Properties

Label 1323.4.a.bo.1.4
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.256959\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.76924 q^{2} -4.86977 q^{4} +13.0512 q^{5} +22.7698 q^{8} +O(q^{10})\) \(q-1.76924 q^{2} -4.86977 q^{4} +13.0512 q^{5} +22.7698 q^{8} -23.0908 q^{10} +52.9410 q^{11} -71.7001 q^{13} -1.32714 q^{16} +106.573 q^{17} +53.9285 q^{19} -63.5565 q^{20} -93.6656 q^{22} +18.6589 q^{23} +45.3345 q^{25} +126.855 q^{26} +261.806 q^{29} -122.326 q^{31} -179.810 q^{32} -188.554 q^{34} +278.137 q^{37} -95.4127 q^{38} +297.174 q^{40} -31.3788 q^{41} -347.239 q^{43} -257.811 q^{44} -33.0121 q^{46} +542.218 q^{47} -80.2078 q^{50} +349.163 q^{52} -257.057 q^{53} +690.945 q^{55} -463.198 q^{58} +315.620 q^{59} +138.804 q^{61} +216.425 q^{62} +328.745 q^{64} -935.775 q^{65} +397.901 q^{67} -518.987 q^{68} -843.419 q^{71} -872.281 q^{73} -492.093 q^{74} -262.620 q^{76} -554.912 q^{79} -17.3208 q^{80} +55.5168 q^{82} -297.114 q^{83} +1390.91 q^{85} +614.352 q^{86} +1205.46 q^{88} +102.484 q^{89} -90.8644 q^{92} -959.317 q^{94} +703.833 q^{95} -515.437 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 48 q^{4} + 44 q^{10} - 84 q^{13} + 156 q^{16} + 12 q^{19} + 224 q^{22} + 408 q^{25} + 800 q^{31} - 948 q^{34} + 692 q^{37} + 96 q^{40} + 1456 q^{43} + 1524 q^{46} + 1972 q^{52} - 1280 q^{55} + 2372 q^{58} + 216 q^{61} + 4964 q^{64} + 684 q^{67} - 4564 q^{73} - 380 q^{76} + 556 q^{79} + 3340 q^{82} + 1296 q^{85} + 6696 q^{88} - 492 q^{94} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.76924 −0.625523 −0.312761 0.949832i \(-0.601254\pi\)
−0.312761 + 0.949832i \(0.601254\pi\)
\(3\) 0 0
\(4\) −4.86977 −0.608722
\(5\) 13.0512 1.16734 0.583669 0.811992i \(-0.301617\pi\)
0.583669 + 0.811992i \(0.301617\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 22.7698 1.00629
\(9\) 0 0
\(10\) −23.0908 −0.730196
\(11\) 52.9410 1.45112 0.725560 0.688159i \(-0.241581\pi\)
0.725560 + 0.688159i \(0.241581\pi\)
\(12\) 0 0
\(13\) −71.7001 −1.52970 −0.764848 0.644211i \(-0.777186\pi\)
−0.764848 + 0.644211i \(0.777186\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.32714 −0.0207366
\(17\) 106.573 1.52046 0.760229 0.649655i \(-0.225087\pi\)
0.760229 + 0.649655i \(0.225087\pi\)
\(18\) 0 0
\(19\) 53.9285 0.651160 0.325580 0.945514i \(-0.394440\pi\)
0.325580 + 0.945514i \(0.394440\pi\)
\(20\) −63.5565 −0.710583
\(21\) 0 0
\(22\) −93.6656 −0.907708
\(23\) 18.6589 0.169158 0.0845792 0.996417i \(-0.473045\pi\)
0.0845792 + 0.996417i \(0.473045\pi\)
\(24\) 0 0
\(25\) 45.3345 0.362676
\(26\) 126.855 0.956859
\(27\) 0 0
\(28\) 0 0
\(29\) 261.806 1.67642 0.838208 0.545350i \(-0.183603\pi\)
0.838208 + 0.545350i \(0.183603\pi\)
\(30\) 0 0
\(31\) −122.326 −0.708725 −0.354362 0.935108i \(-0.615302\pi\)
−0.354362 + 0.935108i \(0.615302\pi\)
\(32\) −179.810 −0.993320
\(33\) 0 0
\(34\) −188.554 −0.951081
\(35\) 0 0
\(36\) 0 0
\(37\) 278.137 1.23582 0.617912 0.786247i \(-0.287979\pi\)
0.617912 + 0.786247i \(0.287979\pi\)
\(38\) −95.4127 −0.407315
\(39\) 0 0
\(40\) 297.174 1.17468
\(41\) −31.3788 −0.119525 −0.0597627 0.998213i \(-0.519034\pi\)
−0.0597627 + 0.998213i \(0.519034\pi\)
\(42\) 0 0
\(43\) −347.239 −1.23148 −0.615739 0.787951i \(-0.711142\pi\)
−0.615739 + 0.787951i \(0.711142\pi\)
\(44\) −257.811 −0.883328
\(45\) 0 0
\(46\) −33.0121 −0.105812
\(47\) 542.218 1.68278 0.841390 0.540428i \(-0.181738\pi\)
0.841390 + 0.540428i \(0.181738\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −80.2078 −0.226862
\(51\) 0 0
\(52\) 349.163 0.931158
\(53\) −257.057 −0.666216 −0.333108 0.942889i \(-0.608097\pi\)
−0.333108 + 0.942889i \(0.608097\pi\)
\(54\) 0 0
\(55\) 690.945 1.69395
\(56\) 0 0
\(57\) 0 0
\(58\) −463.198 −1.04864
\(59\) 315.620 0.696445 0.348223 0.937412i \(-0.386785\pi\)
0.348223 + 0.937412i \(0.386785\pi\)
\(60\) 0 0
\(61\) 138.804 0.291344 0.145672 0.989333i \(-0.453466\pi\)
0.145672 + 0.989333i \(0.453466\pi\)
\(62\) 216.425 0.443323
\(63\) 0 0
\(64\) 328.745 0.642081
\(65\) −935.775 −1.78567
\(66\) 0 0
\(67\) 397.901 0.725542 0.362771 0.931878i \(-0.381831\pi\)
0.362771 + 0.931878i \(0.381831\pi\)
\(68\) −518.987 −0.925535
\(69\) 0 0
\(70\) 0 0
\(71\) −843.419 −1.40979 −0.704897 0.709309i \(-0.749007\pi\)
−0.704897 + 0.709309i \(0.749007\pi\)
\(72\) 0 0
\(73\) −872.281 −1.39853 −0.699265 0.714862i \(-0.746489\pi\)
−0.699265 + 0.714862i \(0.746489\pi\)
\(74\) −492.093 −0.773036
\(75\) 0 0
\(76\) −262.620 −0.396375
\(77\) 0 0
\(78\) 0 0
\(79\) −554.912 −0.790285 −0.395143 0.918620i \(-0.629305\pi\)
−0.395143 + 0.918620i \(0.629305\pi\)
\(80\) −17.3208 −0.0242065
\(81\) 0 0
\(82\) 55.5168 0.0747659
\(83\) −297.114 −0.392921 −0.196461 0.980512i \(-0.562945\pi\)
−0.196461 + 0.980512i \(0.562945\pi\)
\(84\) 0 0
\(85\) 1390.91 1.77489
\(86\) 614.352 0.770317
\(87\) 0 0
\(88\) 1205.46 1.46025
\(89\) 102.484 0.122059 0.0610295 0.998136i \(-0.480562\pi\)
0.0610295 + 0.998136i \(0.480562\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −90.8644 −0.102970
\(93\) 0 0
\(94\) −959.317 −1.05262
\(95\) 703.833 0.760124
\(96\) 0 0
\(97\) −515.437 −0.539533 −0.269766 0.962926i \(-0.586947\pi\)
−0.269766 + 0.962926i \(0.586947\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −220.769 −0.220769
\(101\) 1101.95 1.08563 0.542813 0.839854i \(-0.317359\pi\)
0.542813 + 0.839854i \(0.317359\pi\)
\(102\) 0 0
\(103\) −353.628 −0.338291 −0.169146 0.985591i \(-0.554101\pi\)
−0.169146 + 0.985591i \(0.554101\pi\)
\(104\) −1632.60 −1.53932
\(105\) 0 0
\(106\) 454.796 0.416733
\(107\) −310.663 −0.280682 −0.140341 0.990103i \(-0.544820\pi\)
−0.140341 + 0.990103i \(0.544820\pi\)
\(108\) 0 0
\(109\) −514.984 −0.452537 −0.226268 0.974065i \(-0.572653\pi\)
−0.226268 + 0.974065i \(0.572653\pi\)
\(110\) −1222.45 −1.05960
\(111\) 0 0
\(112\) 0 0
\(113\) 1106.59 0.921233 0.460616 0.887599i \(-0.347628\pi\)
0.460616 + 0.887599i \(0.347628\pi\)
\(114\) 0 0
\(115\) 243.521 0.197465
\(116\) −1274.93 −1.02047
\(117\) 0 0
\(118\) −558.410 −0.435642
\(119\) 0 0
\(120\) 0 0
\(121\) 1471.75 1.10575
\(122\) −245.578 −0.182242
\(123\) 0 0
\(124\) 595.701 0.431416
\(125\) −1039.73 −0.743972
\(126\) 0 0
\(127\) 1591.62 1.11207 0.556037 0.831158i \(-0.312321\pi\)
0.556037 + 0.831158i \(0.312321\pi\)
\(128\) 856.850 0.591684
\(129\) 0 0
\(130\) 1655.61 1.11698
\(131\) −817.256 −0.545068 −0.272534 0.962146i \(-0.587862\pi\)
−0.272534 + 0.962146i \(0.587862\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −703.984 −0.453843
\(135\) 0 0
\(136\) 2426.65 1.53002
\(137\) 1028.13 0.641164 0.320582 0.947221i \(-0.396122\pi\)
0.320582 + 0.947221i \(0.396122\pi\)
\(138\) 0 0
\(139\) −607.307 −0.370583 −0.185292 0.982684i \(-0.559323\pi\)
−0.185292 + 0.982684i \(0.559323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1492.21 0.881858
\(143\) −3795.88 −2.21977
\(144\) 0 0
\(145\) 3416.88 1.95694
\(146\) 1543.28 0.874813
\(147\) 0 0
\(148\) −1354.47 −0.752273
\(149\) −1220.06 −0.670814 −0.335407 0.942073i \(-0.608874\pi\)
−0.335407 + 0.942073i \(0.608874\pi\)
\(150\) 0 0
\(151\) 1953.44 1.05277 0.526386 0.850246i \(-0.323547\pi\)
0.526386 + 0.850246i \(0.323547\pi\)
\(152\) 1227.94 0.655257
\(153\) 0 0
\(154\) 0 0
\(155\) −1596.51 −0.827320
\(156\) 0 0
\(157\) −1530.79 −0.778154 −0.389077 0.921205i \(-0.627206\pi\)
−0.389077 + 0.921205i \(0.627206\pi\)
\(158\) 981.776 0.494341
\(159\) 0 0
\(160\) −2346.74 −1.15954
\(161\) 0 0
\(162\) 0 0
\(163\) 2283.20 1.09714 0.548570 0.836105i \(-0.315173\pi\)
0.548570 + 0.836105i \(0.315173\pi\)
\(164\) 152.808 0.0727577
\(165\) 0 0
\(166\) 525.667 0.245781
\(167\) 1071.13 0.496325 0.248162 0.968718i \(-0.420173\pi\)
0.248162 + 0.968718i \(0.420173\pi\)
\(168\) 0 0
\(169\) 2943.91 1.33997
\(170\) −2460.86 −1.11023
\(171\) 0 0
\(172\) 1690.98 0.749627
\(173\) 3658.87 1.60797 0.803985 0.594649i \(-0.202709\pi\)
0.803985 + 0.594649i \(0.202709\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −70.2601 −0.0300912
\(177\) 0 0
\(178\) −181.319 −0.0763507
\(179\) 810.233 0.338322 0.169161 0.985588i \(-0.445894\pi\)
0.169161 + 0.985588i \(0.445894\pi\)
\(180\) 0 0
\(181\) −1730.05 −0.710462 −0.355231 0.934779i \(-0.615598\pi\)
−0.355231 + 0.934779i \(0.615598\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 424.858 0.170223
\(185\) 3630.03 1.44262
\(186\) 0 0
\(187\) 5642.09 2.20637
\(188\) −2640.48 −1.02434
\(189\) 0 0
\(190\) −1245.25 −0.475474
\(191\) 1075.60 0.407474 0.203737 0.979026i \(-0.434691\pi\)
0.203737 + 0.979026i \(0.434691\pi\)
\(192\) 0 0
\(193\) 4493.72 1.67598 0.837992 0.545683i \(-0.183730\pi\)
0.837992 + 0.545683i \(0.183730\pi\)
\(194\) 911.934 0.337490
\(195\) 0 0
\(196\) 0 0
\(197\) −101.961 −0.0368753 −0.0184377 0.999830i \(-0.505869\pi\)
−0.0184377 + 0.999830i \(0.505869\pi\)
\(198\) 0 0
\(199\) −535.588 −0.190788 −0.0953940 0.995440i \(-0.530411\pi\)
−0.0953940 + 0.995440i \(0.530411\pi\)
\(200\) 1032.26 0.364958
\(201\) 0 0
\(202\) −1949.62 −0.679083
\(203\) 0 0
\(204\) 0 0
\(205\) −409.532 −0.139527
\(206\) 625.654 0.211609
\(207\) 0 0
\(208\) 95.1561 0.0317206
\(209\) 2855.03 0.944912
\(210\) 0 0
\(211\) 1247.47 0.407012 0.203506 0.979074i \(-0.434766\pi\)
0.203506 + 0.979074i \(0.434766\pi\)
\(212\) 1251.81 0.405540
\(213\) 0 0
\(214\) 549.639 0.175573
\(215\) −4531.90 −1.43755
\(216\) 0 0
\(217\) 0 0
\(218\) 911.133 0.283072
\(219\) 0 0
\(220\) −3364.75 −1.03114
\(221\) −7641.31 −2.32584
\(222\) 0 0
\(223\) 2573.28 0.772734 0.386367 0.922345i \(-0.373730\pi\)
0.386367 + 0.922345i \(0.373730\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1957.83 −0.576252
\(227\) 1488.83 0.435318 0.217659 0.976025i \(-0.430158\pi\)
0.217659 + 0.976025i \(0.430158\pi\)
\(228\) 0 0
\(229\) −3210.39 −0.926413 −0.463207 0.886250i \(-0.653301\pi\)
−0.463207 + 0.886250i \(0.653301\pi\)
\(230\) −430.848 −0.123519
\(231\) 0 0
\(232\) 5961.26 1.68696
\(233\) 2927.69 0.823172 0.411586 0.911371i \(-0.364975\pi\)
0.411586 + 0.911371i \(0.364975\pi\)
\(234\) 0 0
\(235\) 7076.61 1.96437
\(236\) −1537.00 −0.423941
\(237\) 0 0
\(238\) 0 0
\(239\) 4263.99 1.15404 0.577019 0.816731i \(-0.304216\pi\)
0.577019 + 0.816731i \(0.304216\pi\)
\(240\) 0 0
\(241\) −4316.09 −1.15363 −0.576813 0.816876i \(-0.695704\pi\)
−0.576813 + 0.816876i \(0.695704\pi\)
\(242\) −2603.89 −0.691671
\(243\) 0 0
\(244\) −675.943 −0.177348
\(245\) 0 0
\(246\) 0 0
\(247\) −3866.68 −0.996077
\(248\) −2785.34 −0.713184
\(249\) 0 0
\(250\) 1839.54 0.465371
\(251\) 2107.60 0.530001 0.265001 0.964248i \(-0.414628\pi\)
0.265001 + 0.964248i \(0.414628\pi\)
\(252\) 0 0
\(253\) 987.819 0.245469
\(254\) −2815.96 −0.695627
\(255\) 0 0
\(256\) −4145.94 −1.01219
\(257\) 2820.63 0.684614 0.342307 0.939588i \(-0.388792\pi\)
0.342307 + 0.939588i \(0.388792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4557.01 1.08698
\(261\) 0 0
\(262\) 1445.93 0.340953
\(263\) 5952.43 1.39560 0.697799 0.716293i \(-0.254163\pi\)
0.697799 + 0.716293i \(0.254163\pi\)
\(264\) 0 0
\(265\) −3354.90 −0.777698
\(266\) 0 0
\(267\) 0 0
\(268\) −1937.69 −0.441653
\(269\) 6643.01 1.50569 0.752847 0.658195i \(-0.228680\pi\)
0.752847 + 0.658195i \(0.228680\pi\)
\(270\) 0 0
\(271\) 961.827 0.215597 0.107799 0.994173i \(-0.465620\pi\)
0.107799 + 0.994173i \(0.465620\pi\)
\(272\) −141.437 −0.0315291
\(273\) 0 0
\(274\) −1819.02 −0.401062
\(275\) 2400.05 0.526286
\(276\) 0 0
\(277\) −5600.12 −1.21472 −0.607362 0.794425i \(-0.707772\pi\)
−0.607362 + 0.794425i \(0.707772\pi\)
\(278\) 1074.47 0.231808
\(279\) 0 0
\(280\) 0 0
\(281\) −1044.12 −0.221661 −0.110831 0.993839i \(-0.535351\pi\)
−0.110831 + 0.993839i \(0.535351\pi\)
\(282\) 0 0
\(283\) 2323.98 0.488149 0.244074 0.969756i \(-0.421516\pi\)
0.244074 + 0.969756i \(0.421516\pi\)
\(284\) 4107.26 0.858172
\(285\) 0 0
\(286\) 6715.84 1.38852
\(287\) 0 0
\(288\) 0 0
\(289\) 6444.83 1.31179
\(290\) −6045.31 −1.22411
\(291\) 0 0
\(292\) 4247.81 0.851316
\(293\) 4140.37 0.825540 0.412770 0.910835i \(-0.364561\pi\)
0.412770 + 0.910835i \(0.364561\pi\)
\(294\) 0 0
\(295\) 4119.23 0.812986
\(296\) 6333.13 1.24360
\(297\) 0 0
\(298\) 2158.59 0.419609
\(299\) −1337.84 −0.258761
\(300\) 0 0
\(301\) 0 0
\(302\) −3456.11 −0.658532
\(303\) 0 0
\(304\) −71.5706 −0.0135028
\(305\) 1811.56 0.340097
\(306\) 0 0
\(307\) 3074.68 0.571600 0.285800 0.958289i \(-0.407741\pi\)
0.285800 + 0.958289i \(0.407741\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2824.62 0.517508
\(311\) −2318.34 −0.422704 −0.211352 0.977410i \(-0.567787\pi\)
−0.211352 + 0.977410i \(0.567787\pi\)
\(312\) 0 0
\(313\) 1895.91 0.342374 0.171187 0.985239i \(-0.445240\pi\)
0.171187 + 0.985239i \(0.445240\pi\)
\(314\) 2708.34 0.486753
\(315\) 0 0
\(316\) 2702.30 0.481064
\(317\) −972.308 −0.172272 −0.0861360 0.996283i \(-0.527452\pi\)
−0.0861360 + 0.996283i \(0.527452\pi\)
\(318\) 0 0
\(319\) 13860.3 2.43268
\(320\) 4290.53 0.749525
\(321\) 0 0
\(322\) 0 0
\(323\) 5747.33 0.990062
\(324\) 0 0
\(325\) −3250.49 −0.554783
\(326\) −4039.53 −0.686286
\(327\) 0 0
\(328\) −714.488 −0.120277
\(329\) 0 0
\(330\) 0 0
\(331\) −4469.64 −0.742217 −0.371108 0.928590i \(-0.621022\pi\)
−0.371108 + 0.928590i \(0.621022\pi\)
\(332\) 1446.88 0.239180
\(333\) 0 0
\(334\) −1895.08 −0.310462
\(335\) 5193.09 0.846952
\(336\) 0 0
\(337\) −8494.45 −1.37306 −0.686532 0.727100i \(-0.740868\pi\)
−0.686532 + 0.727100i \(0.740868\pi\)
\(338\) −5208.50 −0.838180
\(339\) 0 0
\(340\) −6773.42 −1.08041
\(341\) −6476.08 −1.02844
\(342\) 0 0
\(343\) 0 0
\(344\) −7906.56 −1.23923
\(345\) 0 0
\(346\) −6473.44 −1.00582
\(347\) 8461.30 1.30901 0.654505 0.756058i \(-0.272877\pi\)
0.654505 + 0.756058i \(0.272877\pi\)
\(348\) 0 0
\(349\) −5910.68 −0.906566 −0.453283 0.891367i \(-0.649747\pi\)
−0.453283 + 0.891367i \(0.649747\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9519.34 −1.44143
\(353\) −6046.17 −0.911630 −0.455815 0.890075i \(-0.650652\pi\)
−0.455815 + 0.890075i \(0.650652\pi\)
\(354\) 0 0
\(355\) −11007.6 −1.64571
\(356\) −499.073 −0.0743000
\(357\) 0 0
\(358\) −1433.50 −0.211628
\(359\) 10896.7 1.60196 0.800982 0.598688i \(-0.204311\pi\)
0.800982 + 0.598688i \(0.204311\pi\)
\(360\) 0 0
\(361\) −3950.72 −0.575990
\(362\) 3060.88 0.444410
\(363\) 0 0
\(364\) 0 0
\(365\) −11384.3 −1.63256
\(366\) 0 0
\(367\) 7775.66 1.10596 0.552979 0.833195i \(-0.313491\pi\)
0.552979 + 0.833195i \(0.313491\pi\)
\(368\) −24.7629 −0.00350776
\(369\) 0 0
\(370\) −6422.42 −0.902394
\(371\) 0 0
\(372\) 0 0
\(373\) 11929.1 1.65594 0.827969 0.560774i \(-0.189496\pi\)
0.827969 + 0.560774i \(0.189496\pi\)
\(374\) −9982.24 −1.38013
\(375\) 0 0
\(376\) 12346.2 1.69337
\(377\) −18771.5 −2.56441
\(378\) 0 0
\(379\) −8130.56 −1.10195 −0.550975 0.834522i \(-0.685744\pi\)
−0.550975 + 0.834522i \(0.685744\pi\)
\(380\) −3427.51 −0.462704
\(381\) 0 0
\(382\) −1903.00 −0.254884
\(383\) −10851.8 −1.44778 −0.723889 0.689916i \(-0.757647\pi\)
−0.723889 + 0.689916i \(0.757647\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7950.49 −1.04837
\(387\) 0 0
\(388\) 2510.06 0.328425
\(389\) 11769.7 1.53406 0.767031 0.641610i \(-0.221733\pi\)
0.767031 + 0.641610i \(0.221733\pi\)
\(390\) 0 0
\(391\) 1988.53 0.257198
\(392\) 0 0
\(393\) 0 0
\(394\) 180.394 0.0230663
\(395\) −7242.29 −0.922529
\(396\) 0 0
\(397\) 10132.5 1.28094 0.640472 0.767981i \(-0.278739\pi\)
0.640472 + 0.767981i \(0.278739\pi\)
\(398\) 947.586 0.119342
\(399\) 0 0
\(400\) −60.1652 −0.00752064
\(401\) 4804.24 0.598285 0.299143 0.954208i \(-0.403299\pi\)
0.299143 + 0.954208i \(0.403299\pi\)
\(402\) 0 0
\(403\) 8770.82 1.08413
\(404\) −5366.25 −0.660843
\(405\) 0 0
\(406\) 0 0
\(407\) 14724.9 1.79333
\(408\) 0 0
\(409\) −8837.50 −1.06843 −0.534213 0.845350i \(-0.679392\pi\)
−0.534213 + 0.845350i \(0.679392\pi\)
\(410\) 724.562 0.0872770
\(411\) 0 0
\(412\) 1722.09 0.205925
\(413\) 0 0
\(414\) 0 0
\(415\) −3877.70 −0.458671
\(416\) 12892.4 1.51948
\(417\) 0 0
\(418\) −5051.25 −0.591064
\(419\) −5730.73 −0.668173 −0.334086 0.942542i \(-0.608428\pi\)
−0.334086 + 0.942542i \(0.608428\pi\)
\(420\) 0 0
\(421\) 1841.98 0.213236 0.106618 0.994300i \(-0.465998\pi\)
0.106618 + 0.994300i \(0.465998\pi\)
\(422\) −2207.08 −0.254595
\(423\) 0 0
\(424\) −5853.12 −0.670407
\(425\) 4831.44 0.551433
\(426\) 0 0
\(427\) 0 0
\(428\) 1512.86 0.170857
\(429\) 0 0
\(430\) 8018.04 0.899219
\(431\) −9147.01 −1.02226 −0.511132 0.859502i \(-0.670774\pi\)
−0.511132 + 0.859502i \(0.670774\pi\)
\(432\) 0 0
\(433\) −2469.71 −0.274103 −0.137052 0.990564i \(-0.543763\pi\)
−0.137052 + 0.990564i \(0.543763\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2507.86 0.275469
\(437\) 1006.24 0.110149
\(438\) 0 0
\(439\) −3704.39 −0.402736 −0.201368 0.979516i \(-0.564539\pi\)
−0.201368 + 0.979516i \(0.564539\pi\)
\(440\) 15732.7 1.70460
\(441\) 0 0
\(442\) 13519.3 1.45486
\(443\) 1351.39 0.144935 0.0724676 0.997371i \(-0.476913\pi\)
0.0724676 + 0.997371i \(0.476913\pi\)
\(444\) 0 0
\(445\) 1337.54 0.142484
\(446\) −4552.76 −0.483362
\(447\) 0 0
\(448\) 0 0
\(449\) 15461.0 1.62505 0.812526 0.582926i \(-0.198092\pi\)
0.812526 + 0.582926i \(0.198092\pi\)
\(450\) 0 0
\(451\) −1661.23 −0.173446
\(452\) −5388.85 −0.560774
\(453\) 0 0
\(454\) −2634.11 −0.272301
\(455\) 0 0
\(456\) 0 0
\(457\) 13569.6 1.38897 0.694486 0.719506i \(-0.255632\pi\)
0.694486 + 0.719506i \(0.255632\pi\)
\(458\) 5679.97 0.579492
\(459\) 0 0
\(460\) −1185.89 −0.120201
\(461\) 7979.72 0.806188 0.403094 0.915159i \(-0.367935\pi\)
0.403094 + 0.915159i \(0.367935\pi\)
\(462\) 0 0
\(463\) −18086.2 −1.81542 −0.907709 0.419600i \(-0.862170\pi\)
−0.907709 + 0.419600i \(0.862170\pi\)
\(464\) −347.453 −0.0347631
\(465\) 0 0
\(466\) −5179.79 −0.514913
\(467\) 5804.55 0.575166 0.287583 0.957756i \(-0.407148\pi\)
0.287583 + 0.957756i \(0.407148\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −12520.3 −1.22876
\(471\) 0 0
\(472\) 7186.61 0.700827
\(473\) −18383.2 −1.78702
\(474\) 0 0
\(475\) 2444.82 0.236160
\(476\) 0 0
\(477\) 0 0
\(478\) −7544.05 −0.721876
\(479\) 4345.88 0.414548 0.207274 0.978283i \(-0.433541\pi\)
0.207274 + 0.978283i \(0.433541\pi\)
\(480\) 0 0
\(481\) −19942.5 −1.89043
\(482\) 7636.22 0.721619
\(483\) 0 0
\(484\) −7167.10 −0.673093
\(485\) −6727.08 −0.629817
\(486\) 0 0
\(487\) −18781.1 −1.74754 −0.873771 0.486337i \(-0.838333\pi\)
−0.873771 + 0.486337i \(0.838333\pi\)
\(488\) 3160.53 0.293177
\(489\) 0 0
\(490\) 0 0
\(491\) −7552.56 −0.694180 −0.347090 0.937832i \(-0.612830\pi\)
−0.347090 + 0.937832i \(0.612830\pi\)
\(492\) 0 0
\(493\) 27901.5 2.54892
\(494\) 6841.11 0.623069
\(495\) 0 0
\(496\) 162.344 0.0146965
\(497\) 0 0
\(498\) 0 0
\(499\) 8901.90 0.798605 0.399302 0.916819i \(-0.369252\pi\)
0.399302 + 0.916819i \(0.369252\pi\)
\(500\) 5063.26 0.452872
\(501\) 0 0
\(502\) −3728.86 −0.331528
\(503\) −18241.5 −1.61700 −0.808498 0.588500i \(-0.799719\pi\)
−0.808498 + 0.588500i \(0.799719\pi\)
\(504\) 0 0
\(505\) 14381.8 1.26729
\(506\) −1747.69 −0.153546
\(507\) 0 0
\(508\) −7750.82 −0.676943
\(509\) −8984.77 −0.782403 −0.391201 0.920305i \(-0.627940\pi\)
−0.391201 + 0.920305i \(0.627940\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 480.383 0.0414651
\(513\) 0 0
\(514\) −4990.38 −0.428241
\(515\) −4615.28 −0.394900
\(516\) 0 0
\(517\) 28705.6 2.44192
\(518\) 0 0
\(519\) 0 0
\(520\) −21307.4 −1.79690
\(521\) 8888.73 0.747452 0.373726 0.927539i \(-0.378080\pi\)
0.373726 + 0.927539i \(0.378080\pi\)
\(522\) 0 0
\(523\) −21038.9 −1.75902 −0.879510 0.475880i \(-0.842130\pi\)
−0.879510 + 0.475880i \(0.842130\pi\)
\(524\) 3979.85 0.331795
\(525\) 0 0
\(526\) −10531.3 −0.872978
\(527\) −13036.7 −1.07759
\(528\) 0 0
\(529\) −11818.8 −0.971385
\(530\) 5935.65 0.486468
\(531\) 0 0
\(532\) 0 0
\(533\) 2249.86 0.182838
\(534\) 0 0
\(535\) −4054.53 −0.327650
\(536\) 9060.11 0.730107
\(537\) 0 0
\(538\) −11753.1 −0.941846
\(539\) 0 0
\(540\) 0 0
\(541\) 8006.13 0.636249 0.318124 0.948049i \(-0.396947\pi\)
0.318124 + 0.948049i \(0.396947\pi\)
\(542\) −1701.71 −0.134861
\(543\) 0 0
\(544\) −19162.9 −1.51030
\(545\) −6721.17 −0.528263
\(546\) 0 0
\(547\) 22259.4 1.73993 0.869965 0.493114i \(-0.164141\pi\)
0.869965 + 0.493114i \(0.164141\pi\)
\(548\) −5006.78 −0.390290
\(549\) 0 0
\(550\) −4246.28 −0.329204
\(551\) 14118.8 1.09162
\(552\) 0 0
\(553\) 0 0
\(554\) 9907.98 0.759837
\(555\) 0 0
\(556\) 2957.44 0.225582
\(557\) −7483.92 −0.569307 −0.284653 0.958630i \(-0.591879\pi\)
−0.284653 + 0.958630i \(0.591879\pi\)
\(558\) 0 0
\(559\) 24897.1 1.88378
\(560\) 0 0
\(561\) 0 0
\(562\) 1847.30 0.138654
\(563\) 6292.69 0.471057 0.235529 0.971867i \(-0.424318\pi\)
0.235529 + 0.971867i \(0.424318\pi\)
\(564\) 0 0
\(565\) 14442.4 1.07539
\(566\) −4111.69 −0.305348
\(567\) 0 0
\(568\) −19204.5 −1.41866
\(569\) 10338.4 0.761705 0.380853 0.924636i \(-0.375631\pi\)
0.380853 + 0.924636i \(0.375631\pi\)
\(570\) 0 0
\(571\) −14539.6 −1.06561 −0.532806 0.846238i \(-0.678862\pi\)
−0.532806 + 0.846238i \(0.678862\pi\)
\(572\) 18485.1 1.35122
\(573\) 0 0
\(574\) 0 0
\(575\) 845.889 0.0613496
\(576\) 0 0
\(577\) −11945.1 −0.861837 −0.430919 0.902391i \(-0.641810\pi\)
−0.430919 + 0.902391i \(0.641810\pi\)
\(578\) −11402.5 −0.820556
\(579\) 0 0
\(580\) −16639.4 −1.19123
\(581\) 0 0
\(582\) 0 0
\(583\) −13608.8 −0.966759
\(584\) −19861.6 −1.40733
\(585\) 0 0
\(586\) −7325.34 −0.516394
\(587\) −27431.6 −1.92883 −0.964414 0.264398i \(-0.914827\pi\)
−0.964414 + 0.264398i \(0.914827\pi\)
\(588\) 0 0
\(589\) −6596.88 −0.461493
\(590\) −7287.93 −0.508541
\(591\) 0 0
\(592\) −369.127 −0.0256267
\(593\) 3648.83 0.252680 0.126340 0.991987i \(-0.459677\pi\)
0.126340 + 0.991987i \(0.459677\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5941.42 0.408339
\(597\) 0 0
\(598\) 2366.97 0.161861
\(599\) −10849.7 −0.740078 −0.370039 0.929016i \(-0.620656\pi\)
−0.370039 + 0.929016i \(0.620656\pi\)
\(600\) 0 0
\(601\) 23865.9 1.61982 0.809908 0.586557i \(-0.199517\pi\)
0.809908 + 0.586557i \(0.199517\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9512.79 −0.640844
\(605\) 19208.2 1.29078
\(606\) 0 0
\(607\) −21519.9 −1.43899 −0.719493 0.694500i \(-0.755626\pi\)
−0.719493 + 0.694500i \(0.755626\pi\)
\(608\) −9696.89 −0.646811
\(609\) 0 0
\(610\) −3205.09 −0.212738
\(611\) −38877.1 −2.57414
\(612\) 0 0
\(613\) 6178.96 0.407122 0.203561 0.979062i \(-0.434749\pi\)
0.203561 + 0.979062i \(0.434749\pi\)
\(614\) −5439.86 −0.357549
\(615\) 0 0
\(616\) 0 0
\(617\) 1011.92 0.0660267 0.0330134 0.999455i \(-0.489490\pi\)
0.0330134 + 0.999455i \(0.489490\pi\)
\(618\) 0 0
\(619\) −3968.54 −0.257689 −0.128844 0.991665i \(-0.541127\pi\)
−0.128844 + 0.991665i \(0.541127\pi\)
\(620\) 7774.63 0.503608
\(621\) 0 0
\(622\) 4101.71 0.264411
\(623\) 0 0
\(624\) 0 0
\(625\) −19236.6 −1.23114
\(626\) −3354.32 −0.214162
\(627\) 0 0
\(628\) 7454.59 0.473679
\(629\) 29642.0 1.87902
\(630\) 0 0
\(631\) 9288.00 0.585974 0.292987 0.956116i \(-0.405351\pi\)
0.292987 + 0.956116i \(0.405351\pi\)
\(632\) −12635.2 −0.795257
\(633\) 0 0
\(634\) 1720.25 0.107760
\(635\) 20772.6 1.29816
\(636\) 0 0
\(637\) 0 0
\(638\) −24522.2 −1.52170
\(639\) 0 0
\(640\) 11182.9 0.690695
\(641\) −3258.86 −0.200807 −0.100404 0.994947i \(-0.532013\pi\)
−0.100404 + 0.994947i \(0.532013\pi\)
\(642\) 0 0
\(643\) −17217.9 −1.05600 −0.528001 0.849244i \(-0.677058\pi\)
−0.528001 + 0.849244i \(0.677058\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −10168.4 −0.619306
\(647\) −10030.7 −0.609500 −0.304750 0.952432i \(-0.598573\pi\)
−0.304750 + 0.952432i \(0.598573\pi\)
\(648\) 0 0
\(649\) 16709.3 1.01063
\(650\) 5750.91 0.347030
\(651\) 0 0
\(652\) −11118.6 −0.667852
\(653\) 31203.6 1.86997 0.934986 0.354684i \(-0.115411\pi\)
0.934986 + 0.354684i \(0.115411\pi\)
\(654\) 0 0
\(655\) −10666.2 −0.636278
\(656\) 41.6440 0.00247855
\(657\) 0 0
\(658\) 0 0
\(659\) −2666.60 −0.157627 −0.0788133 0.996889i \(-0.525113\pi\)
−0.0788133 + 0.996889i \(0.525113\pi\)
\(660\) 0 0
\(661\) −20322.3 −1.19583 −0.597917 0.801558i \(-0.704005\pi\)
−0.597917 + 0.801558i \(0.704005\pi\)
\(662\) 7907.89 0.464273
\(663\) 0 0
\(664\) −6765.21 −0.395393
\(665\) 0 0
\(666\) 0 0
\(667\) 4884.99 0.283580
\(668\) −5216.14 −0.302124
\(669\) 0 0
\(670\) −9187.85 −0.529788
\(671\) 7348.42 0.422776
\(672\) 0 0
\(673\) −16480.1 −0.943922 −0.471961 0.881619i \(-0.656454\pi\)
−0.471961 + 0.881619i \(0.656454\pi\)
\(674\) 15028.8 0.858882
\(675\) 0 0
\(676\) −14336.2 −0.815667
\(677\) −19664.0 −1.11632 −0.558161 0.829732i \(-0.688493\pi\)
−0.558161 + 0.829732i \(0.688493\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 31670.7 1.78605
\(681\) 0 0
\(682\) 11457.8 0.643315
\(683\) 12069.8 0.676192 0.338096 0.941112i \(-0.390217\pi\)
0.338096 + 0.941112i \(0.390217\pi\)
\(684\) 0 0
\(685\) 13418.4 0.748454
\(686\) 0 0
\(687\) 0 0
\(688\) 460.835 0.0255366
\(689\) 18431.0 1.01911
\(690\) 0 0
\(691\) −1083.55 −0.0596531 −0.0298265 0.999555i \(-0.509495\pi\)
−0.0298265 + 0.999555i \(0.509495\pi\)
\(692\) −17817.9 −0.978806
\(693\) 0 0
\(694\) −14970.1 −0.818815
\(695\) −7926.09 −0.432596
\(696\) 0 0
\(697\) −3344.14 −0.181733
\(698\) 10457.4 0.567078
\(699\) 0 0
\(700\) 0 0
\(701\) −19478.9 −1.04951 −0.524755 0.851253i \(-0.675843\pi\)
−0.524755 + 0.851253i \(0.675843\pi\)
\(702\) 0 0
\(703\) 14999.5 0.804720
\(704\) 17404.1 0.931736
\(705\) 0 0
\(706\) 10697.2 0.570245
\(707\) 0 0
\(708\) 0 0
\(709\) 27626.7 1.46339 0.731695 0.681632i \(-0.238729\pi\)
0.731695 + 0.681632i \(0.238729\pi\)
\(710\) 19475.2 1.02943
\(711\) 0 0
\(712\) 2333.53 0.122827
\(713\) −2282.47 −0.119887
\(714\) 0 0
\(715\) −49540.9 −2.59122
\(716\) −3945.65 −0.205944
\(717\) 0 0
\(718\) −19278.9 −1.00206
\(719\) 2134.94 0.110737 0.0553684 0.998466i \(-0.482367\pi\)
0.0553684 + 0.998466i \(0.482367\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 6989.79 0.360295
\(723\) 0 0
\(724\) 8424.95 0.432473
\(725\) 11868.8 0.607996
\(726\) 0 0
\(727\) 12294.4 0.627198 0.313599 0.949556i \(-0.398465\pi\)
0.313599 + 0.949556i \(0.398465\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 20141.7 1.02120
\(731\) −37006.4 −1.87241
\(732\) 0 0
\(733\) −18207.7 −0.917487 −0.458744 0.888569i \(-0.651700\pi\)
−0.458744 + 0.888569i \(0.651700\pi\)
\(734\) −13757.1 −0.691801
\(735\) 0 0
\(736\) −3355.05 −0.168028
\(737\) 21065.3 1.05285
\(738\) 0 0
\(739\) 2537.36 0.126304 0.0631519 0.998004i \(-0.479885\pi\)
0.0631519 + 0.998004i \(0.479885\pi\)
\(740\) −17677.4 −0.878156
\(741\) 0 0
\(742\) 0 0
\(743\) 20574.2 1.01587 0.507937 0.861394i \(-0.330408\pi\)
0.507937 + 0.861394i \(0.330408\pi\)
\(744\) 0 0
\(745\) −15923.3 −0.783066
\(746\) −21105.5 −1.03583
\(747\) 0 0
\(748\) −27475.7 −1.34306
\(749\) 0 0
\(750\) 0 0
\(751\) 24946.6 1.21213 0.606067 0.795414i \(-0.292746\pi\)
0.606067 + 0.795414i \(0.292746\pi\)
\(752\) −719.599 −0.0348951
\(753\) 0 0
\(754\) 33211.4 1.60409
\(755\) 25494.7 1.22894
\(756\) 0 0
\(757\) −24686.4 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(758\) 14384.9 0.689294
\(759\) 0 0
\(760\) 16026.1 0.764906
\(761\) −39431.3 −1.87830 −0.939148 0.343512i \(-0.888383\pi\)
−0.939148 + 0.343512i \(0.888383\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −5237.91 −0.248038
\(765\) 0 0
\(766\) 19199.4 0.905618
\(767\) −22630.0 −1.06535
\(768\) 0 0
\(769\) −2762.60 −0.129547 −0.0647736 0.997900i \(-0.520633\pi\)
−0.0647736 + 0.997900i \(0.520633\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −21883.4 −1.02021
\(773\) 742.885 0.0345662 0.0172831 0.999851i \(-0.494498\pi\)
0.0172831 + 0.999851i \(0.494498\pi\)
\(774\) 0 0
\(775\) −5545.60 −0.257037
\(776\) −11736.4 −0.542927
\(777\) 0 0
\(778\) −20823.6 −0.959590
\(779\) −1692.21 −0.0778303
\(780\) 0 0
\(781\) −44651.5 −2.04578
\(782\) −3518.20 −0.160883
\(783\) 0 0
\(784\) 0 0
\(785\) −19978.7 −0.908368
\(786\) 0 0
\(787\) −35710.9 −1.61748 −0.808739 0.588167i \(-0.799850\pi\)
−0.808739 + 0.588167i \(0.799850\pi\)
\(788\) 496.528 0.0224468
\(789\) 0 0
\(790\) 12813.4 0.577063
\(791\) 0 0
\(792\) 0 0
\(793\) −9952.25 −0.445668
\(794\) −17926.9 −0.801260
\(795\) 0 0
\(796\) 2608.19 0.116137
\(797\) −3201.08 −0.142268 −0.0711342 0.997467i \(-0.522662\pi\)
−0.0711342 + 0.997467i \(0.522662\pi\)
\(798\) 0 0
\(799\) 57785.9 2.55860
\(800\) −8151.60 −0.360253
\(801\) 0 0
\(802\) −8499.88 −0.374241
\(803\) −46179.4 −2.02944
\(804\) 0 0
\(805\) 0 0
\(806\) −15517.7 −0.678149
\(807\) 0 0
\(808\) 25091.2 1.09246
\(809\) 2163.10 0.0940056 0.0470028 0.998895i \(-0.485033\pi\)
0.0470028 + 0.998895i \(0.485033\pi\)
\(810\) 0 0
\(811\) −11547.5 −0.499983 −0.249991 0.968248i \(-0.580428\pi\)
−0.249991 + 0.968248i \(0.580428\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −26051.9 −1.12177
\(815\) 29798.5 1.28073
\(816\) 0 0
\(817\) −18726.1 −0.801889
\(818\) 15635.7 0.668324
\(819\) 0 0
\(820\) 1994.33 0.0849328
\(821\) 6148.38 0.261364 0.130682 0.991424i \(-0.458283\pi\)
0.130682 + 0.991424i \(0.458283\pi\)
\(822\) 0 0
\(823\) 24957.6 1.05707 0.528534 0.848912i \(-0.322742\pi\)
0.528534 + 0.848912i \(0.322742\pi\)
\(824\) −8052.03 −0.340419
\(825\) 0 0
\(826\) 0 0
\(827\) −28221.3 −1.18664 −0.593320 0.804967i \(-0.702183\pi\)
−0.593320 + 0.804967i \(0.702183\pi\)
\(828\) 0 0
\(829\) 29913.9 1.25326 0.626630 0.779317i \(-0.284434\pi\)
0.626630 + 0.779317i \(0.284434\pi\)
\(830\) 6860.59 0.286909
\(831\) 0 0
\(832\) −23571.1 −0.982188
\(833\) 0 0
\(834\) 0 0
\(835\) 13979.5 0.579378
\(836\) −13903.3 −0.575188
\(837\) 0 0
\(838\) 10139.1 0.417957
\(839\) −45271.0 −1.86285 −0.931424 0.363935i \(-0.881433\pi\)
−0.931424 + 0.363935i \(0.881433\pi\)
\(840\) 0 0
\(841\) 44153.2 1.81037
\(842\) −3258.91 −0.133384
\(843\) 0 0
\(844\) −6074.90 −0.247757
\(845\) 38421.6 1.56419
\(846\) 0 0
\(847\) 0 0
\(848\) 341.150 0.0138150
\(849\) 0 0
\(850\) −8548.00 −0.344934
\(851\) 5189.73 0.209050
\(852\) 0 0
\(853\) 8754.63 0.351410 0.175705 0.984443i \(-0.443780\pi\)
0.175705 + 0.984443i \(0.443780\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −7073.73 −0.282448
\(857\) −3502.27 −0.139598 −0.0697988 0.997561i \(-0.522236\pi\)
−0.0697988 + 0.997561i \(0.522236\pi\)
\(858\) 0 0
\(859\) −2953.62 −0.117318 −0.0586591 0.998278i \(-0.518683\pi\)
−0.0586591 + 0.998278i \(0.518683\pi\)
\(860\) 22069.3 0.875067
\(861\) 0 0
\(862\) 16183.3 0.639449
\(863\) −15352.8 −0.605578 −0.302789 0.953058i \(-0.597918\pi\)
−0.302789 + 0.953058i \(0.597918\pi\)
\(864\) 0 0
\(865\) 47752.8 1.87704
\(866\) 4369.53 0.171458
\(867\) 0 0
\(868\) 0 0
\(869\) −29377.6 −1.14680
\(870\) 0 0
\(871\) −28529.5 −1.10986
\(872\) −11726.1 −0.455384
\(873\) 0 0
\(874\) −1780.29 −0.0689008
\(875\) 0 0
\(876\) 0 0
\(877\) 43246.5 1.66514 0.832572 0.553916i \(-0.186867\pi\)
0.832572 + 0.553916i \(0.186867\pi\)
\(878\) 6553.97 0.251920
\(879\) 0 0
\(880\) −916.981 −0.0351266
\(881\) 20539.6 0.785467 0.392733 0.919652i \(-0.371529\pi\)
0.392733 + 0.919652i \(0.371529\pi\)
\(882\) 0 0
\(883\) −21156.9 −0.806325 −0.403163 0.915128i \(-0.632089\pi\)
−0.403163 + 0.915128i \(0.632089\pi\)
\(884\) 37211.4 1.41579
\(885\) 0 0
\(886\) −2390.93 −0.0906602
\(887\) −9397.58 −0.355738 −0.177869 0.984054i \(-0.556920\pi\)
−0.177869 + 0.984054i \(0.556920\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2366.43 −0.0891270
\(891\) 0 0
\(892\) −12531.3 −0.470380
\(893\) 29241.0 1.09576
\(894\) 0 0
\(895\) 10574.5 0.394936
\(896\) 0 0
\(897\) 0 0
\(898\) −27354.2 −1.01651
\(899\) −32025.7 −1.18812
\(900\) 0 0
\(901\) −27395.3 −1.01295
\(902\) 2939.11 0.108494
\(903\) 0 0
\(904\) 25196.8 0.927029
\(905\) −22579.3 −0.829348
\(906\) 0 0
\(907\) 11590.9 0.424332 0.212166 0.977234i \(-0.431948\pi\)
0.212166 + 0.977234i \(0.431948\pi\)
\(908\) −7250.27 −0.264988
\(909\) 0 0
\(910\) 0 0
\(911\) 30564.4 1.11158 0.555788 0.831324i \(-0.312417\pi\)
0.555788 + 0.831324i \(0.312417\pi\)
\(912\) 0 0
\(913\) −15729.5 −0.570176
\(914\) −24008.0 −0.868833
\(915\) 0 0
\(916\) 15633.9 0.563928
\(917\) 0 0
\(918\) 0 0
\(919\) −28321.3 −1.01658 −0.508288 0.861187i \(-0.669721\pi\)
−0.508288 + 0.861187i \(0.669721\pi\)
\(920\) 5544.92 0.198707
\(921\) 0 0
\(922\) −14118.1 −0.504289
\(923\) 60473.2 2.15656
\(924\) 0 0
\(925\) 12609.2 0.448204
\(926\) 31999.0 1.13559
\(927\) 0 0
\(928\) −47075.3 −1.66522
\(929\) 50804.0 1.79421 0.897107 0.441813i \(-0.145665\pi\)
0.897107 + 0.441813i \(0.145665\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −14257.2 −0.501083
\(933\) 0 0
\(934\) −10269.7 −0.359779
\(935\) 73636.2 2.57557
\(936\) 0 0
\(937\) 15273.4 0.532507 0.266253 0.963903i \(-0.414214\pi\)
0.266253 + 0.963903i \(0.414214\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −34461.5 −1.19576
\(941\) −55573.4 −1.92523 −0.962615 0.270873i \(-0.912688\pi\)
−0.962615 + 0.270873i \(0.912688\pi\)
\(942\) 0 0
\(943\) −585.493 −0.0202187
\(944\) −418.872 −0.0144419
\(945\) 0 0
\(946\) 32524.4 1.11782
\(947\) −22070.1 −0.757321 −0.378660 0.925536i \(-0.623615\pi\)
−0.378660 + 0.925536i \(0.623615\pi\)
\(948\) 0 0
\(949\) 62542.7 2.13933
\(950\) −4325.49 −0.147723
\(951\) 0 0
\(952\) 0 0
\(953\) 51073.6 1.73603 0.868014 0.496539i \(-0.165396\pi\)
0.868014 + 0.496539i \(0.165396\pi\)
\(954\) 0 0
\(955\) 14037.9 0.475659
\(956\) −20764.7 −0.702487
\(957\) 0 0
\(958\) −7688.93 −0.259309
\(959\) 0 0
\(960\) 0 0
\(961\) −14827.3 −0.497709
\(962\) 35283.1 1.18251
\(963\) 0 0
\(964\) 21018.4 0.702237
\(965\) 58648.5 1.95644
\(966\) 0 0
\(967\) −3212.76 −0.106841 −0.0534206 0.998572i \(-0.517012\pi\)
−0.0534206 + 0.998572i \(0.517012\pi\)
\(968\) 33511.5 1.11271
\(969\) 0 0
\(970\) 11901.9 0.393965
\(971\) 19188.8 0.634189 0.317095 0.948394i \(-0.397293\pi\)
0.317095 + 0.948394i \(0.397293\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 33228.4 1.09313
\(975\) 0 0
\(976\) −184.212 −0.00604148
\(977\) 13111.9 0.429363 0.214682 0.976684i \(-0.431129\pi\)
0.214682 + 0.976684i \(0.431129\pi\)
\(978\) 0 0
\(979\) 5425.60 0.177122
\(980\) 0 0
\(981\) 0 0
\(982\) 13362.3 0.434225
\(983\) 38542.1 1.25056 0.625281 0.780400i \(-0.284984\pi\)
0.625281 + 0.780400i \(0.284984\pi\)
\(984\) 0 0
\(985\) −1330.72 −0.0430459
\(986\) −49364.5 −1.59441
\(987\) 0 0
\(988\) 18829.9 0.606333
\(989\) −6479.09 −0.208315
\(990\) 0 0
\(991\) 6663.59 0.213598 0.106799 0.994281i \(-0.465940\pi\)
0.106799 + 0.994281i \(0.465940\pi\)
\(992\) 21995.5 0.703991
\(993\) 0 0
\(994\) 0 0
\(995\) −6990.07 −0.222714
\(996\) 0 0
\(997\) 9905.79 0.314664 0.157332 0.987546i \(-0.449711\pi\)
0.157332 + 0.987546i \(0.449711\pi\)
\(998\) −15749.6 −0.499545
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bo.1.4 8
3.2 odd 2 inner 1323.4.a.bo.1.5 8
7.2 even 3 189.4.e.h.109.5 yes 16
7.4 even 3 189.4.e.h.163.5 yes 16
7.6 odd 2 1323.4.a.bn.1.4 8
21.2 odd 6 189.4.e.h.109.4 16
21.11 odd 6 189.4.e.h.163.4 yes 16
21.20 even 2 1323.4.a.bn.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.4 16 21.2 odd 6
189.4.e.h.109.5 yes 16 7.2 even 3
189.4.e.h.163.4 yes 16 21.11 odd 6
189.4.e.h.163.5 yes 16 7.4 even 3
1323.4.a.bn.1.4 8 7.6 odd 2
1323.4.a.bn.1.5 8 21.20 even 2
1323.4.a.bo.1.4 8 1.1 even 1 trivial
1323.4.a.bo.1.5 8 3.2 odd 2 inner