Properties

Label 1323.4.a.bo.1.6
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(6.13087\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.29273 q^{2} +2.84210 q^{4} +21.7165 q^{5} -16.9836 q^{8} +O(q^{10})\) \(q+3.29273 q^{2} +2.84210 q^{4} +21.7165 q^{5} -16.9836 q^{8} +71.5066 q^{10} -41.9640 q^{11} +46.0329 q^{13} -78.6593 q^{16} +2.01763 q^{17} +73.2487 q^{19} +61.7204 q^{20} -138.176 q^{22} -24.1677 q^{23} +346.605 q^{25} +151.574 q^{26} +90.7240 q^{29} +53.2052 q^{31} -123.135 q^{32} +6.64353 q^{34} +67.8619 q^{37} +241.189 q^{38} -368.824 q^{40} +341.211 q^{41} +509.713 q^{43} -119.266 q^{44} -79.5778 q^{46} +38.4702 q^{47} +1141.28 q^{50} +130.830 q^{52} +389.388 q^{53} -911.311 q^{55} +298.730 q^{58} +450.621 q^{59} +225.903 q^{61} +175.191 q^{62} +223.822 q^{64} +999.672 q^{65} -772.012 q^{67} +5.73431 q^{68} -962.655 q^{71} -1053.79 q^{73} +223.451 q^{74} +208.180 q^{76} +33.5907 q^{79} -1708.20 q^{80} +1123.52 q^{82} +446.386 q^{83} +43.8159 q^{85} +1678.35 q^{86} +712.700 q^{88} +489.798 q^{89} -68.6870 q^{92} +126.672 q^{94} +1590.70 q^{95} +460.958 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 48 q^{4} + 44 q^{10} - 84 q^{13} + 156 q^{16} + 12 q^{19} + 224 q^{22} + 408 q^{25} + 800 q^{31} - 948 q^{34} + 692 q^{37} + 96 q^{40} + 1456 q^{43} + 1524 q^{46} + 1972 q^{52} - 1280 q^{55} + 2372 q^{58} + 216 q^{61} + 4964 q^{64} + 684 q^{67} - 4564 q^{73} - 380 q^{76} + 556 q^{79} + 3340 q^{82} + 1296 q^{85} + 6696 q^{88} - 492 q^{94} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.29273 1.16416 0.582079 0.813132i \(-0.302240\pi\)
0.582079 + 0.813132i \(0.302240\pi\)
\(3\) 0 0
\(4\) 2.84210 0.355263
\(5\) 21.7165 1.94238 0.971190 0.238305i \(-0.0765918\pi\)
0.971190 + 0.238305i \(0.0765918\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −16.9836 −0.750576
\(9\) 0 0
\(10\) 71.5066 2.26124
\(11\) −41.9640 −1.15024 −0.575119 0.818069i \(-0.695044\pi\)
−0.575119 + 0.818069i \(0.695044\pi\)
\(12\) 0 0
\(13\) 46.0329 0.982095 0.491047 0.871133i \(-0.336614\pi\)
0.491047 + 0.871133i \(0.336614\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −78.6593 −1.22905
\(17\) 2.01763 0.0287852 0.0143926 0.999896i \(-0.495419\pi\)
0.0143926 + 0.999896i \(0.495419\pi\)
\(18\) 0 0
\(19\) 73.2487 0.884442 0.442221 0.896906i \(-0.354191\pi\)
0.442221 + 0.896906i \(0.354191\pi\)
\(20\) 61.7204 0.690055
\(21\) 0 0
\(22\) −138.176 −1.33906
\(23\) −24.1677 −0.219100 −0.109550 0.993981i \(-0.534941\pi\)
−0.109550 + 0.993981i \(0.534941\pi\)
\(24\) 0 0
\(25\) 346.605 2.77284
\(26\) 151.574 1.14331
\(27\) 0 0
\(28\) 0 0
\(29\) 90.7240 0.580932 0.290466 0.956885i \(-0.406190\pi\)
0.290466 + 0.956885i \(0.406190\pi\)
\(30\) 0 0
\(31\) 53.2052 0.308256 0.154128 0.988051i \(-0.450743\pi\)
0.154128 + 0.988051i \(0.450743\pi\)
\(32\) −123.135 −0.680233
\(33\) 0 0
\(34\) 6.64353 0.0335105
\(35\) 0 0
\(36\) 0 0
\(37\) 67.8619 0.301525 0.150762 0.988570i \(-0.451827\pi\)
0.150762 + 0.988570i \(0.451827\pi\)
\(38\) 241.189 1.02963
\(39\) 0 0
\(40\) −368.824 −1.45790
\(41\) 341.211 1.29971 0.649856 0.760057i \(-0.274829\pi\)
0.649856 + 0.760057i \(0.274829\pi\)
\(42\) 0 0
\(43\) 509.713 1.80769 0.903843 0.427863i \(-0.140734\pi\)
0.903843 + 0.427863i \(0.140734\pi\)
\(44\) −119.266 −0.408637
\(45\) 0 0
\(46\) −79.5778 −0.255067
\(47\) 38.4702 0.119393 0.0596963 0.998217i \(-0.480987\pi\)
0.0596963 + 0.998217i \(0.480987\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1141.28 3.22803
\(51\) 0 0
\(52\) 130.830 0.348902
\(53\) 389.388 1.00918 0.504590 0.863359i \(-0.331644\pi\)
0.504590 + 0.863359i \(0.331644\pi\)
\(54\) 0 0
\(55\) −911.311 −2.23420
\(56\) 0 0
\(57\) 0 0
\(58\) 298.730 0.676296
\(59\) 450.621 0.994336 0.497168 0.867654i \(-0.334373\pi\)
0.497168 + 0.867654i \(0.334373\pi\)
\(60\) 0 0
\(61\) 225.903 0.474162 0.237081 0.971490i \(-0.423809\pi\)
0.237081 + 0.971490i \(0.423809\pi\)
\(62\) 175.191 0.358859
\(63\) 0 0
\(64\) 223.822 0.437152
\(65\) 999.672 1.90760
\(66\) 0 0
\(67\) −772.012 −1.40771 −0.703853 0.710346i \(-0.748539\pi\)
−0.703853 + 0.710346i \(0.748539\pi\)
\(68\) 5.73431 0.0102263
\(69\) 0 0
\(70\) 0 0
\(71\) −962.655 −1.60910 −0.804550 0.593885i \(-0.797593\pi\)
−0.804550 + 0.593885i \(0.797593\pi\)
\(72\) 0 0
\(73\) −1053.79 −1.68955 −0.844775 0.535121i \(-0.820266\pi\)
−0.844775 + 0.535121i \(0.820266\pi\)
\(74\) 223.451 0.351023
\(75\) 0 0
\(76\) 208.180 0.314209
\(77\) 0 0
\(78\) 0 0
\(79\) 33.5907 0.0478386 0.0239193 0.999714i \(-0.492386\pi\)
0.0239193 + 0.999714i \(0.492386\pi\)
\(80\) −1708.20 −2.38729
\(81\) 0 0
\(82\) 1123.52 1.51307
\(83\) 446.386 0.590328 0.295164 0.955447i \(-0.404626\pi\)
0.295164 + 0.955447i \(0.404626\pi\)
\(84\) 0 0
\(85\) 43.8159 0.0559117
\(86\) 1678.35 2.10443
\(87\) 0 0
\(88\) 712.700 0.863342
\(89\) 489.798 0.583354 0.291677 0.956517i \(-0.405787\pi\)
0.291677 + 0.956517i \(0.405787\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −68.6870 −0.0778382
\(93\) 0 0
\(94\) 126.672 0.138992
\(95\) 1590.70 1.71792
\(96\) 0 0
\(97\) 460.958 0.482507 0.241253 0.970462i \(-0.422441\pi\)
0.241253 + 0.970462i \(0.422441\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 985.088 0.985088
\(101\) −1542.74 −1.51989 −0.759945 0.649988i \(-0.774774\pi\)
−0.759945 + 0.649988i \(0.774774\pi\)
\(102\) 0 0
\(103\) 1142.64 1.09308 0.546540 0.837433i \(-0.315945\pi\)
0.546540 + 0.837433i \(0.315945\pi\)
\(104\) −781.804 −0.737136
\(105\) 0 0
\(106\) 1282.15 1.17485
\(107\) −802.561 −0.725107 −0.362554 0.931963i \(-0.618095\pi\)
−0.362554 + 0.931963i \(0.618095\pi\)
\(108\) 0 0
\(109\) 1498.96 1.31720 0.658598 0.752495i \(-0.271150\pi\)
0.658598 + 0.752495i \(0.271150\pi\)
\(110\) −3000.70 −2.60096
\(111\) 0 0
\(112\) 0 0
\(113\) −651.941 −0.542738 −0.271369 0.962475i \(-0.587476\pi\)
−0.271369 + 0.962475i \(0.587476\pi\)
\(114\) 0 0
\(115\) −524.837 −0.425576
\(116\) 257.847 0.206383
\(117\) 0 0
\(118\) 1483.77 1.15756
\(119\) 0 0
\(120\) 0 0
\(121\) 429.979 0.323050
\(122\) 743.838 0.551999
\(123\) 0 0
\(124\) 151.215 0.109512
\(125\) 4812.49 3.44354
\(126\) 0 0
\(127\) −634.311 −0.443197 −0.221598 0.975138i \(-0.571127\pi\)
−0.221598 + 0.975138i \(0.571127\pi\)
\(128\) 1722.07 1.18915
\(129\) 0 0
\(130\) 3291.66 2.22075
\(131\) −2290.16 −1.52742 −0.763709 0.645560i \(-0.776624\pi\)
−0.763709 + 0.645560i \(0.776624\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2542.03 −1.63879
\(135\) 0 0
\(136\) −34.2666 −0.0216054
\(137\) 730.350 0.455460 0.227730 0.973724i \(-0.426870\pi\)
0.227730 + 0.973724i \(0.426870\pi\)
\(138\) 0 0
\(139\) −1195.39 −0.729436 −0.364718 0.931118i \(-0.618835\pi\)
−0.364718 + 0.931118i \(0.618835\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3169.77 −1.87325
\(143\) −1931.73 −1.12964
\(144\) 0 0
\(145\) 1970.21 1.12839
\(146\) −3469.86 −1.96690
\(147\) 0 0
\(148\) 192.870 0.107121
\(149\) 1269.38 0.697932 0.348966 0.937135i \(-0.386533\pi\)
0.348966 + 0.937135i \(0.386533\pi\)
\(150\) 0 0
\(151\) 438.971 0.236576 0.118288 0.992979i \(-0.462259\pi\)
0.118288 + 0.992979i \(0.462259\pi\)
\(152\) −1244.03 −0.663841
\(153\) 0 0
\(154\) 0 0
\(155\) 1155.43 0.598751
\(156\) 0 0
\(157\) −1786.27 −0.908027 −0.454013 0.890995i \(-0.650008\pi\)
−0.454013 + 0.890995i \(0.650008\pi\)
\(158\) 110.605 0.0556917
\(159\) 0 0
\(160\) −2674.07 −1.32127
\(161\) 0 0
\(162\) 0 0
\(163\) −847.231 −0.407118 −0.203559 0.979063i \(-0.565251\pi\)
−0.203559 + 0.979063i \(0.565251\pi\)
\(164\) 969.756 0.461739
\(165\) 0 0
\(166\) 1469.83 0.687235
\(167\) 1454.66 0.674040 0.337020 0.941498i \(-0.390581\pi\)
0.337020 + 0.941498i \(0.390581\pi\)
\(168\) 0 0
\(169\) −77.9721 −0.0354903
\(170\) 144.274 0.0650901
\(171\) 0 0
\(172\) 1448.66 0.642204
\(173\) 849.511 0.373336 0.186668 0.982423i \(-0.440231\pi\)
0.186668 + 0.982423i \(0.440231\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3300.86 1.41370
\(177\) 0 0
\(178\) 1612.78 0.679116
\(179\) 1320.02 0.551189 0.275595 0.961274i \(-0.411125\pi\)
0.275595 + 0.961274i \(0.411125\pi\)
\(180\) 0 0
\(181\) −4005.73 −1.64499 −0.822495 0.568772i \(-0.807419\pi\)
−0.822495 + 0.568772i \(0.807419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 410.454 0.164451
\(185\) 1473.72 0.585676
\(186\) 0 0
\(187\) −84.6680 −0.0331098
\(188\) 109.336 0.0424157
\(189\) 0 0
\(190\) 5237.77 1.99993
\(191\) −1711.51 −0.648380 −0.324190 0.945992i \(-0.605092\pi\)
−0.324190 + 0.945992i \(0.605092\pi\)
\(192\) 0 0
\(193\) 4383.94 1.63504 0.817521 0.575898i \(-0.195348\pi\)
0.817521 + 0.575898i \(0.195348\pi\)
\(194\) 1517.81 0.561714
\(195\) 0 0
\(196\) 0 0
\(197\) −1269.36 −0.459076 −0.229538 0.973300i \(-0.573721\pi\)
−0.229538 + 0.973300i \(0.573721\pi\)
\(198\) 0 0
\(199\) 586.566 0.208948 0.104474 0.994528i \(-0.466684\pi\)
0.104474 + 0.994528i \(0.466684\pi\)
\(200\) −5886.60 −2.08123
\(201\) 0 0
\(202\) −5079.85 −1.76939
\(203\) 0 0
\(204\) 0 0
\(205\) 7409.90 2.52454
\(206\) 3762.40 1.27252
\(207\) 0 0
\(208\) −3620.91 −1.20704
\(209\) −3073.81 −1.01732
\(210\) 0 0
\(211\) 1037.46 0.338491 0.169246 0.985574i \(-0.445867\pi\)
0.169246 + 0.985574i \(0.445867\pi\)
\(212\) 1106.68 0.358524
\(213\) 0 0
\(214\) −2642.62 −0.844139
\(215\) 11069.2 3.51122
\(216\) 0 0
\(217\) 0 0
\(218\) 4935.68 1.53342
\(219\) 0 0
\(220\) −2590.04 −0.793729
\(221\) 92.8775 0.0282697
\(222\) 0 0
\(223\) 5421.68 1.62808 0.814041 0.580807i \(-0.197263\pi\)
0.814041 + 0.580807i \(0.197263\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2146.67 −0.631833
\(227\) −1830.60 −0.535248 −0.267624 0.963523i \(-0.586238\pi\)
−0.267624 + 0.963523i \(0.586238\pi\)
\(228\) 0 0
\(229\) 68.7870 0.0198497 0.00992483 0.999951i \(-0.496841\pi\)
0.00992483 + 0.999951i \(0.496841\pi\)
\(230\) −1728.15 −0.495438
\(231\) 0 0
\(232\) −1540.82 −0.436033
\(233\) −4871.93 −1.36983 −0.684916 0.728622i \(-0.740161\pi\)
−0.684916 + 0.728622i \(0.740161\pi\)
\(234\) 0 0
\(235\) 835.437 0.231906
\(236\) 1280.71 0.353251
\(237\) 0 0
\(238\) 0 0
\(239\) −3786.86 −1.02490 −0.512451 0.858716i \(-0.671263\pi\)
−0.512451 + 0.858716i \(0.671263\pi\)
\(240\) 0 0
\(241\) 1806.60 0.482877 0.241438 0.970416i \(-0.422381\pi\)
0.241438 + 0.970416i \(0.422381\pi\)
\(242\) 1415.81 0.376081
\(243\) 0 0
\(244\) 642.039 0.168452
\(245\) 0 0
\(246\) 0 0
\(247\) 3371.85 0.868606
\(248\) −903.616 −0.231370
\(249\) 0 0
\(250\) 15846.2 4.00882
\(251\) 235.616 0.0592508 0.0296254 0.999561i \(-0.490569\pi\)
0.0296254 + 0.999561i \(0.490569\pi\)
\(252\) 0 0
\(253\) 1014.17 0.252018
\(254\) −2088.62 −0.515951
\(255\) 0 0
\(256\) 3879.74 0.947203
\(257\) 2084.35 0.505908 0.252954 0.967478i \(-0.418598\pi\)
0.252954 + 0.967478i \(0.418598\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2841.17 0.677700
\(261\) 0 0
\(262\) −7540.87 −1.77816
\(263\) −5884.72 −1.37972 −0.689862 0.723941i \(-0.742329\pi\)
−0.689862 + 0.723941i \(0.742329\pi\)
\(264\) 0 0
\(265\) 8456.14 1.96021
\(266\) 0 0
\(267\) 0 0
\(268\) −2194.14 −0.500105
\(269\) 7076.62 1.60397 0.801987 0.597342i \(-0.203776\pi\)
0.801987 + 0.597342i \(0.203776\pi\)
\(270\) 0 0
\(271\) 2818.66 0.631814 0.315907 0.948790i \(-0.397691\pi\)
0.315907 + 0.948790i \(0.397691\pi\)
\(272\) −158.705 −0.0353784
\(273\) 0 0
\(274\) 2404.85 0.530227
\(275\) −14545.0 −3.18943
\(276\) 0 0
\(277\) 4368.87 0.947652 0.473826 0.880618i \(-0.342872\pi\)
0.473826 + 0.880618i \(0.342872\pi\)
\(278\) −3936.10 −0.849178
\(279\) 0 0
\(280\) 0 0
\(281\) 520.957 0.110597 0.0552984 0.998470i \(-0.482389\pi\)
0.0552984 + 0.998470i \(0.482389\pi\)
\(282\) 0 0
\(283\) −2832.71 −0.595008 −0.297504 0.954720i \(-0.596154\pi\)
−0.297504 + 0.954720i \(0.596154\pi\)
\(284\) −2735.96 −0.571653
\(285\) 0 0
\(286\) −6360.66 −1.31508
\(287\) 0 0
\(288\) 0 0
\(289\) −4908.93 −0.999171
\(290\) 6487.36 1.31362
\(291\) 0 0
\(292\) −2994.99 −0.600234
\(293\) 3591.98 0.716196 0.358098 0.933684i \(-0.383425\pi\)
0.358098 + 0.933684i \(0.383425\pi\)
\(294\) 0 0
\(295\) 9785.90 1.93138
\(296\) −1152.54 −0.226317
\(297\) 0 0
\(298\) 4179.74 0.812503
\(299\) −1112.51 −0.215177
\(300\) 0 0
\(301\) 0 0
\(302\) 1445.42 0.275412
\(303\) 0 0
\(304\) −5761.69 −1.08702
\(305\) 4905.81 0.921003
\(306\) 0 0
\(307\) 2168.14 0.403069 0.201535 0.979481i \(-0.435407\pi\)
0.201535 + 0.979481i \(0.435407\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3804.52 0.697040
\(311\) −7218.02 −1.31606 −0.658032 0.752990i \(-0.728611\pi\)
−0.658032 + 0.752990i \(0.728611\pi\)
\(312\) 0 0
\(313\) 3044.54 0.549800 0.274900 0.961473i \(-0.411355\pi\)
0.274900 + 0.961473i \(0.411355\pi\)
\(314\) −5881.73 −1.05709
\(315\) 0 0
\(316\) 95.4682 0.0169953
\(317\) 6110.77 1.08270 0.541349 0.840798i \(-0.317914\pi\)
0.541349 + 0.840798i \(0.317914\pi\)
\(318\) 0 0
\(319\) −3807.14 −0.668210
\(320\) 4860.63 0.849116
\(321\) 0 0
\(322\) 0 0
\(323\) 147.789 0.0254588
\(324\) 0 0
\(325\) 15955.3 2.72319
\(326\) −2789.71 −0.473950
\(327\) 0 0
\(328\) −5794.99 −0.975533
\(329\) 0 0
\(330\) 0 0
\(331\) 1497.42 0.248657 0.124329 0.992241i \(-0.460322\pi\)
0.124329 + 0.992241i \(0.460322\pi\)
\(332\) 1268.67 0.209722
\(333\) 0 0
\(334\) 4789.80 0.784689
\(335\) −16765.4 −2.73430
\(336\) 0 0
\(337\) −8157.61 −1.31861 −0.659307 0.751873i \(-0.729150\pi\)
−0.659307 + 0.751873i \(0.729150\pi\)
\(338\) −256.742 −0.0413163
\(339\) 0 0
\(340\) 124.529 0.0198634
\(341\) −2232.70 −0.354568
\(342\) 0 0
\(343\) 0 0
\(344\) −8656.76 −1.35681
\(345\) 0 0
\(346\) 2797.21 0.434622
\(347\) −9133.12 −1.41294 −0.706472 0.707741i \(-0.749714\pi\)
−0.706472 + 0.707741i \(0.749714\pi\)
\(348\) 0 0
\(349\) −9528.48 −1.46145 −0.730727 0.682670i \(-0.760819\pi\)
−0.730727 + 0.682670i \(0.760819\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5167.26 0.782431
\(353\) −3357.34 −0.506214 −0.253107 0.967438i \(-0.581452\pi\)
−0.253107 + 0.967438i \(0.581452\pi\)
\(354\) 0 0
\(355\) −20905.5 −3.12548
\(356\) 1392.06 0.207244
\(357\) 0 0
\(358\) 4346.47 0.641671
\(359\) 92.9735 0.0136684 0.00683420 0.999977i \(-0.497825\pi\)
0.00683420 + 0.999977i \(0.497825\pi\)
\(360\) 0 0
\(361\) −1493.63 −0.217762
\(362\) −13189.8 −1.91503
\(363\) 0 0
\(364\) 0 0
\(365\) −22884.7 −3.28175
\(366\) 0 0
\(367\) −6785.90 −0.965181 −0.482590 0.875846i \(-0.660304\pi\)
−0.482590 + 0.875846i \(0.660304\pi\)
\(368\) 1901.01 0.269286
\(369\) 0 0
\(370\) 4852.57 0.681820
\(371\) 0 0
\(372\) 0 0
\(373\) −7451.05 −1.03432 −0.517159 0.855889i \(-0.673010\pi\)
−0.517159 + 0.855889i \(0.673010\pi\)
\(374\) −278.789 −0.0385450
\(375\) 0 0
\(376\) −653.362 −0.0896132
\(377\) 4176.29 0.570530
\(378\) 0 0
\(379\) 4014.67 0.544115 0.272058 0.962281i \(-0.412296\pi\)
0.272058 + 0.962281i \(0.412296\pi\)
\(380\) 4520.94 0.610314
\(381\) 0 0
\(382\) −5635.55 −0.754816
\(383\) −6464.87 −0.862505 −0.431253 0.902231i \(-0.641928\pi\)
−0.431253 + 0.902231i \(0.641928\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14435.2 1.90345
\(387\) 0 0
\(388\) 1310.09 0.171417
\(389\) −6944.06 −0.905085 −0.452542 0.891743i \(-0.649483\pi\)
−0.452542 + 0.891743i \(0.649483\pi\)
\(390\) 0 0
\(391\) −48.7615 −0.00630684
\(392\) 0 0
\(393\) 0 0
\(394\) −4179.65 −0.534436
\(395\) 729.472 0.0929208
\(396\) 0 0
\(397\) 1363.07 0.172319 0.0861594 0.996281i \(-0.472541\pi\)
0.0861594 + 0.996281i \(0.472541\pi\)
\(398\) 1931.41 0.243248
\(399\) 0 0
\(400\) −27263.7 −3.40797
\(401\) 3889.07 0.484317 0.242158 0.970237i \(-0.422145\pi\)
0.242158 + 0.970237i \(0.422145\pi\)
\(402\) 0 0
\(403\) 2449.19 0.302737
\(404\) −4384.64 −0.539960
\(405\) 0 0
\(406\) 0 0
\(407\) −2847.76 −0.346826
\(408\) 0 0
\(409\) −8373.76 −1.01236 −0.506180 0.862428i \(-0.668943\pi\)
−0.506180 + 0.862428i \(0.668943\pi\)
\(410\) 24398.8 2.93896
\(411\) 0 0
\(412\) 3247.49 0.388331
\(413\) 0 0
\(414\) 0 0
\(415\) 9693.93 1.14664
\(416\) −5668.28 −0.668053
\(417\) 0 0
\(418\) −10121.2 −1.18432
\(419\) −11115.8 −1.29604 −0.648022 0.761621i \(-0.724404\pi\)
−0.648022 + 0.761621i \(0.724404\pi\)
\(420\) 0 0
\(421\) 9201.47 1.06521 0.532604 0.846365i \(-0.321214\pi\)
0.532604 + 0.846365i \(0.321214\pi\)
\(422\) 3416.08 0.394057
\(423\) 0 0
\(424\) −6613.21 −0.757467
\(425\) 699.322 0.0798167
\(426\) 0 0
\(427\) 0 0
\(428\) −2280.96 −0.257603
\(429\) 0 0
\(430\) 36447.9 4.08761
\(431\) 2997.12 0.334956 0.167478 0.985876i \(-0.446438\pi\)
0.167478 + 0.985876i \(0.446438\pi\)
\(432\) 0 0
\(433\) −4285.85 −0.475669 −0.237835 0.971306i \(-0.576438\pi\)
−0.237835 + 0.971306i \(0.576438\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4260.20 0.467951
\(437\) −1770.25 −0.193782
\(438\) 0 0
\(439\) 3051.15 0.331716 0.165858 0.986150i \(-0.446961\pi\)
0.165858 + 0.986150i \(0.446961\pi\)
\(440\) 15477.3 1.67694
\(441\) 0 0
\(442\) 305.821 0.0329104
\(443\) −11571.0 −1.24098 −0.620491 0.784214i \(-0.713066\pi\)
−0.620491 + 0.784214i \(0.713066\pi\)
\(444\) 0 0
\(445\) 10636.7 1.13310
\(446\) 17852.1 1.89534
\(447\) 0 0
\(448\) 0 0
\(449\) −3588.18 −0.377142 −0.188571 0.982060i \(-0.560386\pi\)
−0.188571 + 0.982060i \(0.560386\pi\)
\(450\) 0 0
\(451\) −14318.6 −1.49498
\(452\) −1852.88 −0.192815
\(453\) 0 0
\(454\) −6027.68 −0.623113
\(455\) 0 0
\(456\) 0 0
\(457\) −9367.40 −0.958837 −0.479419 0.877586i \(-0.659152\pi\)
−0.479419 + 0.877586i \(0.659152\pi\)
\(458\) 226.497 0.0231081
\(459\) 0 0
\(460\) −1491.64 −0.151191
\(461\) 1091.46 0.110269 0.0551346 0.998479i \(-0.482441\pi\)
0.0551346 + 0.998479i \(0.482441\pi\)
\(462\) 0 0
\(463\) 13226.1 1.32758 0.663790 0.747919i \(-0.268947\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(464\) −7136.28 −0.713995
\(465\) 0 0
\(466\) −16042.0 −1.59470
\(467\) −11341.4 −1.12381 −0.561903 0.827203i \(-0.689931\pi\)
−0.561903 + 0.827203i \(0.689931\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2750.87 0.269975
\(471\) 0 0
\(472\) −7653.16 −0.746325
\(473\) −21389.6 −2.07927
\(474\) 0 0
\(475\) 25388.4 2.45242
\(476\) 0 0
\(477\) 0 0
\(478\) −12469.1 −1.19315
\(479\) −17024.4 −1.62394 −0.811968 0.583702i \(-0.801604\pi\)
−0.811968 + 0.583702i \(0.801604\pi\)
\(480\) 0 0
\(481\) 3123.88 0.296126
\(482\) 5948.66 0.562145
\(483\) 0 0
\(484\) 1222.04 0.114767
\(485\) 10010.4 0.937212
\(486\) 0 0
\(487\) 9724.70 0.904863 0.452431 0.891799i \(-0.350557\pi\)
0.452431 + 0.891799i \(0.350557\pi\)
\(488\) −3836.64 −0.355895
\(489\) 0 0
\(490\) 0 0
\(491\) 16363.4 1.50402 0.752008 0.659154i \(-0.229085\pi\)
0.752008 + 0.659154i \(0.229085\pi\)
\(492\) 0 0
\(493\) 183.048 0.0167222
\(494\) 11102.6 1.01119
\(495\) 0 0
\(496\) −4185.08 −0.378862
\(497\) 0 0
\(498\) 0 0
\(499\) −5452.46 −0.489149 −0.244575 0.969630i \(-0.578648\pi\)
−0.244575 + 0.969630i \(0.578648\pi\)
\(500\) 13677.6 1.22336
\(501\) 0 0
\(502\) 775.820 0.0689772
\(503\) 3703.99 0.328336 0.164168 0.986432i \(-0.447506\pi\)
0.164168 + 0.986432i \(0.447506\pi\)
\(504\) 0 0
\(505\) −33503.0 −2.95220
\(506\) 3339.40 0.293388
\(507\) 0 0
\(508\) −1802.78 −0.157451
\(509\) −1653.69 −0.144005 −0.0720023 0.997404i \(-0.522939\pi\)
−0.0720023 + 0.997404i \(0.522939\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1001.60 −0.0864546
\(513\) 0 0
\(514\) 6863.22 0.588956
\(515\) 24814.0 2.12318
\(516\) 0 0
\(517\) −1614.36 −0.137330
\(518\) 0 0
\(519\) 0 0
\(520\) −16978.0 −1.43180
\(521\) 3100.30 0.260704 0.130352 0.991468i \(-0.458389\pi\)
0.130352 + 0.991468i \(0.458389\pi\)
\(522\) 0 0
\(523\) −3125.43 −0.261311 −0.130655 0.991428i \(-0.541708\pi\)
−0.130655 + 0.991428i \(0.541708\pi\)
\(524\) −6508.85 −0.542635
\(525\) 0 0
\(526\) −19376.8 −1.60622
\(527\) 107.349 0.00887320
\(528\) 0 0
\(529\) −11582.9 −0.951995
\(530\) 27843.8 2.28200
\(531\) 0 0
\(532\) 0 0
\(533\) 15706.9 1.27644
\(534\) 0 0
\(535\) −17428.8 −1.40843
\(536\) 13111.5 1.05659
\(537\) 0 0
\(538\) 23301.4 1.86728
\(539\) 0 0
\(540\) 0 0
\(541\) 21514.3 1.70975 0.854874 0.518836i \(-0.173634\pi\)
0.854874 + 0.518836i \(0.173634\pi\)
\(542\) 9281.10 0.735531
\(543\) 0 0
\(544\) −248.442 −0.0195806
\(545\) 32552.2 2.55850
\(546\) 0 0
\(547\) −13104.4 −1.02432 −0.512161 0.858889i \(-0.671155\pi\)
−0.512161 + 0.858889i \(0.671155\pi\)
\(548\) 2075.73 0.161808
\(549\) 0 0
\(550\) −47892.7 −3.71300
\(551\) 6645.42 0.513801
\(552\) 0 0
\(553\) 0 0
\(554\) 14385.5 1.10322
\(555\) 0 0
\(556\) −3397.42 −0.259141
\(557\) −18794.9 −1.42974 −0.714870 0.699257i \(-0.753514\pi\)
−0.714870 + 0.699257i \(0.753514\pi\)
\(558\) 0 0
\(559\) 23463.6 1.77532
\(560\) 0 0
\(561\) 0 0
\(562\) 1715.37 0.128752
\(563\) −17449.7 −1.30625 −0.653124 0.757251i \(-0.726542\pi\)
−0.653124 + 0.757251i \(0.726542\pi\)
\(564\) 0 0
\(565\) −14157.9 −1.05420
\(566\) −9327.38 −0.692684
\(567\) 0 0
\(568\) 16349.3 1.20775
\(569\) 22840.9 1.68285 0.841423 0.540376i \(-0.181718\pi\)
0.841423 + 0.540376i \(0.181718\pi\)
\(570\) 0 0
\(571\) 896.042 0.0656711 0.0328355 0.999461i \(-0.489546\pi\)
0.0328355 + 0.999461i \(0.489546\pi\)
\(572\) −5490.16 −0.401320
\(573\) 0 0
\(574\) 0 0
\(575\) −8376.65 −0.607531
\(576\) 0 0
\(577\) −2966.19 −0.214011 −0.107005 0.994258i \(-0.534126\pi\)
−0.107005 + 0.994258i \(0.534126\pi\)
\(578\) −16163.8 −1.16319
\(579\) 0 0
\(580\) 5599.52 0.400875
\(581\) 0 0
\(582\) 0 0
\(583\) −16340.3 −1.16080
\(584\) 17897.2 1.26814
\(585\) 0 0
\(586\) 11827.4 0.833765
\(587\) 1872.80 0.131684 0.0658420 0.997830i \(-0.479027\pi\)
0.0658420 + 0.997830i \(0.479027\pi\)
\(588\) 0 0
\(589\) 3897.21 0.272635
\(590\) 32222.4 2.24843
\(591\) 0 0
\(592\) −5337.97 −0.370590
\(593\) 17099.0 1.18410 0.592051 0.805901i \(-0.298318\pi\)
0.592051 + 0.805901i \(0.298318\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3607.71 0.247949
\(597\) 0 0
\(598\) −3663.20 −0.250500
\(599\) −11418.2 −0.778856 −0.389428 0.921057i \(-0.627327\pi\)
−0.389428 + 0.921057i \(0.627327\pi\)
\(600\) 0 0
\(601\) −10231.6 −0.694432 −0.347216 0.937785i \(-0.612873\pi\)
−0.347216 + 0.937785i \(0.612873\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1247.60 0.0840466
\(605\) 9337.63 0.627485
\(606\) 0 0
\(607\) −12191.4 −0.815212 −0.407606 0.913158i \(-0.633636\pi\)
−0.407606 + 0.913158i \(0.633636\pi\)
\(608\) −9019.51 −0.601627
\(609\) 0 0
\(610\) 16153.5 1.07219
\(611\) 1770.89 0.117255
\(612\) 0 0
\(613\) −7649.75 −0.504030 −0.252015 0.967723i \(-0.581093\pi\)
−0.252015 + 0.967723i \(0.581093\pi\)
\(614\) 7139.11 0.469236
\(615\) 0 0
\(616\) 0 0
\(617\) 19107.4 1.24673 0.623367 0.781929i \(-0.285764\pi\)
0.623367 + 0.781929i \(0.285764\pi\)
\(618\) 0 0
\(619\) 17663.3 1.14693 0.573464 0.819231i \(-0.305599\pi\)
0.573464 + 0.819231i \(0.305599\pi\)
\(620\) 3283.85 0.212714
\(621\) 0 0
\(622\) −23767.0 −1.53211
\(623\) 0 0
\(624\) 0 0
\(625\) 61184.6 3.91582
\(626\) 10024.8 0.640053
\(627\) 0 0
\(628\) −5076.77 −0.322588
\(629\) 136.920 0.00867944
\(630\) 0 0
\(631\) 5523.07 0.348447 0.174223 0.984706i \(-0.444259\pi\)
0.174223 + 0.984706i \(0.444259\pi\)
\(632\) −570.491 −0.0359065
\(633\) 0 0
\(634\) 20121.2 1.26043
\(635\) −13775.0 −0.860857
\(636\) 0 0
\(637\) 0 0
\(638\) −12535.9 −0.777902
\(639\) 0 0
\(640\) 37397.3 2.30978
\(641\) 17454.0 1.07549 0.537747 0.843106i \(-0.319276\pi\)
0.537747 + 0.843106i \(0.319276\pi\)
\(642\) 0 0
\(643\) −8175.22 −0.501398 −0.250699 0.968065i \(-0.580660\pi\)
−0.250699 + 0.968065i \(0.580660\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 486.630 0.0296381
\(647\) −25000.6 −1.51913 −0.759564 0.650432i \(-0.774588\pi\)
−0.759564 + 0.650432i \(0.774588\pi\)
\(648\) 0 0
\(649\) −18909.9 −1.14372
\(650\) 52536.4 3.17023
\(651\) 0 0
\(652\) −2407.92 −0.144634
\(653\) −769.091 −0.0460901 −0.0230451 0.999734i \(-0.507336\pi\)
−0.0230451 + 0.999734i \(0.507336\pi\)
\(654\) 0 0
\(655\) −49734.1 −2.96683
\(656\) −26839.4 −1.59741
\(657\) 0 0
\(658\) 0 0
\(659\) 7037.98 0.416025 0.208013 0.978126i \(-0.433300\pi\)
0.208013 + 0.978126i \(0.433300\pi\)
\(660\) 0 0
\(661\) 4089.75 0.240655 0.120327 0.992734i \(-0.461606\pi\)
0.120327 + 0.992734i \(0.461606\pi\)
\(662\) 4930.60 0.289476
\(663\) 0 0
\(664\) −7581.24 −0.443086
\(665\) 0 0
\(666\) 0 0
\(667\) −2192.59 −0.127282
\(668\) 4134.28 0.239461
\(669\) 0 0
\(670\) −55204.0 −3.18316
\(671\) −9479.79 −0.545400
\(672\) 0 0
\(673\) 2151.39 0.123224 0.0616121 0.998100i \(-0.480376\pi\)
0.0616121 + 0.998100i \(0.480376\pi\)
\(674\) −26860.8 −1.53508
\(675\) 0 0
\(676\) −221.605 −0.0126084
\(677\) −7675.61 −0.435742 −0.217871 0.975978i \(-0.569911\pi\)
−0.217871 + 0.975978i \(0.569911\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −744.151 −0.0419660
\(681\) 0 0
\(682\) −7351.70 −0.412773
\(683\) 16098.6 0.901896 0.450948 0.892550i \(-0.351086\pi\)
0.450948 + 0.892550i \(0.351086\pi\)
\(684\) 0 0
\(685\) 15860.6 0.884676
\(686\) 0 0
\(687\) 0 0
\(688\) −40093.7 −2.22174
\(689\) 17924.7 0.991111
\(690\) 0 0
\(691\) 19083.8 1.05063 0.525313 0.850909i \(-0.323948\pi\)
0.525313 + 0.850909i \(0.323948\pi\)
\(692\) 2414.40 0.132632
\(693\) 0 0
\(694\) −30072.9 −1.64489
\(695\) −25959.6 −1.41684
\(696\) 0 0
\(697\) 688.438 0.0374124
\(698\) −31374.7 −1.70136
\(699\) 0 0
\(700\) 0 0
\(701\) −29898.7 −1.61093 −0.805463 0.592646i \(-0.798083\pi\)
−0.805463 + 0.592646i \(0.798083\pi\)
\(702\) 0 0
\(703\) 4970.79 0.266681
\(704\) −9392.47 −0.502830
\(705\) 0 0
\(706\) −11054.8 −0.589312
\(707\) 0 0
\(708\) 0 0
\(709\) 19879.1 1.05300 0.526500 0.850175i \(-0.323504\pi\)
0.526500 + 0.850175i \(0.323504\pi\)
\(710\) −68836.2 −3.63856
\(711\) 0 0
\(712\) −8318.53 −0.437851
\(713\) −1285.85 −0.0675390
\(714\) 0 0
\(715\) −41950.3 −2.19420
\(716\) 3751.63 0.195817
\(717\) 0 0
\(718\) 306.137 0.0159122
\(719\) −13640.5 −0.707517 −0.353758 0.935337i \(-0.615097\pi\)
−0.353758 + 0.935337i \(0.615097\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −4918.12 −0.253509
\(723\) 0 0
\(724\) −11384.7 −0.584404
\(725\) 31445.4 1.61083
\(726\) 0 0
\(727\) −10021.8 −0.511262 −0.255631 0.966774i \(-0.582283\pi\)
−0.255631 + 0.966774i \(0.582283\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −75353.2 −3.82047
\(731\) 1028.41 0.0520345
\(732\) 0 0
\(733\) −24088.0 −1.21380 −0.606898 0.794780i \(-0.707586\pi\)
−0.606898 + 0.794780i \(0.707586\pi\)
\(734\) −22344.2 −1.12362
\(735\) 0 0
\(736\) 2975.90 0.149039
\(737\) 32396.7 1.61920
\(738\) 0 0
\(739\) 24657.9 1.22741 0.613705 0.789536i \(-0.289679\pi\)
0.613705 + 0.789536i \(0.289679\pi\)
\(740\) 4188.46 0.208069
\(741\) 0 0
\(742\) 0 0
\(743\) −13467.0 −0.664948 −0.332474 0.943112i \(-0.607883\pi\)
−0.332474 + 0.943112i \(0.607883\pi\)
\(744\) 0 0
\(745\) 27566.5 1.35565
\(746\) −24534.3 −1.20411
\(747\) 0 0
\(748\) −240.635 −0.0117627
\(749\) 0 0
\(750\) 0 0
\(751\) −6880.15 −0.334301 −0.167151 0.985931i \(-0.553457\pi\)
−0.167151 + 0.985931i \(0.553457\pi\)
\(752\) −3026.04 −0.146740
\(753\) 0 0
\(754\) 13751.4 0.664187
\(755\) 9532.91 0.459521
\(756\) 0 0
\(757\) 33528.2 1.60978 0.804889 0.593425i \(-0.202225\pi\)
0.804889 + 0.593425i \(0.202225\pi\)
\(758\) 13219.2 0.633436
\(759\) 0 0
\(760\) −27015.9 −1.28943
\(761\) 1090.91 0.0519653 0.0259826 0.999662i \(-0.491729\pi\)
0.0259826 + 0.999662i \(0.491729\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4864.29 −0.230345
\(765\) 0 0
\(766\) −21287.1 −1.00409
\(767\) 20743.4 0.976532
\(768\) 0 0
\(769\) 30520.8 1.43122 0.715609 0.698501i \(-0.246149\pi\)
0.715609 + 0.698501i \(0.246149\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12459.6 0.580870
\(773\) 7848.30 0.365179 0.182590 0.983189i \(-0.441552\pi\)
0.182590 + 0.983189i \(0.441552\pi\)
\(774\) 0 0
\(775\) 18441.2 0.854746
\(776\) −7828.72 −0.362158
\(777\) 0 0
\(778\) −22865.0 −1.05366
\(779\) 24993.3 1.14952
\(780\) 0 0
\(781\) 40396.9 1.85085
\(782\) −160.559 −0.00734216
\(783\) 0 0
\(784\) 0 0
\(785\) −38791.6 −1.76373
\(786\) 0 0
\(787\) 18778.4 0.850545 0.425272 0.905065i \(-0.360178\pi\)
0.425272 + 0.905065i \(0.360178\pi\)
\(788\) −3607.64 −0.163092
\(789\) 0 0
\(790\) 2401.96 0.108174
\(791\) 0 0
\(792\) 0 0
\(793\) 10399.0 0.465672
\(794\) 4488.23 0.200606
\(795\) 0 0
\(796\) 1667.08 0.0742313
\(797\) −34662.3 −1.54053 −0.770264 0.637725i \(-0.779876\pi\)
−0.770264 + 0.637725i \(0.779876\pi\)
\(798\) 0 0
\(799\) 77.6187 0.00343674
\(800\) −42679.4 −1.88618
\(801\) 0 0
\(802\) 12805.7 0.563821
\(803\) 44221.4 1.94339
\(804\) 0 0
\(805\) 0 0
\(806\) 8064.53 0.352433
\(807\) 0 0
\(808\) 26201.3 1.14079
\(809\) −27491.8 −1.19476 −0.597380 0.801958i \(-0.703792\pi\)
−0.597380 + 0.801958i \(0.703792\pi\)
\(810\) 0 0
\(811\) 19150.6 0.829183 0.414592 0.910008i \(-0.363924\pi\)
0.414592 + 0.910008i \(0.363924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −9376.91 −0.403760
\(815\) −18398.9 −0.790779
\(816\) 0 0
\(817\) 37335.8 1.59879
\(818\) −27572.6 −1.17855
\(819\) 0 0
\(820\) 21059.7 0.896874
\(821\) −2547.05 −0.108274 −0.0541368 0.998534i \(-0.517241\pi\)
−0.0541368 + 0.998534i \(0.517241\pi\)
\(822\) 0 0
\(823\) 21290.5 0.901748 0.450874 0.892588i \(-0.351112\pi\)
0.450874 + 0.892588i \(0.351112\pi\)
\(824\) −19406.1 −0.820439
\(825\) 0 0
\(826\) 0 0
\(827\) 23131.7 0.972632 0.486316 0.873783i \(-0.338340\pi\)
0.486316 + 0.873783i \(0.338340\pi\)
\(828\) 0 0
\(829\) −11897.4 −0.498450 −0.249225 0.968446i \(-0.580176\pi\)
−0.249225 + 0.968446i \(0.580176\pi\)
\(830\) 31919.6 1.33487
\(831\) 0 0
\(832\) 10303.2 0.429325
\(833\) 0 0
\(834\) 0 0
\(835\) 31590.0 1.30924
\(836\) −8736.08 −0.361416
\(837\) 0 0
\(838\) −36601.4 −1.50880
\(839\) 21937.3 0.902693 0.451347 0.892349i \(-0.350944\pi\)
0.451347 + 0.892349i \(0.350944\pi\)
\(840\) 0 0
\(841\) −16158.2 −0.662518
\(842\) 30298.0 1.24007
\(843\) 0 0
\(844\) 2948.56 0.120253
\(845\) −1693.28 −0.0689356
\(846\) 0 0
\(847\) 0 0
\(848\) −30629.0 −1.24033
\(849\) 0 0
\(850\) 2302.68 0.0929192
\(851\) −1640.06 −0.0660643
\(852\) 0 0
\(853\) −7087.36 −0.284486 −0.142243 0.989832i \(-0.545431\pi\)
−0.142243 + 0.989832i \(0.545431\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13630.4 0.544248
\(857\) 29202.6 1.16399 0.581996 0.813192i \(-0.302272\pi\)
0.581996 + 0.813192i \(0.302272\pi\)
\(858\) 0 0
\(859\) −6946.42 −0.275912 −0.137956 0.990438i \(-0.544053\pi\)
−0.137956 + 0.990438i \(0.544053\pi\)
\(860\) 31459.7 1.24740
\(861\) 0 0
\(862\) 9868.72 0.389942
\(863\) −18125.7 −0.714956 −0.357478 0.933922i \(-0.616363\pi\)
−0.357478 + 0.933922i \(0.616363\pi\)
\(864\) 0 0
\(865\) 18448.4 0.725161
\(866\) −14112.2 −0.553754
\(867\) 0 0
\(868\) 0 0
\(869\) −1409.60 −0.0550258
\(870\) 0 0
\(871\) −35538.0 −1.38250
\(872\) −25457.7 −0.988656
\(873\) 0 0
\(874\) −5828.97 −0.225592
\(875\) 0 0
\(876\) 0 0
\(877\) 16741.7 0.644614 0.322307 0.946635i \(-0.395542\pi\)
0.322307 + 0.946635i \(0.395542\pi\)
\(878\) 10046.6 0.386170
\(879\) 0 0
\(880\) 71683.0 2.74595
\(881\) −38779.3 −1.48298 −0.741491 0.670963i \(-0.765881\pi\)
−0.741491 + 0.670963i \(0.765881\pi\)
\(882\) 0 0
\(883\) 32874.4 1.25290 0.626451 0.779461i \(-0.284507\pi\)
0.626451 + 0.779461i \(0.284507\pi\)
\(884\) 263.967 0.0100432
\(885\) 0 0
\(886\) −38100.2 −1.44470
\(887\) 1849.20 0.0700001 0.0350000 0.999387i \(-0.488857\pi\)
0.0350000 + 0.999387i \(0.488857\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 35023.8 1.31910
\(891\) 0 0
\(892\) 15409.0 0.578397
\(893\) 2817.89 0.105596
\(894\) 0 0
\(895\) 28666.2 1.07062
\(896\) 0 0
\(897\) 0 0
\(898\) −11814.9 −0.439053
\(899\) 4826.99 0.179076
\(900\) 0 0
\(901\) 785.642 0.0290494
\(902\) −47147.3 −1.74039
\(903\) 0 0
\(904\) 11072.3 0.407366
\(905\) −86990.3 −3.19520
\(906\) 0 0
\(907\) −33145.2 −1.21342 −0.606708 0.794925i \(-0.707510\pi\)
−0.606708 + 0.794925i \(0.707510\pi\)
\(908\) −5202.75 −0.190154
\(909\) 0 0
\(910\) 0 0
\(911\) 25056.8 0.911272 0.455636 0.890166i \(-0.349412\pi\)
0.455636 + 0.890166i \(0.349412\pi\)
\(912\) 0 0
\(913\) −18732.2 −0.679018
\(914\) −30844.4 −1.11624
\(915\) 0 0
\(916\) 195.500 0.00705184
\(917\) 0 0
\(918\) 0 0
\(919\) 19673.4 0.706164 0.353082 0.935592i \(-0.385134\pi\)
0.353082 + 0.935592i \(0.385134\pi\)
\(920\) 8913.62 0.319427
\(921\) 0 0
\(922\) 3593.87 0.128371
\(923\) −44313.8 −1.58029
\(924\) 0 0
\(925\) 23521.3 0.836081
\(926\) 43550.1 1.54551
\(927\) 0 0
\(928\) −11171.3 −0.395169
\(929\) 23323.5 0.823702 0.411851 0.911251i \(-0.364882\pi\)
0.411851 + 0.911251i \(0.364882\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −13846.5 −0.486650
\(933\) 0 0
\(934\) −37344.2 −1.30829
\(935\) −1838.69 −0.0643119
\(936\) 0 0
\(937\) 22330.3 0.778547 0.389274 0.921122i \(-0.372726\pi\)
0.389274 + 0.921122i \(0.372726\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2374.40 0.0823875
\(941\) 42050.1 1.45674 0.728371 0.685183i \(-0.240278\pi\)
0.728371 + 0.685183i \(0.240278\pi\)
\(942\) 0 0
\(943\) −8246.28 −0.284768
\(944\) −35445.5 −1.22209
\(945\) 0 0
\(946\) −70430.3 −2.42060
\(947\) −27731.1 −0.951572 −0.475786 0.879561i \(-0.657836\pi\)
−0.475786 + 0.879561i \(0.657836\pi\)
\(948\) 0 0
\(949\) −48509.2 −1.65930
\(950\) 83597.2 2.85500
\(951\) 0 0
\(952\) 0 0
\(953\) −1378.80 −0.0468666 −0.0234333 0.999725i \(-0.507460\pi\)
−0.0234333 + 0.999725i \(0.507460\pi\)
\(954\) 0 0
\(955\) −37168.0 −1.25940
\(956\) −10762.6 −0.364110
\(957\) 0 0
\(958\) −56056.9 −1.89052
\(959\) 0 0
\(960\) 0 0
\(961\) −26960.2 −0.904978
\(962\) 10286.1 0.344737
\(963\) 0 0
\(964\) 5134.54 0.171548
\(965\) 95203.8 3.17588
\(966\) 0 0
\(967\) −35157.0 −1.16916 −0.584578 0.811338i \(-0.698740\pi\)
−0.584578 + 0.811338i \(0.698740\pi\)
\(968\) −7302.59 −0.242473
\(969\) 0 0
\(970\) 32961.5 1.09106
\(971\) −24254.7 −0.801617 −0.400808 0.916162i \(-0.631271\pi\)
−0.400808 + 0.916162i \(0.631271\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 32020.9 1.05340
\(975\) 0 0
\(976\) −17769.3 −0.582769
\(977\) −12769.3 −0.418142 −0.209071 0.977900i \(-0.567044\pi\)
−0.209071 + 0.977900i \(0.567044\pi\)
\(978\) 0 0
\(979\) −20553.9 −0.670997
\(980\) 0 0
\(981\) 0 0
\(982\) 53880.5 1.75091
\(983\) −4753.76 −0.154244 −0.0771218 0.997022i \(-0.524573\pi\)
−0.0771218 + 0.997022i \(0.524573\pi\)
\(984\) 0 0
\(985\) −27565.9 −0.891700
\(986\) 602.727 0.0194673
\(987\) 0 0
\(988\) 9583.14 0.308583
\(989\) −12318.6 −0.396065
\(990\) 0 0
\(991\) −23723.1 −0.760433 −0.380216 0.924898i \(-0.624150\pi\)
−0.380216 + 0.924898i \(0.624150\pi\)
\(992\) −6551.44 −0.209686
\(993\) 0 0
\(994\) 0 0
\(995\) 12738.2 0.405856
\(996\) 0 0
\(997\) −14203.6 −0.451185 −0.225593 0.974222i \(-0.572432\pi\)
−0.225593 + 0.974222i \(0.572432\pi\)
\(998\) −17953.5 −0.569447
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bo.1.6 8
3.2 odd 2 inner 1323.4.a.bo.1.3 8
7.2 even 3 189.4.e.h.109.3 16
7.4 even 3 189.4.e.h.163.3 yes 16
7.6 odd 2 1323.4.a.bn.1.6 8
21.2 odd 6 189.4.e.h.109.6 yes 16
21.11 odd 6 189.4.e.h.163.6 yes 16
21.20 even 2 1323.4.a.bn.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.3 16 7.2 even 3
189.4.e.h.109.6 yes 16 21.2 odd 6
189.4.e.h.163.3 yes 16 7.4 even 3
189.4.e.h.163.6 yes 16 21.11 odd 6
1323.4.a.bn.1.3 8 21.20 even 2
1323.4.a.bn.1.6 8 7.6 odd 2
1323.4.a.bo.1.3 8 3.2 odd 2 inner
1323.4.a.bo.1.6 8 1.1 even 1 trivial