Properties

Label 1323.4.a.bo.1.3
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.128152\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.29273 q^{2} +2.84210 q^{4} -21.7165 q^{5} +16.9836 q^{8} +O(q^{10})\) \(q-3.29273 q^{2} +2.84210 q^{4} -21.7165 q^{5} +16.9836 q^{8} +71.5066 q^{10} +41.9640 q^{11} +46.0329 q^{13} -78.6593 q^{16} -2.01763 q^{17} +73.2487 q^{19} -61.7204 q^{20} -138.176 q^{22} +24.1677 q^{23} +346.605 q^{25} -151.574 q^{26} -90.7240 q^{29} +53.2052 q^{31} +123.135 q^{32} +6.64353 q^{34} +67.8619 q^{37} -241.189 q^{38} -368.824 q^{40} -341.211 q^{41} +509.713 q^{43} +119.266 q^{44} -79.5778 q^{46} -38.4702 q^{47} -1141.28 q^{50} +130.830 q^{52} -389.388 q^{53} -911.311 q^{55} +298.730 q^{58} -450.621 q^{59} +225.903 q^{61} -175.191 q^{62} +223.822 q^{64} -999.672 q^{65} -772.012 q^{67} -5.73431 q^{68} +962.655 q^{71} -1053.79 q^{73} -223.451 q^{74} +208.180 q^{76} +33.5907 q^{79} +1708.20 q^{80} +1123.52 q^{82} -446.386 q^{83} +43.8159 q^{85} -1678.35 q^{86} +712.700 q^{88} -489.798 q^{89} +68.6870 q^{92} +126.672 q^{94} -1590.70 q^{95} +460.958 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 48 q^{4} + 44 q^{10} - 84 q^{13} + 156 q^{16} + 12 q^{19} + 224 q^{22} + 408 q^{25} + 800 q^{31} - 948 q^{34} + 692 q^{37} + 96 q^{40} + 1456 q^{43} + 1524 q^{46} + 1972 q^{52} - 1280 q^{55} + 2372 q^{58} + 216 q^{61} + 4964 q^{64} + 684 q^{67} - 4564 q^{73} - 380 q^{76} + 556 q^{79} + 3340 q^{82} + 1296 q^{85} + 6696 q^{88} - 492 q^{94} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.29273 −1.16416 −0.582079 0.813132i \(-0.697760\pi\)
−0.582079 + 0.813132i \(0.697760\pi\)
\(3\) 0 0
\(4\) 2.84210 0.355263
\(5\) −21.7165 −1.94238 −0.971190 0.238305i \(-0.923408\pi\)
−0.971190 + 0.238305i \(0.923408\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 16.9836 0.750576
\(9\) 0 0
\(10\) 71.5066 2.26124
\(11\) 41.9640 1.15024 0.575119 0.818069i \(-0.304956\pi\)
0.575119 + 0.818069i \(0.304956\pi\)
\(12\) 0 0
\(13\) 46.0329 0.982095 0.491047 0.871133i \(-0.336614\pi\)
0.491047 + 0.871133i \(0.336614\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −78.6593 −1.22905
\(17\) −2.01763 −0.0287852 −0.0143926 0.999896i \(-0.504581\pi\)
−0.0143926 + 0.999896i \(0.504581\pi\)
\(18\) 0 0
\(19\) 73.2487 0.884442 0.442221 0.896906i \(-0.354191\pi\)
0.442221 + 0.896906i \(0.354191\pi\)
\(20\) −61.7204 −0.690055
\(21\) 0 0
\(22\) −138.176 −1.33906
\(23\) 24.1677 0.219100 0.109550 0.993981i \(-0.465059\pi\)
0.109550 + 0.993981i \(0.465059\pi\)
\(24\) 0 0
\(25\) 346.605 2.77284
\(26\) −151.574 −1.14331
\(27\) 0 0
\(28\) 0 0
\(29\) −90.7240 −0.580932 −0.290466 0.956885i \(-0.593810\pi\)
−0.290466 + 0.956885i \(0.593810\pi\)
\(30\) 0 0
\(31\) 53.2052 0.308256 0.154128 0.988051i \(-0.450743\pi\)
0.154128 + 0.988051i \(0.450743\pi\)
\(32\) 123.135 0.680233
\(33\) 0 0
\(34\) 6.64353 0.0335105
\(35\) 0 0
\(36\) 0 0
\(37\) 67.8619 0.301525 0.150762 0.988570i \(-0.451827\pi\)
0.150762 + 0.988570i \(0.451827\pi\)
\(38\) −241.189 −1.02963
\(39\) 0 0
\(40\) −368.824 −1.45790
\(41\) −341.211 −1.29971 −0.649856 0.760057i \(-0.725171\pi\)
−0.649856 + 0.760057i \(0.725171\pi\)
\(42\) 0 0
\(43\) 509.713 1.80769 0.903843 0.427863i \(-0.140734\pi\)
0.903843 + 0.427863i \(0.140734\pi\)
\(44\) 119.266 0.408637
\(45\) 0 0
\(46\) −79.5778 −0.255067
\(47\) −38.4702 −0.119393 −0.0596963 0.998217i \(-0.519013\pi\)
−0.0596963 + 0.998217i \(0.519013\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1141.28 −3.22803
\(51\) 0 0
\(52\) 130.830 0.348902
\(53\) −389.388 −1.00918 −0.504590 0.863359i \(-0.668356\pi\)
−0.504590 + 0.863359i \(0.668356\pi\)
\(54\) 0 0
\(55\) −911.311 −2.23420
\(56\) 0 0
\(57\) 0 0
\(58\) 298.730 0.676296
\(59\) −450.621 −0.994336 −0.497168 0.867654i \(-0.665627\pi\)
−0.497168 + 0.867654i \(0.665627\pi\)
\(60\) 0 0
\(61\) 225.903 0.474162 0.237081 0.971490i \(-0.423809\pi\)
0.237081 + 0.971490i \(0.423809\pi\)
\(62\) −175.191 −0.358859
\(63\) 0 0
\(64\) 223.822 0.437152
\(65\) −999.672 −1.90760
\(66\) 0 0
\(67\) −772.012 −1.40771 −0.703853 0.710346i \(-0.748539\pi\)
−0.703853 + 0.710346i \(0.748539\pi\)
\(68\) −5.73431 −0.0102263
\(69\) 0 0
\(70\) 0 0
\(71\) 962.655 1.60910 0.804550 0.593885i \(-0.202407\pi\)
0.804550 + 0.593885i \(0.202407\pi\)
\(72\) 0 0
\(73\) −1053.79 −1.68955 −0.844775 0.535121i \(-0.820266\pi\)
−0.844775 + 0.535121i \(0.820266\pi\)
\(74\) −223.451 −0.351023
\(75\) 0 0
\(76\) 208.180 0.314209
\(77\) 0 0
\(78\) 0 0
\(79\) 33.5907 0.0478386 0.0239193 0.999714i \(-0.492386\pi\)
0.0239193 + 0.999714i \(0.492386\pi\)
\(80\) 1708.20 2.38729
\(81\) 0 0
\(82\) 1123.52 1.51307
\(83\) −446.386 −0.590328 −0.295164 0.955447i \(-0.595374\pi\)
−0.295164 + 0.955447i \(0.595374\pi\)
\(84\) 0 0
\(85\) 43.8159 0.0559117
\(86\) −1678.35 −2.10443
\(87\) 0 0
\(88\) 712.700 0.863342
\(89\) −489.798 −0.583354 −0.291677 0.956517i \(-0.594213\pi\)
−0.291677 + 0.956517i \(0.594213\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 68.6870 0.0778382
\(93\) 0 0
\(94\) 126.672 0.138992
\(95\) −1590.70 −1.71792
\(96\) 0 0
\(97\) 460.958 0.482507 0.241253 0.970462i \(-0.422441\pi\)
0.241253 + 0.970462i \(0.422441\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 985.088 0.985088
\(101\) 1542.74 1.51989 0.759945 0.649988i \(-0.225226\pi\)
0.759945 + 0.649988i \(0.225226\pi\)
\(102\) 0 0
\(103\) 1142.64 1.09308 0.546540 0.837433i \(-0.315945\pi\)
0.546540 + 0.837433i \(0.315945\pi\)
\(104\) 781.804 0.737136
\(105\) 0 0
\(106\) 1282.15 1.17485
\(107\) 802.561 0.725107 0.362554 0.931963i \(-0.381905\pi\)
0.362554 + 0.931963i \(0.381905\pi\)
\(108\) 0 0
\(109\) 1498.96 1.31720 0.658598 0.752495i \(-0.271150\pi\)
0.658598 + 0.752495i \(0.271150\pi\)
\(110\) 3000.70 2.60096
\(111\) 0 0
\(112\) 0 0
\(113\) 651.941 0.542738 0.271369 0.962475i \(-0.412524\pi\)
0.271369 + 0.962475i \(0.412524\pi\)
\(114\) 0 0
\(115\) −524.837 −0.425576
\(116\) −257.847 −0.206383
\(117\) 0 0
\(118\) 1483.77 1.15756
\(119\) 0 0
\(120\) 0 0
\(121\) 429.979 0.323050
\(122\) −743.838 −0.551999
\(123\) 0 0
\(124\) 151.215 0.109512
\(125\) −4812.49 −3.44354
\(126\) 0 0
\(127\) −634.311 −0.443197 −0.221598 0.975138i \(-0.571127\pi\)
−0.221598 + 0.975138i \(0.571127\pi\)
\(128\) −1722.07 −1.18915
\(129\) 0 0
\(130\) 3291.66 2.22075
\(131\) 2290.16 1.52742 0.763709 0.645560i \(-0.223376\pi\)
0.763709 + 0.645560i \(0.223376\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2542.03 1.63879
\(135\) 0 0
\(136\) −34.2666 −0.0216054
\(137\) −730.350 −0.455460 −0.227730 0.973724i \(-0.573130\pi\)
−0.227730 + 0.973724i \(0.573130\pi\)
\(138\) 0 0
\(139\) −1195.39 −0.729436 −0.364718 0.931118i \(-0.618835\pi\)
−0.364718 + 0.931118i \(0.618835\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3169.77 −1.87325
\(143\) 1931.73 1.12964
\(144\) 0 0
\(145\) 1970.21 1.12839
\(146\) 3469.86 1.96690
\(147\) 0 0
\(148\) 192.870 0.107121
\(149\) −1269.38 −0.697932 −0.348966 0.937135i \(-0.613467\pi\)
−0.348966 + 0.937135i \(0.613467\pi\)
\(150\) 0 0
\(151\) 438.971 0.236576 0.118288 0.992979i \(-0.462259\pi\)
0.118288 + 0.992979i \(0.462259\pi\)
\(152\) 1244.03 0.663841
\(153\) 0 0
\(154\) 0 0
\(155\) −1155.43 −0.598751
\(156\) 0 0
\(157\) −1786.27 −0.908027 −0.454013 0.890995i \(-0.650008\pi\)
−0.454013 + 0.890995i \(0.650008\pi\)
\(158\) −110.605 −0.0556917
\(159\) 0 0
\(160\) −2674.07 −1.32127
\(161\) 0 0
\(162\) 0 0
\(163\) −847.231 −0.407118 −0.203559 0.979063i \(-0.565251\pi\)
−0.203559 + 0.979063i \(0.565251\pi\)
\(164\) −969.756 −0.461739
\(165\) 0 0
\(166\) 1469.83 0.687235
\(167\) −1454.66 −0.674040 −0.337020 0.941498i \(-0.609419\pi\)
−0.337020 + 0.941498i \(0.609419\pi\)
\(168\) 0 0
\(169\) −77.9721 −0.0354903
\(170\) −144.274 −0.0650901
\(171\) 0 0
\(172\) 1448.66 0.642204
\(173\) −849.511 −0.373336 −0.186668 0.982423i \(-0.559769\pi\)
−0.186668 + 0.982423i \(0.559769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3300.86 −1.41370
\(177\) 0 0
\(178\) 1612.78 0.679116
\(179\) −1320.02 −0.551189 −0.275595 0.961274i \(-0.588875\pi\)
−0.275595 + 0.961274i \(0.588875\pi\)
\(180\) 0 0
\(181\) −4005.73 −1.64499 −0.822495 0.568772i \(-0.807419\pi\)
−0.822495 + 0.568772i \(0.807419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 410.454 0.164451
\(185\) −1473.72 −0.585676
\(186\) 0 0
\(187\) −84.6680 −0.0331098
\(188\) −109.336 −0.0424157
\(189\) 0 0
\(190\) 5237.77 1.99993
\(191\) 1711.51 0.648380 0.324190 0.945992i \(-0.394908\pi\)
0.324190 + 0.945992i \(0.394908\pi\)
\(192\) 0 0
\(193\) 4383.94 1.63504 0.817521 0.575898i \(-0.195348\pi\)
0.817521 + 0.575898i \(0.195348\pi\)
\(194\) −1517.81 −0.561714
\(195\) 0 0
\(196\) 0 0
\(197\) 1269.36 0.459076 0.229538 0.973300i \(-0.426279\pi\)
0.229538 + 0.973300i \(0.426279\pi\)
\(198\) 0 0
\(199\) 586.566 0.208948 0.104474 0.994528i \(-0.466684\pi\)
0.104474 + 0.994528i \(0.466684\pi\)
\(200\) 5886.60 2.08123
\(201\) 0 0
\(202\) −5079.85 −1.76939
\(203\) 0 0
\(204\) 0 0
\(205\) 7409.90 2.52454
\(206\) −3762.40 −1.27252
\(207\) 0 0
\(208\) −3620.91 −1.20704
\(209\) 3073.81 1.01732
\(210\) 0 0
\(211\) 1037.46 0.338491 0.169246 0.985574i \(-0.445867\pi\)
0.169246 + 0.985574i \(0.445867\pi\)
\(212\) −1106.68 −0.358524
\(213\) 0 0
\(214\) −2642.62 −0.844139
\(215\) −11069.2 −3.51122
\(216\) 0 0
\(217\) 0 0
\(218\) −4935.68 −1.53342
\(219\) 0 0
\(220\) −2590.04 −0.793729
\(221\) −92.8775 −0.0282697
\(222\) 0 0
\(223\) 5421.68 1.62808 0.814041 0.580807i \(-0.197263\pi\)
0.814041 + 0.580807i \(0.197263\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2146.67 −0.631833
\(227\) 1830.60 0.535248 0.267624 0.963523i \(-0.413762\pi\)
0.267624 + 0.963523i \(0.413762\pi\)
\(228\) 0 0
\(229\) 68.7870 0.0198497 0.00992483 0.999951i \(-0.496841\pi\)
0.00992483 + 0.999951i \(0.496841\pi\)
\(230\) 1728.15 0.495438
\(231\) 0 0
\(232\) −1540.82 −0.436033
\(233\) 4871.93 1.36983 0.684916 0.728622i \(-0.259839\pi\)
0.684916 + 0.728622i \(0.259839\pi\)
\(234\) 0 0
\(235\) 835.437 0.231906
\(236\) −1280.71 −0.353251
\(237\) 0 0
\(238\) 0 0
\(239\) 3786.86 1.02490 0.512451 0.858716i \(-0.328737\pi\)
0.512451 + 0.858716i \(0.328737\pi\)
\(240\) 0 0
\(241\) 1806.60 0.482877 0.241438 0.970416i \(-0.422381\pi\)
0.241438 + 0.970416i \(0.422381\pi\)
\(242\) −1415.81 −0.376081
\(243\) 0 0
\(244\) 642.039 0.168452
\(245\) 0 0
\(246\) 0 0
\(247\) 3371.85 0.868606
\(248\) 903.616 0.231370
\(249\) 0 0
\(250\) 15846.2 4.00882
\(251\) −235.616 −0.0592508 −0.0296254 0.999561i \(-0.509431\pi\)
−0.0296254 + 0.999561i \(0.509431\pi\)
\(252\) 0 0
\(253\) 1014.17 0.252018
\(254\) 2088.62 0.515951
\(255\) 0 0
\(256\) 3879.74 0.947203
\(257\) −2084.35 −0.505908 −0.252954 0.967478i \(-0.581402\pi\)
−0.252954 + 0.967478i \(0.581402\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2841.17 −0.677700
\(261\) 0 0
\(262\) −7540.87 −1.77816
\(263\) 5884.72 1.37972 0.689862 0.723941i \(-0.257671\pi\)
0.689862 + 0.723941i \(0.257671\pi\)
\(264\) 0 0
\(265\) 8456.14 1.96021
\(266\) 0 0
\(267\) 0 0
\(268\) −2194.14 −0.500105
\(269\) −7076.62 −1.60397 −0.801987 0.597342i \(-0.796224\pi\)
−0.801987 + 0.597342i \(0.796224\pi\)
\(270\) 0 0
\(271\) 2818.66 0.631814 0.315907 0.948790i \(-0.397691\pi\)
0.315907 + 0.948790i \(0.397691\pi\)
\(272\) 158.705 0.0353784
\(273\) 0 0
\(274\) 2404.85 0.530227
\(275\) 14545.0 3.18943
\(276\) 0 0
\(277\) 4368.87 0.947652 0.473826 0.880618i \(-0.342872\pi\)
0.473826 + 0.880618i \(0.342872\pi\)
\(278\) 3936.10 0.849178
\(279\) 0 0
\(280\) 0 0
\(281\) −520.957 −0.110597 −0.0552984 0.998470i \(-0.517611\pi\)
−0.0552984 + 0.998470i \(0.517611\pi\)
\(282\) 0 0
\(283\) −2832.71 −0.595008 −0.297504 0.954720i \(-0.596154\pi\)
−0.297504 + 0.954720i \(0.596154\pi\)
\(284\) 2735.96 0.571653
\(285\) 0 0
\(286\) −6360.66 −1.31508
\(287\) 0 0
\(288\) 0 0
\(289\) −4908.93 −0.999171
\(290\) −6487.36 −1.31362
\(291\) 0 0
\(292\) −2994.99 −0.600234
\(293\) −3591.98 −0.716196 −0.358098 0.933684i \(-0.616575\pi\)
−0.358098 + 0.933684i \(0.616575\pi\)
\(294\) 0 0
\(295\) 9785.90 1.93138
\(296\) 1152.54 0.226317
\(297\) 0 0
\(298\) 4179.74 0.812503
\(299\) 1112.51 0.215177
\(300\) 0 0
\(301\) 0 0
\(302\) −1445.42 −0.275412
\(303\) 0 0
\(304\) −5761.69 −1.08702
\(305\) −4905.81 −0.921003
\(306\) 0 0
\(307\) 2168.14 0.403069 0.201535 0.979481i \(-0.435407\pi\)
0.201535 + 0.979481i \(0.435407\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3804.52 0.697040
\(311\) 7218.02 1.31606 0.658032 0.752990i \(-0.271389\pi\)
0.658032 + 0.752990i \(0.271389\pi\)
\(312\) 0 0
\(313\) 3044.54 0.549800 0.274900 0.961473i \(-0.411355\pi\)
0.274900 + 0.961473i \(0.411355\pi\)
\(314\) 5881.73 1.05709
\(315\) 0 0
\(316\) 95.4682 0.0169953
\(317\) −6110.77 −1.08270 −0.541349 0.840798i \(-0.682086\pi\)
−0.541349 + 0.840798i \(0.682086\pi\)
\(318\) 0 0
\(319\) −3807.14 −0.668210
\(320\) −4860.63 −0.849116
\(321\) 0 0
\(322\) 0 0
\(323\) −147.789 −0.0254588
\(324\) 0 0
\(325\) 15955.3 2.72319
\(326\) 2789.71 0.473950
\(327\) 0 0
\(328\) −5794.99 −0.975533
\(329\) 0 0
\(330\) 0 0
\(331\) 1497.42 0.248657 0.124329 0.992241i \(-0.460322\pi\)
0.124329 + 0.992241i \(0.460322\pi\)
\(332\) −1268.67 −0.209722
\(333\) 0 0
\(334\) 4789.80 0.784689
\(335\) 16765.4 2.73430
\(336\) 0 0
\(337\) −8157.61 −1.31861 −0.659307 0.751873i \(-0.729150\pi\)
−0.659307 + 0.751873i \(0.729150\pi\)
\(338\) 256.742 0.0413163
\(339\) 0 0
\(340\) 124.529 0.0198634
\(341\) 2232.70 0.354568
\(342\) 0 0
\(343\) 0 0
\(344\) 8656.76 1.35681
\(345\) 0 0
\(346\) 2797.21 0.434622
\(347\) 9133.12 1.41294 0.706472 0.707741i \(-0.250286\pi\)
0.706472 + 0.707741i \(0.250286\pi\)
\(348\) 0 0
\(349\) −9528.48 −1.46145 −0.730727 0.682670i \(-0.760819\pi\)
−0.730727 + 0.682670i \(0.760819\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5167.26 0.782431
\(353\) 3357.34 0.506214 0.253107 0.967438i \(-0.418548\pi\)
0.253107 + 0.967438i \(0.418548\pi\)
\(354\) 0 0
\(355\) −20905.5 −3.12548
\(356\) −1392.06 −0.207244
\(357\) 0 0
\(358\) 4346.47 0.641671
\(359\) −92.9735 −0.0136684 −0.00683420 0.999977i \(-0.502175\pi\)
−0.00683420 + 0.999977i \(0.502175\pi\)
\(360\) 0 0
\(361\) −1493.63 −0.217762
\(362\) 13189.8 1.91503
\(363\) 0 0
\(364\) 0 0
\(365\) 22884.7 3.28175
\(366\) 0 0
\(367\) −6785.90 −0.965181 −0.482590 0.875846i \(-0.660304\pi\)
−0.482590 + 0.875846i \(0.660304\pi\)
\(368\) −1901.01 −0.269286
\(369\) 0 0
\(370\) 4852.57 0.681820
\(371\) 0 0
\(372\) 0 0
\(373\) −7451.05 −1.03432 −0.517159 0.855889i \(-0.673010\pi\)
−0.517159 + 0.855889i \(0.673010\pi\)
\(374\) 278.789 0.0385450
\(375\) 0 0
\(376\) −653.362 −0.0896132
\(377\) −4176.29 −0.570530
\(378\) 0 0
\(379\) 4014.67 0.544115 0.272058 0.962281i \(-0.412296\pi\)
0.272058 + 0.962281i \(0.412296\pi\)
\(380\) −4520.94 −0.610314
\(381\) 0 0
\(382\) −5635.55 −0.754816
\(383\) 6464.87 0.862505 0.431253 0.902231i \(-0.358072\pi\)
0.431253 + 0.902231i \(0.358072\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14435.2 −1.90345
\(387\) 0 0
\(388\) 1310.09 0.171417
\(389\) 6944.06 0.905085 0.452542 0.891743i \(-0.350517\pi\)
0.452542 + 0.891743i \(0.350517\pi\)
\(390\) 0 0
\(391\) −48.7615 −0.00630684
\(392\) 0 0
\(393\) 0 0
\(394\) −4179.65 −0.534436
\(395\) −729.472 −0.0929208
\(396\) 0 0
\(397\) 1363.07 0.172319 0.0861594 0.996281i \(-0.472541\pi\)
0.0861594 + 0.996281i \(0.472541\pi\)
\(398\) −1931.41 −0.243248
\(399\) 0 0
\(400\) −27263.7 −3.40797
\(401\) −3889.07 −0.484317 −0.242158 0.970237i \(-0.577855\pi\)
−0.242158 + 0.970237i \(0.577855\pi\)
\(402\) 0 0
\(403\) 2449.19 0.302737
\(404\) 4384.64 0.539960
\(405\) 0 0
\(406\) 0 0
\(407\) 2847.76 0.346826
\(408\) 0 0
\(409\) −8373.76 −1.01236 −0.506180 0.862428i \(-0.668943\pi\)
−0.506180 + 0.862428i \(0.668943\pi\)
\(410\) −24398.8 −2.93896
\(411\) 0 0
\(412\) 3247.49 0.388331
\(413\) 0 0
\(414\) 0 0
\(415\) 9693.93 1.14664
\(416\) 5668.28 0.668053
\(417\) 0 0
\(418\) −10121.2 −1.18432
\(419\) 11115.8 1.29604 0.648022 0.761621i \(-0.275596\pi\)
0.648022 + 0.761621i \(0.275596\pi\)
\(420\) 0 0
\(421\) 9201.47 1.06521 0.532604 0.846365i \(-0.321214\pi\)
0.532604 + 0.846365i \(0.321214\pi\)
\(422\) −3416.08 −0.394057
\(423\) 0 0
\(424\) −6613.21 −0.757467
\(425\) −699.322 −0.0798167
\(426\) 0 0
\(427\) 0 0
\(428\) 2280.96 0.257603
\(429\) 0 0
\(430\) 36447.9 4.08761
\(431\) −2997.12 −0.334956 −0.167478 0.985876i \(-0.553562\pi\)
−0.167478 + 0.985876i \(0.553562\pi\)
\(432\) 0 0
\(433\) −4285.85 −0.475669 −0.237835 0.971306i \(-0.576438\pi\)
−0.237835 + 0.971306i \(0.576438\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4260.20 0.467951
\(437\) 1770.25 0.193782
\(438\) 0 0
\(439\) 3051.15 0.331716 0.165858 0.986150i \(-0.446961\pi\)
0.165858 + 0.986150i \(0.446961\pi\)
\(440\) −15477.3 −1.67694
\(441\) 0 0
\(442\) 305.821 0.0329104
\(443\) 11571.0 1.24098 0.620491 0.784214i \(-0.286934\pi\)
0.620491 + 0.784214i \(0.286934\pi\)
\(444\) 0 0
\(445\) 10636.7 1.13310
\(446\) −17852.1 −1.89534
\(447\) 0 0
\(448\) 0 0
\(449\) 3588.18 0.377142 0.188571 0.982060i \(-0.439614\pi\)
0.188571 + 0.982060i \(0.439614\pi\)
\(450\) 0 0
\(451\) −14318.6 −1.49498
\(452\) 1852.88 0.192815
\(453\) 0 0
\(454\) −6027.68 −0.623113
\(455\) 0 0
\(456\) 0 0
\(457\) −9367.40 −0.958837 −0.479419 0.877586i \(-0.659152\pi\)
−0.479419 + 0.877586i \(0.659152\pi\)
\(458\) −226.497 −0.0231081
\(459\) 0 0
\(460\) −1491.64 −0.151191
\(461\) −1091.46 −0.110269 −0.0551346 0.998479i \(-0.517559\pi\)
−0.0551346 + 0.998479i \(0.517559\pi\)
\(462\) 0 0
\(463\) 13226.1 1.32758 0.663790 0.747919i \(-0.268947\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(464\) 7136.28 0.713995
\(465\) 0 0
\(466\) −16042.0 −1.59470
\(467\) 11341.4 1.12381 0.561903 0.827203i \(-0.310069\pi\)
0.561903 + 0.827203i \(0.310069\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2750.87 −0.269975
\(471\) 0 0
\(472\) −7653.16 −0.746325
\(473\) 21389.6 2.07927
\(474\) 0 0
\(475\) 25388.4 2.45242
\(476\) 0 0
\(477\) 0 0
\(478\) −12469.1 −1.19315
\(479\) 17024.4 1.62394 0.811968 0.583702i \(-0.198396\pi\)
0.811968 + 0.583702i \(0.198396\pi\)
\(480\) 0 0
\(481\) 3123.88 0.296126
\(482\) −5948.66 −0.562145
\(483\) 0 0
\(484\) 1222.04 0.114767
\(485\) −10010.4 −0.937212
\(486\) 0 0
\(487\) 9724.70 0.904863 0.452431 0.891799i \(-0.350557\pi\)
0.452431 + 0.891799i \(0.350557\pi\)
\(488\) 3836.64 0.355895
\(489\) 0 0
\(490\) 0 0
\(491\) −16363.4 −1.50402 −0.752008 0.659154i \(-0.770915\pi\)
−0.752008 + 0.659154i \(0.770915\pi\)
\(492\) 0 0
\(493\) 183.048 0.0167222
\(494\) −11102.6 −1.01119
\(495\) 0 0
\(496\) −4185.08 −0.378862
\(497\) 0 0
\(498\) 0 0
\(499\) −5452.46 −0.489149 −0.244575 0.969630i \(-0.578648\pi\)
−0.244575 + 0.969630i \(0.578648\pi\)
\(500\) −13677.6 −1.22336
\(501\) 0 0
\(502\) 775.820 0.0689772
\(503\) −3703.99 −0.328336 −0.164168 0.986432i \(-0.552494\pi\)
−0.164168 + 0.986432i \(0.552494\pi\)
\(504\) 0 0
\(505\) −33503.0 −2.95220
\(506\) −3339.40 −0.293388
\(507\) 0 0
\(508\) −1802.78 −0.157451
\(509\) 1653.69 0.144005 0.0720023 0.997404i \(-0.477061\pi\)
0.0720023 + 0.997404i \(0.477061\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1001.60 0.0864546
\(513\) 0 0
\(514\) 6863.22 0.588956
\(515\) −24814.0 −2.12318
\(516\) 0 0
\(517\) −1614.36 −0.137330
\(518\) 0 0
\(519\) 0 0
\(520\) −16978.0 −1.43180
\(521\) −3100.30 −0.260704 −0.130352 0.991468i \(-0.541611\pi\)
−0.130352 + 0.991468i \(0.541611\pi\)
\(522\) 0 0
\(523\) −3125.43 −0.261311 −0.130655 0.991428i \(-0.541708\pi\)
−0.130655 + 0.991428i \(0.541708\pi\)
\(524\) 6508.85 0.542635
\(525\) 0 0
\(526\) −19376.8 −1.60622
\(527\) −107.349 −0.00887320
\(528\) 0 0
\(529\) −11582.9 −0.951995
\(530\) −27843.8 −2.28200
\(531\) 0 0
\(532\) 0 0
\(533\) −15706.9 −1.27644
\(534\) 0 0
\(535\) −17428.8 −1.40843
\(536\) −13111.5 −1.05659
\(537\) 0 0
\(538\) 23301.4 1.86728
\(539\) 0 0
\(540\) 0 0
\(541\) 21514.3 1.70975 0.854874 0.518836i \(-0.173634\pi\)
0.854874 + 0.518836i \(0.173634\pi\)
\(542\) −9281.10 −0.735531
\(543\) 0 0
\(544\) −248.442 −0.0195806
\(545\) −32552.2 −2.55850
\(546\) 0 0
\(547\) −13104.4 −1.02432 −0.512161 0.858889i \(-0.671155\pi\)
−0.512161 + 0.858889i \(0.671155\pi\)
\(548\) −2075.73 −0.161808
\(549\) 0 0
\(550\) −47892.7 −3.71300
\(551\) −6645.42 −0.513801
\(552\) 0 0
\(553\) 0 0
\(554\) −14385.5 −1.10322
\(555\) 0 0
\(556\) −3397.42 −0.259141
\(557\) 18794.9 1.42974 0.714870 0.699257i \(-0.246486\pi\)
0.714870 + 0.699257i \(0.246486\pi\)
\(558\) 0 0
\(559\) 23463.6 1.77532
\(560\) 0 0
\(561\) 0 0
\(562\) 1715.37 0.128752
\(563\) 17449.7 1.30625 0.653124 0.757251i \(-0.273458\pi\)
0.653124 + 0.757251i \(0.273458\pi\)
\(564\) 0 0
\(565\) −14157.9 −1.05420
\(566\) 9327.38 0.692684
\(567\) 0 0
\(568\) 16349.3 1.20775
\(569\) −22840.9 −1.68285 −0.841423 0.540376i \(-0.818282\pi\)
−0.841423 + 0.540376i \(0.818282\pi\)
\(570\) 0 0
\(571\) 896.042 0.0656711 0.0328355 0.999461i \(-0.489546\pi\)
0.0328355 + 0.999461i \(0.489546\pi\)
\(572\) 5490.16 0.401320
\(573\) 0 0
\(574\) 0 0
\(575\) 8376.65 0.607531
\(576\) 0 0
\(577\) −2966.19 −0.214011 −0.107005 0.994258i \(-0.534126\pi\)
−0.107005 + 0.994258i \(0.534126\pi\)
\(578\) 16163.8 1.16319
\(579\) 0 0
\(580\) 5599.52 0.400875
\(581\) 0 0
\(582\) 0 0
\(583\) −16340.3 −1.16080
\(584\) −17897.2 −1.26814
\(585\) 0 0
\(586\) 11827.4 0.833765
\(587\) −1872.80 −0.131684 −0.0658420 0.997830i \(-0.520973\pi\)
−0.0658420 + 0.997830i \(0.520973\pi\)
\(588\) 0 0
\(589\) 3897.21 0.272635
\(590\) −32222.4 −2.24843
\(591\) 0 0
\(592\) −5337.97 −0.370590
\(593\) −17099.0 −1.18410 −0.592051 0.805901i \(-0.701682\pi\)
−0.592051 + 0.805901i \(0.701682\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3607.71 −0.247949
\(597\) 0 0
\(598\) −3663.20 −0.250500
\(599\) 11418.2 0.778856 0.389428 0.921057i \(-0.372673\pi\)
0.389428 + 0.921057i \(0.372673\pi\)
\(600\) 0 0
\(601\) −10231.6 −0.694432 −0.347216 0.937785i \(-0.612873\pi\)
−0.347216 + 0.937785i \(0.612873\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1247.60 0.0840466
\(605\) −9337.63 −0.627485
\(606\) 0 0
\(607\) −12191.4 −0.815212 −0.407606 0.913158i \(-0.633636\pi\)
−0.407606 + 0.913158i \(0.633636\pi\)
\(608\) 9019.51 0.601627
\(609\) 0 0
\(610\) 16153.5 1.07219
\(611\) −1770.89 −0.117255
\(612\) 0 0
\(613\) −7649.75 −0.504030 −0.252015 0.967723i \(-0.581093\pi\)
−0.252015 + 0.967723i \(0.581093\pi\)
\(614\) −7139.11 −0.469236
\(615\) 0 0
\(616\) 0 0
\(617\) −19107.4 −1.24673 −0.623367 0.781929i \(-0.714236\pi\)
−0.623367 + 0.781929i \(0.714236\pi\)
\(618\) 0 0
\(619\) 17663.3 1.14693 0.573464 0.819231i \(-0.305599\pi\)
0.573464 + 0.819231i \(0.305599\pi\)
\(620\) −3283.85 −0.212714
\(621\) 0 0
\(622\) −23767.0 −1.53211
\(623\) 0 0
\(624\) 0 0
\(625\) 61184.6 3.91582
\(626\) −10024.8 −0.640053
\(627\) 0 0
\(628\) −5076.77 −0.322588
\(629\) −136.920 −0.00867944
\(630\) 0 0
\(631\) 5523.07 0.348447 0.174223 0.984706i \(-0.444259\pi\)
0.174223 + 0.984706i \(0.444259\pi\)
\(632\) 570.491 0.0359065
\(633\) 0 0
\(634\) 20121.2 1.26043
\(635\) 13775.0 0.860857
\(636\) 0 0
\(637\) 0 0
\(638\) 12535.9 0.777902
\(639\) 0 0
\(640\) 37397.3 2.30978
\(641\) −17454.0 −1.07549 −0.537747 0.843106i \(-0.680724\pi\)
−0.537747 + 0.843106i \(0.680724\pi\)
\(642\) 0 0
\(643\) −8175.22 −0.501398 −0.250699 0.968065i \(-0.580660\pi\)
−0.250699 + 0.968065i \(0.580660\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 486.630 0.0296381
\(647\) 25000.6 1.51913 0.759564 0.650432i \(-0.225412\pi\)
0.759564 + 0.650432i \(0.225412\pi\)
\(648\) 0 0
\(649\) −18909.9 −1.14372
\(650\) −52536.4 −3.17023
\(651\) 0 0
\(652\) −2407.92 −0.144634
\(653\) 769.091 0.0460901 0.0230451 0.999734i \(-0.492664\pi\)
0.0230451 + 0.999734i \(0.492664\pi\)
\(654\) 0 0
\(655\) −49734.1 −2.96683
\(656\) 26839.4 1.59741
\(657\) 0 0
\(658\) 0 0
\(659\) −7037.98 −0.416025 −0.208013 0.978126i \(-0.566700\pi\)
−0.208013 + 0.978126i \(0.566700\pi\)
\(660\) 0 0
\(661\) 4089.75 0.240655 0.120327 0.992734i \(-0.461606\pi\)
0.120327 + 0.992734i \(0.461606\pi\)
\(662\) −4930.60 −0.289476
\(663\) 0 0
\(664\) −7581.24 −0.443086
\(665\) 0 0
\(666\) 0 0
\(667\) −2192.59 −0.127282
\(668\) −4134.28 −0.239461
\(669\) 0 0
\(670\) −55204.0 −3.18316
\(671\) 9479.79 0.545400
\(672\) 0 0
\(673\) 2151.39 0.123224 0.0616121 0.998100i \(-0.480376\pi\)
0.0616121 + 0.998100i \(0.480376\pi\)
\(674\) 26860.8 1.53508
\(675\) 0 0
\(676\) −221.605 −0.0126084
\(677\) 7675.61 0.435742 0.217871 0.975978i \(-0.430089\pi\)
0.217871 + 0.975978i \(0.430089\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 744.151 0.0419660
\(681\) 0 0
\(682\) −7351.70 −0.412773
\(683\) −16098.6 −0.901896 −0.450948 0.892550i \(-0.648914\pi\)
−0.450948 + 0.892550i \(0.648914\pi\)
\(684\) 0 0
\(685\) 15860.6 0.884676
\(686\) 0 0
\(687\) 0 0
\(688\) −40093.7 −2.22174
\(689\) −17924.7 −0.991111
\(690\) 0 0
\(691\) 19083.8 1.05063 0.525313 0.850909i \(-0.323948\pi\)
0.525313 + 0.850909i \(0.323948\pi\)
\(692\) −2414.40 −0.132632
\(693\) 0 0
\(694\) −30072.9 −1.64489
\(695\) 25959.6 1.41684
\(696\) 0 0
\(697\) 688.438 0.0374124
\(698\) 31374.7 1.70136
\(699\) 0 0
\(700\) 0 0
\(701\) 29898.7 1.61093 0.805463 0.592646i \(-0.201917\pi\)
0.805463 + 0.592646i \(0.201917\pi\)
\(702\) 0 0
\(703\) 4970.79 0.266681
\(704\) 9392.47 0.502830
\(705\) 0 0
\(706\) −11054.8 −0.589312
\(707\) 0 0
\(708\) 0 0
\(709\) 19879.1 1.05300 0.526500 0.850175i \(-0.323504\pi\)
0.526500 + 0.850175i \(0.323504\pi\)
\(710\) 68836.2 3.63856
\(711\) 0 0
\(712\) −8318.53 −0.437851
\(713\) 1285.85 0.0675390
\(714\) 0 0
\(715\) −41950.3 −2.19420
\(716\) −3751.63 −0.195817
\(717\) 0 0
\(718\) 306.137 0.0159122
\(719\) 13640.5 0.707517 0.353758 0.935337i \(-0.384903\pi\)
0.353758 + 0.935337i \(0.384903\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4918.12 0.253509
\(723\) 0 0
\(724\) −11384.7 −0.584404
\(725\) −31445.4 −1.61083
\(726\) 0 0
\(727\) −10021.8 −0.511262 −0.255631 0.966774i \(-0.582283\pi\)
−0.255631 + 0.966774i \(0.582283\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −75353.2 −3.82047
\(731\) −1028.41 −0.0520345
\(732\) 0 0
\(733\) −24088.0 −1.21380 −0.606898 0.794780i \(-0.707586\pi\)
−0.606898 + 0.794780i \(0.707586\pi\)
\(734\) 22344.2 1.12362
\(735\) 0 0
\(736\) 2975.90 0.149039
\(737\) −32396.7 −1.61920
\(738\) 0 0
\(739\) 24657.9 1.22741 0.613705 0.789536i \(-0.289679\pi\)
0.613705 + 0.789536i \(0.289679\pi\)
\(740\) −4188.46 −0.208069
\(741\) 0 0
\(742\) 0 0
\(743\) 13467.0 0.664948 0.332474 0.943112i \(-0.392117\pi\)
0.332474 + 0.943112i \(0.392117\pi\)
\(744\) 0 0
\(745\) 27566.5 1.35565
\(746\) 24534.3 1.20411
\(747\) 0 0
\(748\) −240.635 −0.0117627
\(749\) 0 0
\(750\) 0 0
\(751\) −6880.15 −0.334301 −0.167151 0.985931i \(-0.553457\pi\)
−0.167151 + 0.985931i \(0.553457\pi\)
\(752\) 3026.04 0.146740
\(753\) 0 0
\(754\) 13751.4 0.664187
\(755\) −9532.91 −0.459521
\(756\) 0 0
\(757\) 33528.2 1.60978 0.804889 0.593425i \(-0.202225\pi\)
0.804889 + 0.593425i \(0.202225\pi\)
\(758\) −13219.2 −0.633436
\(759\) 0 0
\(760\) −27015.9 −1.28943
\(761\) −1090.91 −0.0519653 −0.0259826 0.999662i \(-0.508271\pi\)
−0.0259826 + 0.999662i \(0.508271\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4864.29 0.230345
\(765\) 0 0
\(766\) −21287.1 −1.00409
\(767\) −20743.4 −0.976532
\(768\) 0 0
\(769\) 30520.8 1.43122 0.715609 0.698501i \(-0.246149\pi\)
0.715609 + 0.698501i \(0.246149\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12459.6 0.580870
\(773\) −7848.30 −0.365179 −0.182590 0.983189i \(-0.558448\pi\)
−0.182590 + 0.983189i \(0.558448\pi\)
\(774\) 0 0
\(775\) 18441.2 0.854746
\(776\) 7828.72 0.362158
\(777\) 0 0
\(778\) −22865.0 −1.05366
\(779\) −24993.3 −1.14952
\(780\) 0 0
\(781\) 40396.9 1.85085
\(782\) 160.559 0.00734216
\(783\) 0 0
\(784\) 0 0
\(785\) 38791.6 1.76373
\(786\) 0 0
\(787\) 18778.4 0.850545 0.425272 0.905065i \(-0.360178\pi\)
0.425272 + 0.905065i \(0.360178\pi\)
\(788\) 3607.64 0.163092
\(789\) 0 0
\(790\) 2401.96 0.108174
\(791\) 0 0
\(792\) 0 0
\(793\) 10399.0 0.465672
\(794\) −4488.23 −0.200606
\(795\) 0 0
\(796\) 1667.08 0.0742313
\(797\) 34662.3 1.54053 0.770264 0.637725i \(-0.220124\pi\)
0.770264 + 0.637725i \(0.220124\pi\)
\(798\) 0 0
\(799\) 77.6187 0.00343674
\(800\) 42679.4 1.88618
\(801\) 0 0
\(802\) 12805.7 0.563821
\(803\) −44221.4 −1.94339
\(804\) 0 0
\(805\) 0 0
\(806\) −8064.53 −0.352433
\(807\) 0 0
\(808\) 26201.3 1.14079
\(809\) 27491.8 1.19476 0.597380 0.801958i \(-0.296208\pi\)
0.597380 + 0.801958i \(0.296208\pi\)
\(810\) 0 0
\(811\) 19150.6 0.829183 0.414592 0.910008i \(-0.363924\pi\)
0.414592 + 0.910008i \(0.363924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −9376.91 −0.403760
\(815\) 18398.9 0.790779
\(816\) 0 0
\(817\) 37335.8 1.59879
\(818\) 27572.6 1.17855
\(819\) 0 0
\(820\) 21059.7 0.896874
\(821\) 2547.05 0.108274 0.0541368 0.998534i \(-0.482759\pi\)
0.0541368 + 0.998534i \(0.482759\pi\)
\(822\) 0 0
\(823\) 21290.5 0.901748 0.450874 0.892588i \(-0.351112\pi\)
0.450874 + 0.892588i \(0.351112\pi\)
\(824\) 19406.1 0.820439
\(825\) 0 0
\(826\) 0 0
\(827\) −23131.7 −0.972632 −0.486316 0.873783i \(-0.661660\pi\)
−0.486316 + 0.873783i \(0.661660\pi\)
\(828\) 0 0
\(829\) −11897.4 −0.498450 −0.249225 0.968446i \(-0.580176\pi\)
−0.249225 + 0.968446i \(0.580176\pi\)
\(830\) −31919.6 −1.33487
\(831\) 0 0
\(832\) 10303.2 0.429325
\(833\) 0 0
\(834\) 0 0
\(835\) 31590.0 1.30924
\(836\) 8736.08 0.361416
\(837\) 0 0
\(838\) −36601.4 −1.50880
\(839\) −21937.3 −0.902693 −0.451347 0.892349i \(-0.649056\pi\)
−0.451347 + 0.892349i \(0.649056\pi\)
\(840\) 0 0
\(841\) −16158.2 −0.662518
\(842\) −30298.0 −1.24007
\(843\) 0 0
\(844\) 2948.56 0.120253
\(845\) 1693.28 0.0689356
\(846\) 0 0
\(847\) 0 0
\(848\) 30629.0 1.24033
\(849\) 0 0
\(850\) 2302.68 0.0929192
\(851\) 1640.06 0.0660643
\(852\) 0 0
\(853\) −7087.36 −0.284486 −0.142243 0.989832i \(-0.545431\pi\)
−0.142243 + 0.989832i \(0.545431\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13630.4 0.544248
\(857\) −29202.6 −1.16399 −0.581996 0.813192i \(-0.697728\pi\)
−0.581996 + 0.813192i \(0.697728\pi\)
\(858\) 0 0
\(859\) −6946.42 −0.275912 −0.137956 0.990438i \(-0.544053\pi\)
−0.137956 + 0.990438i \(0.544053\pi\)
\(860\) −31459.7 −1.24740
\(861\) 0 0
\(862\) 9868.72 0.389942
\(863\) 18125.7 0.714956 0.357478 0.933922i \(-0.383637\pi\)
0.357478 + 0.933922i \(0.383637\pi\)
\(864\) 0 0
\(865\) 18448.4 0.725161
\(866\) 14112.2 0.553754
\(867\) 0 0
\(868\) 0 0
\(869\) 1409.60 0.0550258
\(870\) 0 0
\(871\) −35538.0 −1.38250
\(872\) 25457.7 0.988656
\(873\) 0 0
\(874\) −5828.97 −0.225592
\(875\) 0 0
\(876\) 0 0
\(877\) 16741.7 0.644614 0.322307 0.946635i \(-0.395542\pi\)
0.322307 + 0.946635i \(0.395542\pi\)
\(878\) −10046.6 −0.386170
\(879\) 0 0
\(880\) 71683.0 2.74595
\(881\) 38779.3 1.48298 0.741491 0.670963i \(-0.234119\pi\)
0.741491 + 0.670963i \(0.234119\pi\)
\(882\) 0 0
\(883\) 32874.4 1.25290 0.626451 0.779461i \(-0.284507\pi\)
0.626451 + 0.779461i \(0.284507\pi\)
\(884\) −263.967 −0.0100432
\(885\) 0 0
\(886\) −38100.2 −1.44470
\(887\) −1849.20 −0.0700001 −0.0350000 0.999387i \(-0.511143\pi\)
−0.0350000 + 0.999387i \(0.511143\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −35023.8 −1.31910
\(891\) 0 0
\(892\) 15409.0 0.578397
\(893\) −2817.89 −0.105596
\(894\) 0 0
\(895\) 28666.2 1.07062
\(896\) 0 0
\(897\) 0 0
\(898\) −11814.9 −0.439053
\(899\) −4826.99 −0.179076
\(900\) 0 0
\(901\) 785.642 0.0290494
\(902\) 47147.3 1.74039
\(903\) 0 0
\(904\) 11072.3 0.407366
\(905\) 86990.3 3.19520
\(906\) 0 0
\(907\) −33145.2 −1.21342 −0.606708 0.794925i \(-0.707510\pi\)
−0.606708 + 0.794925i \(0.707510\pi\)
\(908\) 5202.75 0.190154
\(909\) 0 0
\(910\) 0 0
\(911\) −25056.8 −0.911272 −0.455636 0.890166i \(-0.650588\pi\)
−0.455636 + 0.890166i \(0.650588\pi\)
\(912\) 0 0
\(913\) −18732.2 −0.679018
\(914\) 30844.4 1.11624
\(915\) 0 0
\(916\) 195.500 0.00705184
\(917\) 0 0
\(918\) 0 0
\(919\) 19673.4 0.706164 0.353082 0.935592i \(-0.385134\pi\)
0.353082 + 0.935592i \(0.385134\pi\)
\(920\) −8913.62 −0.319427
\(921\) 0 0
\(922\) 3593.87 0.128371
\(923\) 44313.8 1.58029
\(924\) 0 0
\(925\) 23521.3 0.836081
\(926\) −43550.1 −1.54551
\(927\) 0 0
\(928\) −11171.3 −0.395169
\(929\) −23323.5 −0.823702 −0.411851 0.911251i \(-0.635118\pi\)
−0.411851 + 0.911251i \(0.635118\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 13846.5 0.486650
\(933\) 0 0
\(934\) −37344.2 −1.30829
\(935\) 1838.69 0.0643119
\(936\) 0 0
\(937\) 22330.3 0.778547 0.389274 0.921122i \(-0.372726\pi\)
0.389274 + 0.921122i \(0.372726\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2374.40 0.0823875
\(941\) −42050.1 −1.45674 −0.728371 0.685183i \(-0.759722\pi\)
−0.728371 + 0.685183i \(0.759722\pi\)
\(942\) 0 0
\(943\) −8246.28 −0.284768
\(944\) 35445.5 1.22209
\(945\) 0 0
\(946\) −70430.3 −2.42060
\(947\) 27731.1 0.951572 0.475786 0.879561i \(-0.342164\pi\)
0.475786 + 0.879561i \(0.342164\pi\)
\(948\) 0 0
\(949\) −48509.2 −1.65930
\(950\) −83597.2 −2.85500
\(951\) 0 0
\(952\) 0 0
\(953\) 1378.80 0.0468666 0.0234333 0.999725i \(-0.492540\pi\)
0.0234333 + 0.999725i \(0.492540\pi\)
\(954\) 0 0
\(955\) −37168.0 −1.25940
\(956\) 10762.6 0.364110
\(957\) 0 0
\(958\) −56056.9 −1.89052
\(959\) 0 0
\(960\) 0 0
\(961\) −26960.2 −0.904978
\(962\) −10286.1 −0.344737
\(963\) 0 0
\(964\) 5134.54 0.171548
\(965\) −95203.8 −3.17588
\(966\) 0 0
\(967\) −35157.0 −1.16916 −0.584578 0.811338i \(-0.698740\pi\)
−0.584578 + 0.811338i \(0.698740\pi\)
\(968\) 7302.59 0.242473
\(969\) 0 0
\(970\) 32961.5 1.09106
\(971\) 24254.7 0.801617 0.400808 0.916162i \(-0.368729\pi\)
0.400808 + 0.916162i \(0.368729\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −32020.9 −1.05340
\(975\) 0 0
\(976\) −17769.3 −0.582769
\(977\) 12769.3 0.418142 0.209071 0.977900i \(-0.432956\pi\)
0.209071 + 0.977900i \(0.432956\pi\)
\(978\) 0 0
\(979\) −20553.9 −0.670997
\(980\) 0 0
\(981\) 0 0
\(982\) 53880.5 1.75091
\(983\) 4753.76 0.154244 0.0771218 0.997022i \(-0.475427\pi\)
0.0771218 + 0.997022i \(0.475427\pi\)
\(984\) 0 0
\(985\) −27565.9 −0.891700
\(986\) −602.727 −0.0194673
\(987\) 0 0
\(988\) 9583.14 0.308583
\(989\) 12318.6 0.396065
\(990\) 0 0
\(991\) −23723.1 −0.760433 −0.380216 0.924898i \(-0.624150\pi\)
−0.380216 + 0.924898i \(0.624150\pi\)
\(992\) 6551.44 0.209686
\(993\) 0 0
\(994\) 0 0
\(995\) −12738.2 −0.405856
\(996\) 0 0
\(997\) −14203.6 −0.451185 −0.225593 0.974222i \(-0.572432\pi\)
−0.225593 + 0.974222i \(0.572432\pi\)
\(998\) 17953.5 0.569447
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bo.1.3 8
3.2 odd 2 inner 1323.4.a.bo.1.6 8
7.2 even 3 189.4.e.h.109.6 yes 16
7.4 even 3 189.4.e.h.163.6 yes 16
7.6 odd 2 1323.4.a.bn.1.3 8
21.2 odd 6 189.4.e.h.109.3 16
21.11 odd 6 189.4.e.h.163.3 yes 16
21.20 even 2 1323.4.a.bn.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.3 16 21.2 odd 6
189.4.e.h.109.6 yes 16 7.2 even 3
189.4.e.h.163.3 yes 16 21.11 odd 6
189.4.e.h.163.6 yes 16 7.4 even 3
1323.4.a.bn.1.3 8 7.6 odd 2
1323.4.a.bn.1.6 8 21.20 even 2
1323.4.a.bo.1.3 8 1.1 even 1 trivial
1323.4.a.bo.1.6 8 3.2 odd 2 inner