\) 0 0
\(769\) 6289.00 0.294912 0.147456 0.989069i \(-0.452892\pi\)
0.147456 + 0.989069i \(0.452892\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −34810.0 −1.62285
\(773\) 7229.46 0.336385 0.168192 0.985754i \(-0.446207\pi\)
0.168192 + 0.985754i \(0.446207\pi\)
\(774\) 0 0
\(775\) 43684.0 2.02474
\(776\) −6966.42 −0.322268
\(777\) 0 0
\(778\) 9144.00 0.421373
\(779\) −7874.34 −0.362166
\(780\) 0 0
\(781\) 12096.0 0.554198
\(782\) 18328.2 0.838127
\(783\) 0 0
\(784\) 0 0
\(785\) −27526.3 −1.25153
\(786\) 0 0
\(787\) 25675.0 1.16292 0.581458 0.813576i \(-0.302482\pi\)
0.581458 + 0.813576i \(0.302482\pi\)
\(788\) −23928.5 −1.08175
\(789\) 0 0
\(790\) −34200.0 −1.54023
\(791\) 0 0
\(792\) 0 0
\(793\) 22243.0 0.996056
\(794\) −52702.1 −2.35558
\(795\) 0 0
\(796\) −23510.0 −1.04685
\(797\) 3326.23 0.147831 0.0739154 0.997265i \(-0.476451\pi\)
0.0739154 + 0.997265i \(0.476451\pi\)
\(798\) 0 0
\(799\) 19872.0 0.879876
\(800\) −41493.0 −1.83375
\(801\) 0 0
\(802\) 65808.0 2.89746
\(803\) −2324.97 −0.102175
\(804\) 0 0
\(805\) 0 0
\(806\) −32973.8 −1.44101
\(807\) 0 0
\(808\) 4608.00 0.200630
\(809\) 10080.5 0.438087 0.219043 0.975715i \(-0.429706\pi\)
0.219043 + 0.975715i \(0.429706\pi\)
\(810\) 0 0
\(811\) −14312.0 −0.619682 −0.309841 0.950788i \(-0.600276\pi\)
−0.309841 + 0.950788i \(0.600276\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5976.00 0.257320
\(815\) 38065.0 1.63602
\(816\) 0 0
\(817\) 6728.00 0.288106
\(818\) −30822.8 −1.31747
\(819\) 0 0
\(820\) 46080.0 1.96242
\(821\) 2766.20 0.117590 0.0587948 0.998270i \(-0.481274\pi\)
0.0587948 + 0.998270i \(0.481274\pi\)
\(822\) 0 0
\(823\) −33343.0 −1.41223 −0.706114 0.708098i \(-0.749553\pi\)
−0.706114 + 0.708098i \(0.749553\pi\)
\(824\) −7119.15 −0.300980
\(825\) 0 0
\(826\) 0 0
\(827\) −18379.1 −0.772799 −0.386399 0.922332i \(-0.626281\pi\)
−0.386399 + 0.922332i \(0.626281\pi\)
\(828\) 0 0
\(829\) −3593.00 −0.150531 −0.0752654 0.997164i \(-0.523980\pi\)
−0.0752654 + 0.997164i \(0.523980\pi\)
\(830\) −41543.9 −1.73736
\(831\) 0 0
\(832\) 21112.0 0.879720
\(833\) 0 0
\(834\) 0 0
\(835\) −46368.0 −1.92171
\(836\) −4921.46 −0.203603
\(837\) 0 0
\(838\) 13464.0 0.555019
\(839\) 17140.3 0.705301 0.352651 0.935755i \(-0.385280\pi\)
0.352651 + 0.935755i \(0.385280\pi\)
\(840\) 0 0
\(841\) 49339.0 2.02300
\(842\) 14480.1 0.592658
\(843\) 0 0
\(844\) 17030.0 0.694546
\(845\) −23012.1 −0.936852
\(846\) 0 0
\(847\) 0 0
\(848\) −13440.7 −0.544287
\(849\) 0 0
\(850\) 35208.0 1.42073
\(851\) 7042.78 0.283694
\(852\) 0 0
\(853\) 4741.00 0.190303 0.0951517 0.995463i \(-0.469666\pi\)
0.0951517 + 0.995463i \(0.469666\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6480.00 −0.258740
\(857\) −11981.2 −0.477562 −0.238781 0.971073i \(-0.576748\pi\)
−0.238781 + 0.971073i \(0.576748\pi\)
\(858\) 0 0
\(859\) −6887.00 −0.273552 −0.136776 0.990602i \(-0.543674\pi\)
−0.136776 + 0.990602i \(0.543674\pi\)
\(860\) −39371.7 −1.56112
\(861\) 0 0
\(862\) −53784.0 −2.12516
\(863\) −8400.43 −0.331349 −0.165674 0.986181i \(-0.552980\pi\)
−0.165674 + 0.986181i \(0.552980\pi\)
\(864\) 0 0
\(865\) 23040.0 0.905646
\(866\) −36664.9 −1.43871
\(867\) 0 0
\(868\) 0 0
\(869\) −8061.02 −0.314674
\(870\) 0 0
\(871\) 14819.0 0.576490
\(872\) 1849.79 0.0718370
\(873\) 0 0
\(874\) −10440.0 −0.404048
\(875\) 0 0
\(876\) 0 0
\(877\) 13475.0 0.518835 0.259418 0.965765i \(-0.416469\pi\)
0.259418 + 0.965765i \(0.416469\pi\)
\(878\) −2223.14 −0.0854527
\(879\) 0 0
\(880\) −12672.0 −0.485424
\(881\) 5243.90 0.200535 0.100268 0.994961i \(-0.468030\pi\)
0.100268 + 0.994961i \(0.468030\pi\)
\(882\) 0 0
\(883\) −7909.00 −0.301426 −0.150713 0.988578i \(-0.548157\pi\)
−0.150713 + 0.988578i \(0.548157\pi\)
\(884\) −14764.4 −0.561742
\(885\) 0 0
\(886\) −77040.0 −2.92123
\(887\) −35672.1 −1.35034 −0.675171 0.737662i \(-0.735930\pi\)
−0.675171 + 0.737662i \(0.735930\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 18328.2 0.690295
\(891\) 0 0
\(892\) −13880.0 −0.521005
\(893\) −11319.4 −0.424175
\(894\) 0 0
\(895\) −39744.0 −1.48435
\(896\) 0 0
\(897\) 0 0
\(898\) 14040.0 0.521738
\(899\) 72769.8 2.69967
\(900\) 0 0
\(901\) 15552.0 0.575041
\(902\) 19550.1 0.721670
\(903\) 0 0
\(904\) 12816.0 0.471520
\(905\) 27000.2 0.991730
\(906\) 0 0
\(907\) −16999.0 −0.622318 −0.311159 0.950358i \(-0.600717\pi\)
−0.311159 + 0.950358i \(0.600717\pi\)
\(908\) 47178.2 1.72430
\(909\) 0 0
\(910\) 0 0
\(911\) −39032.3 −1.41954 −0.709768 0.704435i \(-0.751200\pi\)
−0.709768 + 0.704435i \(0.751200\pi\)
\(912\) 0 0
\(913\) −9792.00 −0.354948
\(914\) −40160.8 −1.45339
\(915\) 0 0
\(916\) −4340.00 −0.156548
\(917\) 0 0
\(918\) 0 0
\(919\) −28348.0 −1.01753 −0.508767 0.860904i \(-0.669899\pi\)
−0.508767 + 0.860904i \(0.669899\pi\)
\(920\) 12218.8 0.437872
\(921\) 0 0
\(922\) 13752.0 0.491213
\(923\) −20670.1 −0.737125
\(924\) 0 0
\(925\) 13529.0 0.480898
\(926\) 48005.5 1.70363
\(927\) 0 0
\(928\) −69120.0 −2.44502
\(929\) −33160.5 −1.17111 −0.585554 0.810633i \(-0.699123\pi\)
−0.585554 + 0.810633i \(0.699123\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 34619.9 1.21675
\(933\) 0 0
\(934\) −74088.0 −2.59554
\(935\) 14662.6 0.512853
\(936\) 0 0
\(937\) 133.000 0.00463706 0.00231853 0.999997i \(-0.499262\pi\)
0.00231853 + 0.999997i \(0.499262\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 66240.0 2.29842
\(941\) 48790.4 1.69024 0.845122 0.534573i \(-0.179527\pi\)
0.845122 + 0.534573i \(0.179527\pi\)
\(942\) 0 0
\(943\) 23040.0 0.795637
\(944\) 12694.0 0.437663
\(945\) 0 0
\(946\) −16704.0 −0.574095
\(947\) 45328.4 1.55541 0.777705 0.628629i \(-0.216383\pi\)
0.777705 + 0.628629i \(0.216383\pi\)
\(948\) 0 0
\(949\) 3973.00 0.135900
\(950\) −20055.0 −0.684915
\(951\) 0 0
\(952\) 0 0
\(953\) 43122.2 1.46576 0.732878 0.680360i \(-0.238177\pi\)
0.732878 + 0.680360i \(0.238177\pi\)
\(954\) 0 0
\(955\) −80928.0 −2.74217
\(956\) −28171.1 −0.953054
\(957\) 0 0
\(958\) −37872.0 −1.27723
\(959\) 0 0
\(960\) 0 0
\(961\) 42033.0 1.41093
\(962\) −10212.0 −0.342255
\(963\) 0 0
\(964\) 20950.0 0.699952
\(965\) −59074.5 −1.97065
\(966\) 0 0
\(967\) 22061.0 0.733644 0.366822 0.930291i \(-0.380446\pi\)
0.366822 + 0.930291i \(0.380446\pi\)
\(968\) −8850.15 −0.293858
\(969\) 0 0
\(970\) −59112.0 −1.95667
\(971\) −33449.0 −1.10549 −0.552744 0.833351i \(-0.686419\pi\)
−0.552744 + 0.833351i \(0.686419\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −78459.2 −2.58110
\(975\) 0 0
\(976\) 33748.0 1.10681
\(977\) 20602.3 0.674642 0.337321 0.941390i \(-0.390479\pi\)
0.337321 + 0.941390i \(0.390479\pi\)
\(978\) 0 0
\(979\) 4320.00 0.141029
\(980\) 0 0
\(981\) 0 0
\(982\) 54360.0 1.76649
\(983\) −11930.3 −0.387098 −0.193549 0.981091i \(-0.562000\pi\)
−0.193549 + 0.981091i \(0.562000\pi\)
\(984\) 0 0
\(985\) −40608.0 −1.31358
\(986\) 58650.3 1.89433
\(987\) 0 0
\(988\) 8410.00 0.270807
\(989\) −19685.9 −0.632936
\(990\) 0 0
\(991\) −35017.0 −1.12245 −0.561227 0.827662i \(-0.689670\pi\)
−0.561227 + 0.827662i \(0.689670\pi\)
\(992\) −68221.7 −2.18351
\(993\) 0 0
\(994\) 0 0
\(995\) −39897.8 −1.27120
\(996\) 0 0
\(997\) −13646.0 −0.433474 −0.216737 0.976230i \(-0.569541\pi\)
−0.216737 + 0.976230i \(0.569541\pi\)
\(998\) −51997.8 −1.64926
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.t.1.2 2
3.2 odd 2 inner 1323.4.a.t.1.1 2
7.6 odd 2 27.4.a.c.1.2 yes 2
21.20 even 2 27.4.a.c.1.1 2
28.27 even 2 432.4.a.q.1.1 2
35.13 even 4 675.4.b.i.649.1 4
35.27 even 4 675.4.b.i.649.4 4
35.34 odd 2 675.4.a.n.1.1 2
56.13 odd 2 1728.4.a.bp.1.2 2
56.27 even 2 1728.4.a.bk.1.2 2
63.13 odd 6 81.4.c.e.55.1 4
63.20 even 6 81.4.c.e.28.2 4
63.34 odd 6 81.4.c.e.28.1 4
63.41 even 6 81.4.c.e.55.2 4
84.83 odd 2 432.4.a.q.1.2 2
105.62 odd 4 675.4.b.i.649.2 4
105.83 odd 4 675.4.b.i.649.3 4
105.104 even 2 675.4.a.n.1.2 2
168.83 odd 2 1728.4.a.bk.1.1 2
168.125 even 2 1728.4.a.bp.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.4.a.c.1.1 2 21.20 even 2
27.4.a.c.1.2 yes 2 7.6 odd 2
81.4.c.e.28.1 4 63.34 odd 6
81.4.c.e.28.2 4 63.20 even 6
81.4.c.e.55.1 4 63.13 odd 6
81.4.c.e.55.2 4 63.41 even 6
432.4.a.q.1.1 2 28.27 even 2
432.4.a.q.1.2 2 84.83 odd 2
675.4.a.n.1.1 2 35.34 odd 2
675.4.a.n.1.2 2 105.104 even 2
675.4.b.i.649.1 4 35.13 even 4
675.4.b.i.649.2 4 105.62 odd 4
675.4.b.i.649.3 4 105.83 odd 4
675.4.b.i.649.4 4 35.27 even 4
1323.4.a.t.1.1 2 3.2 odd 2 inner
1323.4.a.t.1.2 2 1.1 even 1 trivial
1728.4.a.bk.1.1 2 168.83 odd 2
1728.4.a.bk.1.2 2 56.27 even 2
1728.4.a.bp.1.1 2 168.125 even 2
1728.4.a.bp.1.2 2 56.13 odd 2