Properties

Label 1323.4.a.bo.1.8
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.12000\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.46178 q^{2} +21.8311 q^{4} +0.199136 q^{5} +75.5424 q^{8} +O(q^{10})\) \(q+5.46178 q^{2} +21.8311 q^{4} +0.199136 q^{5} +75.5424 q^{8} +1.08764 q^{10} +28.4233 q^{11} +32.5809 q^{13} +237.948 q^{16} -115.488 q^{17} +21.1500 q^{19} +4.34736 q^{20} +155.242 q^{22} +93.7656 q^{23} -124.960 q^{25} +177.950 q^{26} +231.571 q^{29} +281.742 q^{31} +695.280 q^{32} -630.770 q^{34} -146.554 q^{37} +115.517 q^{38} +15.0432 q^{40} -111.001 q^{41} +392.361 q^{43} +620.513 q^{44} +512.128 q^{46} +273.168 q^{47} -682.506 q^{50} +711.277 q^{52} -340.403 q^{53} +5.66011 q^{55} +1264.79 q^{58} -696.817 q^{59} -370.002 q^{61} +1538.81 q^{62} +1893.89 q^{64} +6.48804 q^{65} +87.1362 q^{67} -2521.23 q^{68} -88.3772 q^{71} -803.036 q^{73} -800.446 q^{74} +461.727 q^{76} +364.616 q^{79} +47.3840 q^{80} -606.264 q^{82} +921.684 q^{83} -22.9978 q^{85} +2142.99 q^{86} +2147.17 q^{88} -211.396 q^{89} +2047.01 q^{92} +1491.99 q^{94} +4.21172 q^{95} +845.718 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 48 q^{4} + 44 q^{10} - 84 q^{13} + 156 q^{16} + 12 q^{19} + 224 q^{22} + 408 q^{25} + 800 q^{31} - 948 q^{34} + 692 q^{37} + 96 q^{40} + 1456 q^{43} + 1524 q^{46} + 1972 q^{52} - 1280 q^{55} + 2372 q^{58} + 216 q^{61} + 4964 q^{64} + 684 q^{67} - 4564 q^{73} - 380 q^{76} + 556 q^{79} + 3340 q^{82} + 1296 q^{85} + 6696 q^{88} - 492 q^{94} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.46178 1.93103 0.965516 0.260343i \(-0.0838356\pi\)
0.965516 + 0.260343i \(0.0838356\pi\)
\(3\) 0 0
\(4\) 21.8311 2.72889
\(5\) 0.199136 0.0178113 0.00890564 0.999960i \(-0.497165\pi\)
0.00890564 + 0.999960i \(0.497165\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 75.5424 3.33854
\(9\) 0 0
\(10\) 1.08764 0.0343941
\(11\) 28.4233 0.779087 0.389544 0.921008i \(-0.372633\pi\)
0.389544 + 0.921008i \(0.372633\pi\)
\(12\) 0 0
\(13\) 32.5809 0.695101 0.347551 0.937661i \(-0.387013\pi\)
0.347551 + 0.937661i \(0.387013\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 237.948 3.71793
\(17\) −115.488 −1.64764 −0.823821 0.566849i \(-0.808162\pi\)
−0.823821 + 0.566849i \(0.808162\pi\)
\(18\) 0 0
\(19\) 21.1500 0.255376 0.127688 0.991814i \(-0.459244\pi\)
0.127688 + 0.991814i \(0.459244\pi\)
\(20\) 4.34736 0.0486049
\(21\) 0 0
\(22\) 155.242 1.50444
\(23\) 93.7656 0.850065 0.425032 0.905178i \(-0.360263\pi\)
0.425032 + 0.905178i \(0.360263\pi\)
\(24\) 0 0
\(25\) −124.960 −0.999683
\(26\) 177.950 1.34226
\(27\) 0 0
\(28\) 0 0
\(29\) 231.571 1.48282 0.741408 0.671055i \(-0.234159\pi\)
0.741408 + 0.671055i \(0.234159\pi\)
\(30\) 0 0
\(31\) 281.742 1.63233 0.816167 0.577817i \(-0.196095\pi\)
0.816167 + 0.577817i \(0.196095\pi\)
\(32\) 695.280 3.84092
\(33\) 0 0
\(34\) −630.770 −3.18165
\(35\) 0 0
\(36\) 0 0
\(37\) −146.554 −0.651171 −0.325585 0.945513i \(-0.605561\pi\)
−0.325585 + 0.945513i \(0.605561\pi\)
\(38\) 115.517 0.493138
\(39\) 0 0
\(40\) 15.0432 0.0594636
\(41\) −111.001 −0.422816 −0.211408 0.977398i \(-0.567805\pi\)
−0.211408 + 0.977398i \(0.567805\pi\)
\(42\) 0 0
\(43\) 392.361 1.39150 0.695750 0.718284i \(-0.255072\pi\)
0.695750 + 0.718284i \(0.255072\pi\)
\(44\) 620.513 2.12604
\(45\) 0 0
\(46\) 512.128 1.64150
\(47\) 273.168 0.847780 0.423890 0.905714i \(-0.360664\pi\)
0.423890 + 0.905714i \(0.360664\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −682.506 −1.93042
\(51\) 0 0
\(52\) 711.277 1.89685
\(53\) −340.403 −0.882225 −0.441113 0.897452i \(-0.645416\pi\)
−0.441113 + 0.897452i \(0.645416\pi\)
\(54\) 0 0
\(55\) 5.66011 0.0138765
\(56\) 0 0
\(57\) 0 0
\(58\) 1264.79 2.86336
\(59\) −696.817 −1.53759 −0.768795 0.639495i \(-0.779143\pi\)
−0.768795 + 0.639495i \(0.779143\pi\)
\(60\) 0 0
\(61\) −370.002 −0.776622 −0.388311 0.921528i \(-0.626941\pi\)
−0.388311 + 0.921528i \(0.626941\pi\)
\(62\) 1538.81 3.15209
\(63\) 0 0
\(64\) 1893.89 3.69900
\(65\) 6.48804 0.0123806
\(66\) 0 0
\(67\) 87.1362 0.158886 0.0794431 0.996839i \(-0.474686\pi\)
0.0794431 + 0.996839i \(0.474686\pi\)
\(68\) −2521.23 −4.49623
\(69\) 0 0
\(70\) 0 0
\(71\) −88.3772 −0.147725 −0.0738623 0.997268i \(-0.523533\pi\)
−0.0738623 + 0.997268i \(0.523533\pi\)
\(72\) 0 0
\(73\) −803.036 −1.28751 −0.643755 0.765231i \(-0.722625\pi\)
−0.643755 + 0.765231i \(0.722625\pi\)
\(74\) −800.446 −1.25743
\(75\) 0 0
\(76\) 461.727 0.696891
\(77\) 0 0
\(78\) 0 0
\(79\) 364.616 0.519272 0.259636 0.965707i \(-0.416397\pi\)
0.259636 + 0.965707i \(0.416397\pi\)
\(80\) 47.3840 0.0662211
\(81\) 0 0
\(82\) −606.264 −0.816472
\(83\) 921.684 1.21889 0.609446 0.792828i \(-0.291392\pi\)
0.609446 + 0.792828i \(0.291392\pi\)
\(84\) 0 0
\(85\) −22.9978 −0.0293466
\(86\) 2142.99 2.68703
\(87\) 0 0
\(88\) 2147.17 2.60101
\(89\) −211.396 −0.251774 −0.125887 0.992045i \(-0.540178\pi\)
−0.125887 + 0.992045i \(0.540178\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2047.01 2.31973
\(93\) 0 0
\(94\) 1491.99 1.63709
\(95\) 4.21172 0.00454856
\(96\) 0 0
\(97\) 845.718 0.885254 0.442627 0.896706i \(-0.354047\pi\)
0.442627 + 0.896706i \(0.354047\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2728.02 −2.72802
\(101\) −156.952 −0.154626 −0.0773132 0.997007i \(-0.524634\pi\)
−0.0773132 + 0.997007i \(0.524634\pi\)
\(102\) 0 0
\(103\) −139.325 −0.133283 −0.0666414 0.997777i \(-0.521228\pi\)
−0.0666414 + 0.997777i \(0.521228\pi\)
\(104\) 2461.24 2.32062
\(105\) 0 0
\(106\) −1859.21 −1.70361
\(107\) −415.476 −0.375379 −0.187690 0.982228i \(-0.560100\pi\)
−0.187690 + 0.982228i \(0.560100\pi\)
\(108\) 0 0
\(109\) −844.080 −0.741727 −0.370863 0.928687i \(-0.620938\pi\)
−0.370863 + 0.928687i \(0.620938\pi\)
\(110\) 30.9143 0.0267961
\(111\) 0 0
\(112\) 0 0
\(113\) −1342.21 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(114\) 0 0
\(115\) 18.6721 0.0151407
\(116\) 5055.45 4.04643
\(117\) 0 0
\(118\) −3805.86 −2.96914
\(119\) 0 0
\(120\) 0 0
\(121\) −523.113 −0.393023
\(122\) −2020.87 −1.49968
\(123\) 0 0
\(124\) 6150.73 4.45445
\(125\) −49.7761 −0.0356169
\(126\) 0 0
\(127\) 978.750 0.683858 0.341929 0.939726i \(-0.388920\pi\)
0.341929 + 0.939726i \(0.388920\pi\)
\(128\) 4781.76 3.30197
\(129\) 0 0
\(130\) 35.4362 0.0239074
\(131\) 2372.81 1.58254 0.791271 0.611465i \(-0.209420\pi\)
0.791271 + 0.611465i \(0.209420\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 475.919 0.306815
\(135\) 0 0
\(136\) −8724.24 −5.50071
\(137\) 1602.67 0.999458 0.499729 0.866182i \(-0.333433\pi\)
0.499729 + 0.866182i \(0.333433\pi\)
\(138\) 0 0
\(139\) 2101.78 1.28252 0.641262 0.767322i \(-0.278411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −482.697 −0.285261
\(143\) 926.059 0.541545
\(144\) 0 0
\(145\) 46.1141 0.0264108
\(146\) −4386.01 −2.48623
\(147\) 0 0
\(148\) −3199.43 −1.77697
\(149\) 524.400 0.288326 0.144163 0.989554i \(-0.453951\pi\)
0.144163 + 0.989554i \(0.453951\pi\)
\(150\) 0 0
\(151\) −867.666 −0.467613 −0.233807 0.972283i \(-0.575118\pi\)
−0.233807 + 0.972283i \(0.575118\pi\)
\(152\) 1597.72 0.852580
\(153\) 0 0
\(154\) 0 0
\(155\) 56.1050 0.0290739
\(156\) 0 0
\(157\) −5.91999 −0.00300934 −0.00150467 0.999999i \(-0.500479\pi\)
−0.00150467 + 0.999999i \(0.500479\pi\)
\(158\) 1991.45 1.00273
\(159\) 0 0
\(160\) 138.455 0.0684116
\(161\) 0 0
\(162\) 0 0
\(163\) −832.959 −0.400260 −0.200130 0.979769i \(-0.564136\pi\)
−0.200130 + 0.979769i \(0.564136\pi\)
\(164\) −2423.28 −1.15382
\(165\) 0 0
\(166\) 5034.04 2.35372
\(167\) −566.798 −0.262636 −0.131318 0.991340i \(-0.541921\pi\)
−0.131318 + 0.991340i \(0.541921\pi\)
\(168\) 0 0
\(169\) −1135.48 −0.516834
\(170\) −125.609 −0.0566693
\(171\) 0 0
\(172\) 8565.66 3.79724
\(173\) −4125.77 −1.81316 −0.906579 0.422036i \(-0.861316\pi\)
−0.906579 + 0.422036i \(0.861316\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6763.27 2.89660
\(177\) 0 0
\(178\) −1154.60 −0.486184
\(179\) 927.646 0.387349 0.193675 0.981066i \(-0.437959\pi\)
0.193675 + 0.981066i \(0.437959\pi\)
\(180\) 0 0
\(181\) 1211.67 0.497585 0.248792 0.968557i \(-0.419966\pi\)
0.248792 + 0.968557i \(0.419966\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7083.28 2.83797
\(185\) −29.1842 −0.0115982
\(186\) 0 0
\(187\) −3282.55 −1.28366
\(188\) 5963.56 2.31350
\(189\) 0 0
\(190\) 23.0035 0.00878342
\(191\) −1827.49 −0.692318 −0.346159 0.938176i \(-0.612514\pi\)
−0.346159 + 0.938176i \(0.612514\pi\)
\(192\) 0 0
\(193\) −822.230 −0.306660 −0.153330 0.988175i \(-0.549000\pi\)
−0.153330 + 0.988175i \(0.549000\pi\)
\(194\) 4619.13 1.70945
\(195\) 0 0
\(196\) 0 0
\(197\) −4873.12 −1.76241 −0.881207 0.472731i \(-0.843268\pi\)
−0.881207 + 0.472731i \(0.843268\pi\)
\(198\) 0 0
\(199\) −1482.23 −0.528001 −0.264001 0.964523i \(-0.585042\pi\)
−0.264001 + 0.964523i \(0.585042\pi\)
\(200\) −9439.81 −3.33748
\(201\) 0 0
\(202\) −857.236 −0.298589
\(203\) 0 0
\(204\) 0 0
\(205\) −22.1043 −0.00753090
\(206\) −760.965 −0.257373
\(207\) 0 0
\(208\) 7752.55 2.58434
\(209\) 601.153 0.198960
\(210\) 0 0
\(211\) −4359.21 −1.42228 −0.711138 0.703053i \(-0.751820\pi\)
−0.711138 + 0.703053i \(0.751820\pi\)
\(212\) −7431.37 −2.40749
\(213\) 0 0
\(214\) −2269.24 −0.724869
\(215\) 78.1332 0.0247844
\(216\) 0 0
\(217\) 0 0
\(218\) −4610.18 −1.43230
\(219\) 0 0
\(220\) 123.566 0.0378675
\(221\) −3762.70 −1.14528
\(222\) 0 0
\(223\) −3312.73 −0.994784 −0.497392 0.867526i \(-0.665709\pi\)
−0.497392 + 0.867526i \(0.665709\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7330.85 −2.15770
\(227\) −798.321 −0.233420 −0.116710 0.993166i \(-0.537235\pi\)
−0.116710 + 0.993166i \(0.537235\pi\)
\(228\) 0 0
\(229\) −354.914 −0.102417 −0.0512083 0.998688i \(-0.516307\pi\)
−0.0512083 + 0.998688i \(0.516307\pi\)
\(230\) 101.983 0.0292372
\(231\) 0 0
\(232\) 17493.4 4.95043
\(233\) −4473.91 −1.25792 −0.628960 0.777438i \(-0.716519\pi\)
−0.628960 + 0.777438i \(0.716519\pi\)
\(234\) 0 0
\(235\) 54.3976 0.0151000
\(236\) −15212.3 −4.19591
\(237\) 0 0
\(238\) 0 0
\(239\) −1494.65 −0.404523 −0.202262 0.979332i \(-0.564829\pi\)
−0.202262 + 0.979332i \(0.564829\pi\)
\(240\) 0 0
\(241\) −156.885 −0.0419329 −0.0209665 0.999780i \(-0.506674\pi\)
−0.0209665 + 0.999780i \(0.506674\pi\)
\(242\) −2857.13 −0.758940
\(243\) 0 0
\(244\) −8077.55 −2.11931
\(245\) 0 0
\(246\) 0 0
\(247\) 689.085 0.177512
\(248\) 21283.5 5.44960
\(249\) 0 0
\(250\) −271.866 −0.0687774
\(251\) 3498.68 0.879819 0.439909 0.898042i \(-0.355011\pi\)
0.439909 + 0.898042i \(0.355011\pi\)
\(252\) 0 0
\(253\) 2665.13 0.662275
\(254\) 5345.72 1.32055
\(255\) 0 0
\(256\) 10965.9 2.67721
\(257\) 4739.10 1.15026 0.575130 0.818062i \(-0.304951\pi\)
0.575130 + 0.818062i \(0.304951\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 141.641 0.0337854
\(261\) 0 0
\(262\) 12959.8 3.05594
\(263\) −3364.44 −0.788823 −0.394411 0.918934i \(-0.629052\pi\)
−0.394411 + 0.918934i \(0.629052\pi\)
\(264\) 0 0
\(265\) −67.7865 −0.0157136
\(266\) 0 0
\(267\) 0 0
\(268\) 1902.28 0.433583
\(269\) −5207.27 −1.18027 −0.590136 0.807304i \(-0.700926\pi\)
−0.590136 + 0.807304i \(0.700926\pi\)
\(270\) 0 0
\(271\) −2312.00 −0.518244 −0.259122 0.965845i \(-0.583433\pi\)
−0.259122 + 0.965845i \(0.583433\pi\)
\(272\) −27480.1 −6.12583
\(273\) 0 0
\(274\) 8753.46 1.92999
\(275\) −3551.79 −0.778840
\(276\) 0 0
\(277\) 2606.72 0.565425 0.282713 0.959205i \(-0.408766\pi\)
0.282713 + 0.959205i \(0.408766\pi\)
\(278\) 11479.5 2.47659
\(279\) 0 0
\(280\) 0 0
\(281\) −5271.62 −1.11914 −0.559570 0.828783i \(-0.689034\pi\)
−0.559570 + 0.828783i \(0.689034\pi\)
\(282\) 0 0
\(283\) 5808.21 1.22001 0.610004 0.792398i \(-0.291168\pi\)
0.610004 + 0.792398i \(0.291168\pi\)
\(284\) −1929.37 −0.403124
\(285\) 0 0
\(286\) 5057.93 1.04574
\(287\) 0 0
\(288\) 0 0
\(289\) 8424.45 1.71473
\(290\) 251.865 0.0510002
\(291\) 0 0
\(292\) −17531.2 −3.51347
\(293\) −1979.70 −0.394729 −0.197364 0.980330i \(-0.563238\pi\)
−0.197364 + 0.980330i \(0.563238\pi\)
\(294\) 0 0
\(295\) −138.761 −0.0273864
\(296\) −11071.0 −2.17396
\(297\) 0 0
\(298\) 2864.16 0.556766
\(299\) 3054.97 0.590881
\(300\) 0 0
\(301\) 0 0
\(302\) −4739.00 −0.902977
\(303\) 0 0
\(304\) 5032.59 0.949469
\(305\) −73.6808 −0.0138326
\(306\) 0 0
\(307\) 924.005 0.171778 0.0858888 0.996305i \(-0.472627\pi\)
0.0858888 + 0.996305i \(0.472627\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 306.433 0.0561427
\(311\) −10108.6 −1.84311 −0.921554 0.388251i \(-0.873080\pi\)
−0.921554 + 0.388251i \(0.873080\pi\)
\(312\) 0 0
\(313\) 6830.52 1.23349 0.616747 0.787161i \(-0.288450\pi\)
0.616747 + 0.787161i \(0.288450\pi\)
\(314\) −32.3337 −0.00581114
\(315\) 0 0
\(316\) 7959.96 1.41703
\(317\) −7623.62 −1.35074 −0.675371 0.737478i \(-0.736016\pi\)
−0.675371 + 0.737478i \(0.736016\pi\)
\(318\) 0 0
\(319\) 6582.02 1.15524
\(320\) 377.141 0.0658839
\(321\) 0 0
\(322\) 0 0
\(323\) −2442.56 −0.420768
\(324\) 0 0
\(325\) −4071.32 −0.694881
\(326\) −4549.45 −0.772916
\(327\) 0 0
\(328\) −8385.30 −1.41159
\(329\) 0 0
\(330\) 0 0
\(331\) 2483.21 0.412355 0.206177 0.978515i \(-0.433898\pi\)
0.206177 + 0.978515i \(0.433898\pi\)
\(332\) 20121.4 3.32622
\(333\) 0 0
\(334\) −3095.73 −0.507158
\(335\) 17.3520 0.00282997
\(336\) 0 0
\(337\) 7895.47 1.27624 0.638121 0.769936i \(-0.279712\pi\)
0.638121 + 0.769936i \(0.279712\pi\)
\(338\) −6201.77 −0.998023
\(339\) 0 0
\(340\) −502.067 −0.0800836
\(341\) 8008.05 1.27173
\(342\) 0 0
\(343\) 0 0
\(344\) 29639.9 4.64557
\(345\) 0 0
\(346\) −22534.1 −3.50127
\(347\) 889.423 0.137599 0.0687994 0.997631i \(-0.478083\pi\)
0.0687994 + 0.997631i \(0.478083\pi\)
\(348\) 0 0
\(349\) 6962.20 1.06785 0.533923 0.845533i \(-0.320717\pi\)
0.533923 + 0.845533i \(0.320717\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19762.2 2.99241
\(353\) −11560.6 −1.74308 −0.871542 0.490320i \(-0.836880\pi\)
−0.871542 + 0.490320i \(0.836880\pi\)
\(354\) 0 0
\(355\) −17.5991 −0.00263116
\(356\) −4615.00 −0.687064
\(357\) 0 0
\(358\) 5066.60 0.747984
\(359\) 8457.02 1.24330 0.621649 0.783296i \(-0.286463\pi\)
0.621649 + 0.783296i \(0.286463\pi\)
\(360\) 0 0
\(361\) −6411.68 −0.934783
\(362\) 6617.89 0.960853
\(363\) 0 0
\(364\) 0 0
\(365\) −159.914 −0.0229322
\(366\) 0 0
\(367\) 6912.92 0.983247 0.491623 0.870808i \(-0.336404\pi\)
0.491623 + 0.870808i \(0.336404\pi\)
\(368\) 22311.3 3.16048
\(369\) 0 0
\(370\) −159.398 −0.0223965
\(371\) 0 0
\(372\) 0 0
\(373\) 423.911 0.0588453 0.0294226 0.999567i \(-0.490633\pi\)
0.0294226 + 0.999567i \(0.490633\pi\)
\(374\) −17928.6 −2.47879
\(375\) 0 0
\(376\) 20635.8 2.83034
\(377\) 7544.79 1.03071
\(378\) 0 0
\(379\) −9714.33 −1.31660 −0.658300 0.752756i \(-0.728724\pi\)
−0.658300 + 0.752756i \(0.728724\pi\)
\(380\) 91.9465 0.0124125
\(381\) 0 0
\(382\) −9981.37 −1.33689
\(383\) −2214.15 −0.295399 −0.147699 0.989032i \(-0.547187\pi\)
−0.147699 + 0.989032i \(0.547187\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4490.84 −0.592171
\(387\) 0 0
\(388\) 18462.9 2.41576
\(389\) −7665.46 −0.999111 −0.499556 0.866282i \(-0.666503\pi\)
−0.499556 + 0.866282i \(0.666503\pi\)
\(390\) 0 0
\(391\) −10828.8 −1.40060
\(392\) 0 0
\(393\) 0 0
\(394\) −26615.9 −3.40328
\(395\) 72.6081 0.00924889
\(396\) 0 0
\(397\) 4978.20 0.629341 0.314671 0.949201i \(-0.398106\pi\)
0.314671 + 0.949201i \(0.398106\pi\)
\(398\) −8095.60 −1.01959
\(399\) 0 0
\(400\) −29734.0 −3.71675
\(401\) −4770.21 −0.594047 −0.297023 0.954870i \(-0.595994\pi\)
−0.297023 + 0.954870i \(0.595994\pi\)
\(402\) 0 0
\(403\) 9179.41 1.13464
\(404\) −3426.43 −0.421958
\(405\) 0 0
\(406\) 0 0
\(407\) −4165.56 −0.507319
\(408\) 0 0
\(409\) −597.257 −0.0722065 −0.0361033 0.999348i \(-0.511495\pi\)
−0.0361033 + 0.999348i \(0.511495\pi\)
\(410\) −120.729 −0.0145424
\(411\) 0 0
\(412\) −3041.62 −0.363714
\(413\) 0 0
\(414\) 0 0
\(415\) 183.541 0.0217100
\(416\) 22652.9 2.66983
\(417\) 0 0
\(418\) 3283.37 0.384198
\(419\) 9571.90 1.11603 0.558016 0.829830i \(-0.311563\pi\)
0.558016 + 0.829830i \(0.311563\pi\)
\(420\) 0 0
\(421\) −5954.33 −0.689303 −0.344651 0.938731i \(-0.612003\pi\)
−0.344651 + 0.938731i \(0.612003\pi\)
\(422\) −23809.0 −2.74646
\(423\) 0 0
\(424\) −25714.9 −2.94534
\(425\) 14431.4 1.64712
\(426\) 0 0
\(427\) 0 0
\(428\) −9070.29 −1.02437
\(429\) 0 0
\(430\) 426.747 0.0478594
\(431\) −2543.44 −0.284254 −0.142127 0.989848i \(-0.545394\pi\)
−0.142127 + 0.989848i \(0.545394\pi\)
\(432\) 0 0
\(433\) 9781.07 1.08556 0.542781 0.839874i \(-0.317371\pi\)
0.542781 + 0.839874i \(0.317371\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −18427.2 −2.02409
\(437\) 1983.14 0.217086
\(438\) 0 0
\(439\) −16820.3 −1.82867 −0.914336 0.404957i \(-0.867287\pi\)
−0.914336 + 0.404957i \(0.867287\pi\)
\(440\) 427.579 0.0463273
\(441\) 0 0
\(442\) −20551.1 −2.21157
\(443\) 3726.75 0.399691 0.199846 0.979827i \(-0.435956\pi\)
0.199846 + 0.979827i \(0.435956\pi\)
\(444\) 0 0
\(445\) −42.0965 −0.00448442
\(446\) −18093.4 −1.92096
\(447\) 0 0
\(448\) 0 0
\(449\) −9287.05 −0.976131 −0.488065 0.872807i \(-0.662297\pi\)
−0.488065 + 0.872807i \(0.662297\pi\)
\(450\) 0 0
\(451\) −3155.02 −0.329411
\(452\) −29301.9 −3.04921
\(453\) 0 0
\(454\) −4360.26 −0.450742
\(455\) 0 0
\(456\) 0 0
\(457\) 12019.4 1.23029 0.615147 0.788413i \(-0.289097\pi\)
0.615147 + 0.788413i \(0.289097\pi\)
\(458\) −1938.47 −0.197770
\(459\) 0 0
\(460\) 407.633 0.0413173
\(461\) −9571.71 −0.967026 −0.483513 0.875337i \(-0.660639\pi\)
−0.483513 + 0.875337i \(0.660639\pi\)
\(462\) 0 0
\(463\) 2265.15 0.227366 0.113683 0.993517i \(-0.463735\pi\)
0.113683 + 0.993517i \(0.463735\pi\)
\(464\) 55101.8 5.51301
\(465\) 0 0
\(466\) −24435.5 −2.42908
\(467\) −5320.94 −0.527246 −0.263623 0.964626i \(-0.584918\pi\)
−0.263623 + 0.964626i \(0.584918\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 297.108 0.0291587
\(471\) 0 0
\(472\) −52639.2 −5.13330
\(473\) 11152.2 1.08410
\(474\) 0 0
\(475\) −2642.91 −0.255294
\(476\) 0 0
\(477\) 0 0
\(478\) −8163.48 −0.781148
\(479\) 3766.98 0.359327 0.179663 0.983728i \(-0.442499\pi\)
0.179663 + 0.983728i \(0.442499\pi\)
\(480\) 0 0
\(481\) −4774.86 −0.452630
\(482\) −856.871 −0.0809739
\(483\) 0 0
\(484\) −11420.1 −1.07251
\(485\) 168.413 0.0157675
\(486\) 0 0
\(487\) 8857.92 0.824211 0.412105 0.911136i \(-0.364794\pi\)
0.412105 + 0.911136i \(0.364794\pi\)
\(488\) −27950.9 −2.59278
\(489\) 0 0
\(490\) 0 0
\(491\) −17311.1 −1.59112 −0.795560 0.605874i \(-0.792823\pi\)
−0.795560 + 0.605874i \(0.792823\pi\)
\(492\) 0 0
\(493\) −26743.6 −2.44315
\(494\) 3763.63 0.342781
\(495\) 0 0
\(496\) 67039.8 6.06891
\(497\) 0 0
\(498\) 0 0
\(499\) −7030.45 −0.630714 −0.315357 0.948973i \(-0.602124\pi\)
−0.315357 + 0.948973i \(0.602124\pi\)
\(500\) −1086.67 −0.0971945
\(501\) 0 0
\(502\) 19109.0 1.69896
\(503\) 1519.74 0.134716 0.0673578 0.997729i \(-0.478543\pi\)
0.0673578 + 0.997729i \(0.478543\pi\)
\(504\) 0 0
\(505\) −31.2547 −0.00275409
\(506\) 14556.4 1.27887
\(507\) 0 0
\(508\) 21367.2 1.86617
\(509\) −19455.4 −1.69419 −0.847096 0.531440i \(-0.821651\pi\)
−0.847096 + 0.531440i \(0.821651\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21639.1 1.86782
\(513\) 0 0
\(514\) 25883.9 2.22119
\(515\) −27.7447 −0.00237394
\(516\) 0 0
\(517\) 7764.35 0.660495
\(518\) 0 0
\(519\) 0 0
\(520\) 490.122 0.0413332
\(521\) 10224.0 0.859731 0.429866 0.902893i \(-0.358561\pi\)
0.429866 + 0.902893i \(0.358561\pi\)
\(522\) 0 0
\(523\) 16607.0 1.38847 0.694237 0.719746i \(-0.255742\pi\)
0.694237 + 0.719746i \(0.255742\pi\)
\(524\) 51801.0 4.31858
\(525\) 0 0
\(526\) −18375.9 −1.52324
\(527\) −32537.8 −2.68950
\(528\) 0 0
\(529\) −3375.01 −0.277390
\(530\) −370.235 −0.0303434
\(531\) 0 0
\(532\) 0 0
\(533\) −3616.52 −0.293900
\(534\) 0 0
\(535\) −82.7363 −0.00668598
\(536\) 6582.48 0.530447
\(537\) 0 0
\(538\) −28441.0 −2.27914
\(539\) 0 0
\(540\) 0 0
\(541\) 6582.54 0.523116 0.261558 0.965188i \(-0.415764\pi\)
0.261558 + 0.965188i \(0.415764\pi\)
\(542\) −12627.7 −1.00075
\(543\) 0 0
\(544\) −80296.4 −6.32846
\(545\) −168.087 −0.0132111
\(546\) 0 0
\(547\) 3407.73 0.266369 0.133185 0.991091i \(-0.457480\pi\)
0.133185 + 0.991091i \(0.457480\pi\)
\(548\) 34988.1 2.72741
\(549\) 0 0
\(550\) −19399.1 −1.50397
\(551\) 4897.72 0.378675
\(552\) 0 0
\(553\) 0 0
\(554\) 14237.4 1.09185
\(555\) 0 0
\(556\) 45884.2 3.49986
\(557\) −9480.11 −0.721158 −0.360579 0.932729i \(-0.617421\pi\)
−0.360579 + 0.932729i \(0.617421\pi\)
\(558\) 0 0
\(559\) 12783.5 0.967233
\(560\) 0 0
\(561\) 0 0
\(562\) −28792.5 −2.16110
\(563\) −21864.4 −1.63673 −0.818363 0.574702i \(-0.805118\pi\)
−0.818363 + 0.574702i \(0.805118\pi\)
\(564\) 0 0
\(565\) −267.282 −0.0199020
\(566\) 31723.2 2.35588
\(567\) 0 0
\(568\) −6676.23 −0.493184
\(569\) −1143.39 −0.0842414 −0.0421207 0.999113i \(-0.513411\pi\)
−0.0421207 + 0.999113i \(0.513411\pi\)
\(570\) 0 0
\(571\) 10471.1 0.767429 0.383715 0.923452i \(-0.374645\pi\)
0.383715 + 0.923452i \(0.374645\pi\)
\(572\) 20216.9 1.47781
\(573\) 0 0
\(574\) 0 0
\(575\) −11717.0 −0.849795
\(576\) 0 0
\(577\) 4759.60 0.343405 0.171703 0.985149i \(-0.445073\pi\)
0.171703 + 0.985149i \(0.445073\pi\)
\(578\) 46012.6 3.31119
\(579\) 0 0
\(580\) 1006.72 0.0720721
\(581\) 0 0
\(582\) 0 0
\(583\) −9675.39 −0.687331
\(584\) −60663.3 −4.29840
\(585\) 0 0
\(586\) −10812.7 −0.762234
\(587\) −6307.45 −0.443503 −0.221751 0.975103i \(-0.571177\pi\)
−0.221751 + 0.975103i \(0.571177\pi\)
\(588\) 0 0
\(589\) 5958.83 0.416858
\(590\) −757.885 −0.0528841
\(591\) 0 0
\(592\) −34872.2 −2.42101
\(593\) 17731.9 1.22793 0.613963 0.789335i \(-0.289574\pi\)
0.613963 + 0.789335i \(0.289574\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11448.2 0.786808
\(597\) 0 0
\(598\) 16685.6 1.14101
\(599\) 19110.1 1.30353 0.651766 0.758420i \(-0.274028\pi\)
0.651766 + 0.758420i \(0.274028\pi\)
\(600\) 0 0
\(601\) −13118.3 −0.890357 −0.445179 0.895442i \(-0.646860\pi\)
−0.445179 + 0.895442i \(0.646860\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −18942.1 −1.27606
\(605\) −104.171 −0.00700024
\(606\) 0 0
\(607\) 17473.4 1.16841 0.584204 0.811607i \(-0.301407\pi\)
0.584204 + 0.811607i \(0.301407\pi\)
\(608\) 14705.1 0.980876
\(609\) 0 0
\(610\) −402.429 −0.0267112
\(611\) 8900.06 0.589293
\(612\) 0 0
\(613\) 3095.39 0.203951 0.101975 0.994787i \(-0.467484\pi\)
0.101975 + 0.994787i \(0.467484\pi\)
\(614\) 5046.71 0.331708
\(615\) 0 0
\(616\) 0 0
\(617\) 26334.8 1.71831 0.859157 0.511712i \(-0.170989\pi\)
0.859157 + 0.511712i \(0.170989\pi\)
\(618\) 0 0
\(619\) −2686.04 −0.174412 −0.0872061 0.996190i \(-0.527794\pi\)
−0.0872061 + 0.996190i \(0.527794\pi\)
\(620\) 1224.83 0.0793395
\(621\) 0 0
\(622\) −55211.0 −3.55910
\(623\) 0 0
\(624\) 0 0
\(625\) 15610.1 0.999048
\(626\) 37306.8 2.38192
\(627\) 0 0
\(628\) −129.240 −0.00821216
\(629\) 16925.2 1.07290
\(630\) 0 0
\(631\) 22414.2 1.41409 0.707047 0.707167i \(-0.250027\pi\)
0.707047 + 0.707167i \(0.250027\pi\)
\(632\) 27543.9 1.73361
\(633\) 0 0
\(634\) −41638.6 −2.60833
\(635\) 194.904 0.0121804
\(636\) 0 0
\(637\) 0 0
\(638\) 35949.6 2.23081
\(639\) 0 0
\(640\) 952.222 0.0588123
\(641\) 22139.1 1.36418 0.682092 0.731266i \(-0.261070\pi\)
0.682092 + 0.731266i \(0.261070\pi\)
\(642\) 0 0
\(643\) 22523.7 1.38141 0.690707 0.723134i \(-0.257299\pi\)
0.690707 + 0.723134i \(0.257299\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −13340.8 −0.812516
\(647\) 11523.5 0.700209 0.350105 0.936711i \(-0.386146\pi\)
0.350105 + 0.936711i \(0.386146\pi\)
\(648\) 0 0
\(649\) −19805.9 −1.19792
\(650\) −22236.7 −1.34184
\(651\) 0 0
\(652\) −18184.4 −1.09226
\(653\) 461.937 0.0276830 0.0138415 0.999904i \(-0.495594\pi\)
0.0138415 + 0.999904i \(0.495594\pi\)
\(654\) 0 0
\(655\) 472.511 0.0281871
\(656\) −26412.5 −1.57200
\(657\) 0 0
\(658\) 0 0
\(659\) −14373.3 −0.849627 −0.424813 0.905281i \(-0.639660\pi\)
−0.424813 + 0.905281i \(0.639660\pi\)
\(660\) 0 0
\(661\) 67.8490 0.00399246 0.00199623 0.999998i \(-0.499365\pi\)
0.00199623 + 0.999998i \(0.499365\pi\)
\(662\) 13562.8 0.796271
\(663\) 0 0
\(664\) 69626.3 4.06931
\(665\) 0 0
\(666\) 0 0
\(667\) 21713.4 1.26049
\(668\) −12373.8 −0.716702
\(669\) 0 0
\(670\) 94.7727 0.00546476
\(671\) −10516.7 −0.605056
\(672\) 0 0
\(673\) 21970.2 1.25838 0.629190 0.777252i \(-0.283387\pi\)
0.629190 + 0.777252i \(0.283387\pi\)
\(674\) 43123.4 2.46447
\(675\) 0 0
\(676\) −24788.9 −1.41038
\(677\) −2993.29 −0.169928 −0.0849642 0.996384i \(-0.527078\pi\)
−0.0849642 + 0.996384i \(0.527078\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1737.31 −0.0979747
\(681\) 0 0
\(682\) 43738.2 2.45575
\(683\) −5461.90 −0.305994 −0.152997 0.988227i \(-0.548892\pi\)
−0.152997 + 0.988227i \(0.548892\pi\)
\(684\) 0 0
\(685\) 319.150 0.0178016
\(686\) 0 0
\(687\) 0 0
\(688\) 93361.4 5.17350
\(689\) −11090.6 −0.613236
\(690\) 0 0
\(691\) −15779.0 −0.868685 −0.434342 0.900748i \(-0.643019\pi\)
−0.434342 + 0.900748i \(0.643019\pi\)
\(692\) −90070.0 −4.94790
\(693\) 0 0
\(694\) 4857.84 0.265708
\(695\) 418.540 0.0228434
\(696\) 0 0
\(697\) 12819.3 0.696650
\(698\) 38026.0 2.06204
\(699\) 0 0
\(700\) 0 0
\(701\) −8058.91 −0.434209 −0.217105 0.976148i \(-0.569661\pi\)
−0.217105 + 0.976148i \(0.569661\pi\)
\(702\) 0 0
\(703\) −3099.61 −0.166293
\(704\) 53830.6 2.88184
\(705\) 0 0
\(706\) −63141.5 −3.36595
\(707\) 0 0
\(708\) 0 0
\(709\) 26018.9 1.37823 0.689113 0.724654i \(-0.258001\pi\)
0.689113 + 0.724654i \(0.258001\pi\)
\(710\) −96.1225 −0.00508086
\(711\) 0 0
\(712\) −15969.4 −0.840558
\(713\) 26417.7 1.38759
\(714\) 0 0
\(715\) 184.412 0.00964560
\(716\) 20251.5 1.05703
\(717\) 0 0
\(718\) 46190.4 2.40085
\(719\) −4663.46 −0.241889 −0.120944 0.992659i \(-0.538592\pi\)
−0.120944 + 0.992659i \(0.538592\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −35019.2 −1.80510
\(723\) 0 0
\(724\) 26452.1 1.35785
\(725\) −28937.2 −1.48234
\(726\) 0 0
\(727\) 35484.5 1.81024 0.905121 0.425154i \(-0.139780\pi\)
0.905121 + 0.425154i \(0.139780\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −873.413 −0.0442828
\(731\) −45312.9 −2.29269
\(732\) 0 0
\(733\) −15257.1 −0.768805 −0.384402 0.923166i \(-0.625592\pi\)
−0.384402 + 0.923166i \(0.625592\pi\)
\(734\) 37756.9 1.89868
\(735\) 0 0
\(736\) 65193.4 3.26503
\(737\) 2476.70 0.123786
\(738\) 0 0
\(739\) 25753.7 1.28196 0.640978 0.767559i \(-0.278529\pi\)
0.640978 + 0.767559i \(0.278529\pi\)
\(740\) −637.123 −0.0316501
\(741\) 0 0
\(742\) 0 0
\(743\) 5703.55 0.281619 0.140809 0.990037i \(-0.455029\pi\)
0.140809 + 0.990037i \(0.455029\pi\)
\(744\) 0 0
\(745\) 104.427 0.00513545
\(746\) 2315.31 0.113632
\(747\) 0 0
\(748\) −71661.7 −3.50296
\(749\) 0 0
\(750\) 0 0
\(751\) 15450.9 0.750747 0.375373 0.926874i \(-0.377515\pi\)
0.375373 + 0.926874i \(0.377515\pi\)
\(752\) 64999.7 3.15199
\(753\) 0 0
\(754\) 41208.0 1.99033
\(755\) −172.784 −0.00832879
\(756\) 0 0
\(757\) 12434.7 0.597025 0.298513 0.954406i \(-0.403509\pi\)
0.298513 + 0.954406i \(0.403509\pi\)
\(758\) −53057.6 −2.54240
\(759\) 0 0
\(760\) 318.164 0.0151855
\(761\) 2318.62 0.110447 0.0552234 0.998474i \(-0.482413\pi\)
0.0552234 + 0.998474i \(0.482413\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −39896.1 −1.88926
\(765\) 0 0
\(766\) −12093.2 −0.570425
\(767\) −22702.9 −1.06878
\(768\) 0 0
\(769\) 23104.3 1.08344 0.541718 0.840560i \(-0.317774\pi\)
0.541718 + 0.840560i \(0.317774\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −17950.2 −0.836841
\(773\) 12433.6 0.578532 0.289266 0.957249i \(-0.406589\pi\)
0.289266 + 0.957249i \(0.406589\pi\)
\(774\) 0 0
\(775\) −35206.6 −1.63182
\(776\) 63887.6 2.95545
\(777\) 0 0
\(778\) −41867.1 −1.92932
\(779\) −2347.67 −0.107977
\(780\) 0 0
\(781\) −2511.98 −0.115090
\(782\) −59144.5 −2.70461
\(783\) 0 0
\(784\) 0 0
\(785\) −1.17888 −5.36002e−5 0
\(786\) 0 0
\(787\) −24085.4 −1.09092 −0.545458 0.838138i \(-0.683644\pi\)
−0.545458 + 0.838138i \(0.683644\pi\)
\(788\) −106386. −4.80943
\(789\) 0 0
\(790\) 396.570 0.0178599
\(791\) 0 0
\(792\) 0 0
\(793\) −12055.0 −0.539831
\(794\) 27189.8 1.21528
\(795\) 0 0
\(796\) −32358.6 −1.44085
\(797\) −36596.8 −1.62651 −0.813253 0.581910i \(-0.802306\pi\)
−0.813253 + 0.581910i \(0.802306\pi\)
\(798\) 0 0
\(799\) −31547.6 −1.39684
\(800\) −86882.4 −3.83970
\(801\) 0 0
\(802\) −26053.8 −1.14712
\(803\) −22825.0 −1.00308
\(804\) 0 0
\(805\) 0 0
\(806\) 50135.9 2.19102
\(807\) 0 0
\(808\) −11856.5 −0.516226
\(809\) −20746.3 −0.901610 −0.450805 0.892622i \(-0.648863\pi\)
−0.450805 + 0.892622i \(0.648863\pi\)
\(810\) 0 0
\(811\) −8538.03 −0.369680 −0.184840 0.982769i \(-0.559177\pi\)
−0.184840 + 0.982769i \(0.559177\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −22751.4 −0.979650
\(815\) −165.872 −0.00712915
\(816\) 0 0
\(817\) 8298.42 0.355355
\(818\) −3262.09 −0.139433
\(819\) 0 0
\(820\) −482.562 −0.0205510
\(821\) 20949.8 0.890564 0.445282 0.895390i \(-0.353103\pi\)
0.445282 + 0.895390i \(0.353103\pi\)
\(822\) 0 0
\(823\) −10130.5 −0.429073 −0.214536 0.976716i \(-0.568824\pi\)
−0.214536 + 0.976716i \(0.568824\pi\)
\(824\) −10525.0 −0.444969
\(825\) 0 0
\(826\) 0 0
\(827\) 25327.3 1.06495 0.532476 0.846445i \(-0.321262\pi\)
0.532476 + 0.846445i \(0.321262\pi\)
\(828\) 0 0
\(829\) −19975.9 −0.836901 −0.418451 0.908240i \(-0.637427\pi\)
−0.418451 + 0.908240i \(0.637427\pi\)
\(830\) 1002.46 0.0419227
\(831\) 0 0
\(832\) 61704.6 2.57118
\(833\) 0 0
\(834\) 0 0
\(835\) −112.870 −0.00467787
\(836\) 13123.8 0.542939
\(837\) 0 0
\(838\) 52279.6 2.15510
\(839\) 3888.98 0.160027 0.0800134 0.996794i \(-0.474504\pi\)
0.0800134 + 0.996794i \(0.474504\pi\)
\(840\) 0 0
\(841\) 29236.1 1.19874
\(842\) −32521.3 −1.33107
\(843\) 0 0
\(844\) −95166.2 −3.88123
\(845\) −226.116 −0.00920547
\(846\) 0 0
\(847\) 0 0
\(848\) −80998.1 −3.28006
\(849\) 0 0
\(850\) 78821.2 3.18064
\(851\) −13741.7 −0.553537
\(852\) 0 0
\(853\) −32093.5 −1.28823 −0.644116 0.764928i \(-0.722775\pi\)
−0.644116 + 0.764928i \(0.722775\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −31386.1 −1.25322
\(857\) 29879.8 1.19098 0.595492 0.803361i \(-0.296957\pi\)
0.595492 + 0.803361i \(0.296957\pi\)
\(858\) 0 0
\(859\) 32988.3 1.31030 0.655150 0.755499i \(-0.272606\pi\)
0.655150 + 0.755499i \(0.272606\pi\)
\(860\) 1705.73 0.0676337
\(861\) 0 0
\(862\) −13891.7 −0.548903
\(863\) 26716.8 1.05382 0.526912 0.849920i \(-0.323350\pi\)
0.526912 + 0.849920i \(0.323350\pi\)
\(864\) 0 0
\(865\) −821.590 −0.0322947
\(866\) 53422.1 2.09626
\(867\) 0 0
\(868\) 0 0
\(869\) 10363.6 0.404558
\(870\) 0 0
\(871\) 2838.98 0.110442
\(872\) −63763.9 −2.47628
\(873\) 0 0
\(874\) 10831.5 0.419199
\(875\) 0 0
\(876\) 0 0
\(877\) −17965.7 −0.691742 −0.345871 0.938282i \(-0.612417\pi\)
−0.345871 + 0.938282i \(0.612417\pi\)
\(878\) −91868.6 −3.53122
\(879\) 0 0
\(880\) 1346.81 0.0515921
\(881\) 15852.9 0.606239 0.303119 0.952953i \(-0.401972\pi\)
0.303119 + 0.952953i \(0.401972\pi\)
\(882\) 0 0
\(883\) −22050.7 −0.840392 −0.420196 0.907433i \(-0.638039\pi\)
−0.420196 + 0.907433i \(0.638039\pi\)
\(884\) −82143.9 −3.12534
\(885\) 0 0
\(886\) 20354.7 0.771817
\(887\) 27772.8 1.05132 0.525658 0.850696i \(-0.323819\pi\)
0.525658 + 0.850696i \(0.323819\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −229.922 −0.00865956
\(891\) 0 0
\(892\) −72320.5 −2.71465
\(893\) 5777.50 0.216502
\(894\) 0 0
\(895\) 184.728 0.00689918
\(896\) 0 0
\(897\) 0 0
\(898\) −50723.8 −1.88494
\(899\) 65243.2 2.42045
\(900\) 0 0
\(901\) 39312.4 1.45359
\(902\) −17232.1 −0.636103
\(903\) 0 0
\(904\) −101394. −3.73043
\(905\) 241.288 0.00886262
\(906\) 0 0
\(907\) −5896.03 −0.215848 −0.107924 0.994159i \(-0.534420\pi\)
−0.107924 + 0.994159i \(0.534420\pi\)
\(908\) −17428.2 −0.636978
\(909\) 0 0
\(910\) 0 0
\(911\) 42197.8 1.53466 0.767331 0.641251i \(-0.221584\pi\)
0.767331 + 0.641251i \(0.221584\pi\)
\(912\) 0 0
\(913\) 26197.4 0.949623
\(914\) 65647.4 2.37574
\(915\) 0 0
\(916\) −7748.17 −0.279483
\(917\) 0 0
\(918\) 0 0
\(919\) −40928.7 −1.46911 −0.734555 0.678549i \(-0.762609\pi\)
−0.734555 + 0.678549i \(0.762609\pi\)
\(920\) 1410.54 0.0505479
\(921\) 0 0
\(922\) −52278.6 −1.86736
\(923\) −2879.41 −0.102684
\(924\) 0 0
\(925\) 18313.4 0.650964
\(926\) 12371.7 0.439050
\(927\) 0 0
\(928\) 161007. 5.69537
\(929\) −21478.9 −0.758558 −0.379279 0.925282i \(-0.623828\pi\)
−0.379279 + 0.925282i \(0.623828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −97670.3 −3.43272
\(933\) 0 0
\(934\) −29061.9 −1.01813
\(935\) −653.675 −0.0228636
\(936\) 0 0
\(937\) 19560.1 0.681964 0.340982 0.940070i \(-0.389241\pi\)
0.340982 + 0.940070i \(0.389241\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1187.56 0.0412063
\(941\) −48602.4 −1.68373 −0.841867 0.539685i \(-0.818543\pi\)
−0.841867 + 0.539685i \(0.818543\pi\)
\(942\) 0 0
\(943\) −10408.1 −0.359421
\(944\) −165806. −5.71666
\(945\) 0 0
\(946\) 60911.0 2.09343
\(947\) −28778.0 −0.987496 −0.493748 0.869605i \(-0.664373\pi\)
−0.493748 + 0.869605i \(0.664373\pi\)
\(948\) 0 0
\(949\) −26163.7 −0.894951
\(950\) −14435.0 −0.492982
\(951\) 0 0
\(952\) 0 0
\(953\) −26009.2 −0.884072 −0.442036 0.896997i \(-0.645744\pi\)
−0.442036 + 0.896997i \(0.645744\pi\)
\(954\) 0 0
\(955\) −363.920 −0.0123311
\(956\) −32629.9 −1.10390
\(957\) 0 0
\(958\) 20574.4 0.693872
\(959\) 0 0
\(960\) 0 0
\(961\) 49587.5 1.66451
\(962\) −26079.3 −0.874043
\(963\) 0 0
\(964\) −3424.97 −0.114430
\(965\) −163.736 −0.00546201
\(966\) 0 0
\(967\) −13284.5 −0.441779 −0.220889 0.975299i \(-0.570896\pi\)
−0.220889 + 0.975299i \(0.570896\pi\)
\(968\) −39517.2 −1.31212
\(969\) 0 0
\(970\) 919.836 0.0304476
\(971\) 44248.6 1.46242 0.731208 0.682155i \(-0.238957\pi\)
0.731208 + 0.682155i \(0.238957\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 48380.0 1.59158
\(975\) 0 0
\(976\) −88041.2 −2.88743
\(977\) 48967.4 1.60349 0.801744 0.597668i \(-0.203906\pi\)
0.801744 + 0.597668i \(0.203906\pi\)
\(978\) 0 0
\(979\) −6008.58 −0.196154
\(980\) 0 0
\(981\) 0 0
\(982\) −94549.7 −3.07251
\(983\) 49856.3 1.61767 0.808835 0.588035i \(-0.200098\pi\)
0.808835 + 0.588035i \(0.200098\pi\)
\(984\) 0 0
\(985\) −970.414 −0.0313908
\(986\) −146068. −4.71780
\(987\) 0 0
\(988\) 15043.5 0.484410
\(989\) 36790.0 1.18286
\(990\) 0 0
\(991\) 48648.1 1.55939 0.779696 0.626158i \(-0.215373\pi\)
0.779696 + 0.626158i \(0.215373\pi\)
\(992\) 195889. 6.26965
\(993\) 0 0
\(994\) 0 0
\(995\) −295.165 −0.00940437
\(996\) 0 0
\(997\) 9709.15 0.308417 0.154209 0.988038i \(-0.450717\pi\)
0.154209 + 0.988038i \(0.450717\pi\)
\(998\) −38398.8 −1.21793
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bo.1.8 8
3.2 odd 2 inner 1323.4.a.bo.1.1 8
7.2 even 3 189.4.e.h.109.1 16
7.4 even 3 189.4.e.h.163.1 yes 16
7.6 odd 2 1323.4.a.bn.1.8 8
21.2 odd 6 189.4.e.h.109.8 yes 16
21.11 odd 6 189.4.e.h.163.8 yes 16
21.20 even 2 1323.4.a.bn.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.1 16 7.2 even 3
189.4.e.h.109.8 yes 16 21.2 odd 6
189.4.e.h.163.1 yes 16 7.4 even 3
189.4.e.h.163.8 yes 16 21.11 odd 6
1323.4.a.bn.1.1 8 21.20 even 2
1323.4.a.bn.1.8 8 7.6 odd 2
1323.4.a.bo.1.1 8 3.2 odd 2 inner
1323.4.a.bo.1.8 8 1.1 even 1 trivial