Properties

Label 1323.4.a.bo.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.07765\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.49236 q^{2} +4.19658 q^{4} +7.87531 q^{5} +13.2829 q^{8} +O(q^{10})\) \(q-3.49236 q^{2} +4.19658 q^{4} +7.87531 q^{5} +13.2829 q^{8} -27.5034 q^{10} -54.0035 q^{11} -48.9137 q^{13} -79.9614 q^{16} -96.9775 q^{17} -142.327 q^{19} +33.0494 q^{20} +188.600 q^{22} -103.787 q^{23} -62.9795 q^{25} +170.824 q^{26} -24.5329 q^{29} +187.379 q^{31} +172.991 q^{32} +338.680 q^{34} +146.555 q^{37} +497.058 q^{38} +104.607 q^{40} -314.180 q^{41} +173.165 q^{43} -226.630 q^{44} +362.462 q^{46} +259.235 q^{47} +219.947 q^{50} -205.270 q^{52} -620.858 q^{53} -425.295 q^{55} +85.6778 q^{58} +443.110 q^{59} +113.296 q^{61} -654.396 q^{62} +35.5454 q^{64} -385.210 q^{65} +628.975 q^{67} -406.974 q^{68} -41.3042 q^{71} +447.111 q^{73} -511.822 q^{74} -597.287 q^{76} +434.706 q^{79} -629.720 q^{80} +1097.23 q^{82} +329.158 q^{83} -763.728 q^{85} -604.756 q^{86} -717.324 q^{88} +24.8709 q^{89} -435.551 q^{92} -905.340 q^{94} -1120.87 q^{95} -499.239 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 48 q^{4} + 44 q^{10} - 84 q^{13} + 156 q^{16} + 12 q^{19} + 224 q^{22} + 408 q^{25} + 800 q^{31} - 948 q^{34} + 692 q^{37} + 96 q^{40} + 1456 q^{43} + 1524 q^{46} + 1972 q^{52} - 1280 q^{55} + 2372 q^{58} + 216 q^{61} + 4964 q^{64} + 684 q^{67} - 4564 q^{73} - 380 q^{76} + 556 q^{79} + 3340 q^{82} + 1296 q^{85} + 6696 q^{88} - 492 q^{94} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.49236 −1.23474 −0.617368 0.786675i \(-0.711801\pi\)
−0.617368 + 0.786675i \(0.711801\pi\)
\(3\) 0 0
\(4\) 4.19658 0.524573
\(5\) 7.87531 0.704389 0.352195 0.935927i \(-0.385436\pi\)
0.352195 + 0.935927i \(0.385436\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 13.2829 0.587027
\(9\) 0 0
\(10\) −27.5034 −0.869735
\(11\) −54.0035 −1.48024 −0.740122 0.672473i \(-0.765232\pi\)
−0.740122 + 0.672473i \(0.765232\pi\)
\(12\) 0 0
\(13\) −48.9137 −1.04355 −0.521777 0.853082i \(-0.674731\pi\)
−0.521777 + 0.853082i \(0.674731\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −79.9614 −1.24940
\(17\) −96.9775 −1.38356 −0.691780 0.722109i \(-0.743173\pi\)
−0.691780 + 0.722109i \(0.743173\pi\)
\(18\) 0 0
\(19\) −142.327 −1.71853 −0.859266 0.511530i \(-0.829079\pi\)
−0.859266 + 0.511530i \(0.829079\pi\)
\(20\) 33.0494 0.369503
\(21\) 0 0
\(22\) 188.600 1.82771
\(23\) −103.787 −0.940918 −0.470459 0.882422i \(-0.655912\pi\)
−0.470459 + 0.882422i \(0.655912\pi\)
\(24\) 0 0
\(25\) −62.9795 −0.503836
\(26\) 170.824 1.28851
\(27\) 0 0
\(28\) 0 0
\(29\) −24.5329 −0.157091 −0.0785456 0.996911i \(-0.525028\pi\)
−0.0785456 + 0.996911i \(0.525028\pi\)
\(30\) 0 0
\(31\) 187.379 1.08562 0.542812 0.839855i \(-0.317360\pi\)
0.542812 + 0.839855i \(0.317360\pi\)
\(32\) 172.991 0.955647
\(33\) 0 0
\(34\) 338.680 1.70833
\(35\) 0 0
\(36\) 0 0
\(37\) 146.555 0.651174 0.325587 0.945512i \(-0.394438\pi\)
0.325587 + 0.945512i \(0.394438\pi\)
\(38\) 497.058 2.12193
\(39\) 0 0
\(40\) 104.607 0.413496
\(41\) −314.180 −1.19675 −0.598374 0.801217i \(-0.704186\pi\)
−0.598374 + 0.801217i \(0.704186\pi\)
\(42\) 0 0
\(43\) 173.165 0.614127 0.307064 0.951689i \(-0.400654\pi\)
0.307064 + 0.951689i \(0.400654\pi\)
\(44\) −226.630 −0.776495
\(45\) 0 0
\(46\) 362.462 1.16179
\(47\) 259.235 0.804537 0.402269 0.915522i \(-0.368222\pi\)
0.402269 + 0.915522i \(0.368222\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 219.947 0.622104
\(51\) 0 0
\(52\) −205.270 −0.547420
\(53\) −620.858 −1.60908 −0.804541 0.593896i \(-0.797589\pi\)
−0.804541 + 0.593896i \(0.797589\pi\)
\(54\) 0 0
\(55\) −425.295 −1.04267
\(56\) 0 0
\(57\) 0 0
\(58\) 85.6778 0.193966
\(59\) 443.110 0.977764 0.488882 0.872350i \(-0.337405\pi\)
0.488882 + 0.872350i \(0.337405\pi\)
\(60\) 0 0
\(61\) 113.296 0.237803 0.118902 0.992906i \(-0.462063\pi\)
0.118902 + 0.992906i \(0.462063\pi\)
\(62\) −654.396 −1.34046
\(63\) 0 0
\(64\) 35.5454 0.0694245
\(65\) −385.210 −0.735069
\(66\) 0 0
\(67\) 628.975 1.14689 0.573444 0.819245i \(-0.305607\pi\)
0.573444 + 0.819245i \(0.305607\pi\)
\(68\) −406.974 −0.725777
\(69\) 0 0
\(70\) 0 0
\(71\) −41.3042 −0.0690410 −0.0345205 0.999404i \(-0.510990\pi\)
−0.0345205 + 0.999404i \(0.510990\pi\)
\(72\) 0 0
\(73\) 447.111 0.716854 0.358427 0.933558i \(-0.383313\pi\)
0.358427 + 0.933558i \(0.383313\pi\)
\(74\) −511.822 −0.804028
\(75\) 0 0
\(76\) −597.287 −0.901494
\(77\) 0 0
\(78\) 0 0
\(79\) 434.706 0.619092 0.309546 0.950884i \(-0.399823\pi\)
0.309546 + 0.950884i \(0.399823\pi\)
\(80\) −629.720 −0.880061
\(81\) 0 0
\(82\) 1097.23 1.47767
\(83\) 329.158 0.435299 0.217649 0.976027i \(-0.430161\pi\)
0.217649 + 0.976027i \(0.430161\pi\)
\(84\) 0 0
\(85\) −763.728 −0.974564
\(86\) −604.756 −0.758285
\(87\) 0 0
\(88\) −717.324 −0.868943
\(89\) 24.8709 0.0296214 0.0148107 0.999890i \(-0.495285\pi\)
0.0148107 + 0.999890i \(0.495285\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −435.551 −0.493580
\(93\) 0 0
\(94\) −905.340 −0.993391
\(95\) −1120.87 −1.21051
\(96\) 0 0
\(97\) −499.239 −0.522578 −0.261289 0.965261i \(-0.584148\pi\)
−0.261289 + 0.965261i \(0.584148\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −264.299 −0.264299
\(101\) 258.076 0.254253 0.127127 0.991887i \(-0.459425\pi\)
0.127127 + 0.991887i \(0.459425\pi\)
\(102\) 0 0
\(103\) 960.317 0.918669 0.459334 0.888263i \(-0.348088\pi\)
0.459334 + 0.888263i \(0.348088\pi\)
\(104\) −649.716 −0.612595
\(105\) 0 0
\(106\) 2168.26 1.98679
\(107\) −2054.26 −1.85601 −0.928004 0.372570i \(-0.878477\pi\)
−0.928004 + 0.372570i \(0.878477\pi\)
\(108\) 0 0
\(109\) 1784.10 1.56776 0.783881 0.620911i \(-0.213237\pi\)
0.783881 + 0.620911i \(0.213237\pi\)
\(110\) 1485.28 1.28742
\(111\) 0 0
\(112\) 0 0
\(113\) −1296.36 −1.07921 −0.539607 0.841917i \(-0.681427\pi\)
−0.539607 + 0.841917i \(0.681427\pi\)
\(114\) 0 0
\(115\) −817.356 −0.662773
\(116\) −102.954 −0.0824058
\(117\) 0 0
\(118\) −1547.50 −1.20728
\(119\) 0 0
\(120\) 0 0
\(121\) 1585.38 1.19112
\(122\) −395.669 −0.293624
\(123\) 0 0
\(124\) 786.352 0.569488
\(125\) −1480.40 −1.05929
\(126\) 0 0
\(127\) −312.058 −0.218037 −0.109018 0.994040i \(-0.534771\pi\)
−0.109018 + 0.994040i \(0.534771\pi\)
\(128\) −1508.06 −1.04137
\(129\) 0 0
\(130\) 1345.29 0.907616
\(131\) 83.2704 0.0555372 0.0277686 0.999614i \(-0.491160\pi\)
0.0277686 + 0.999614i \(0.491160\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2196.61 −1.41610
\(135\) 0 0
\(136\) −1288.14 −0.812187
\(137\) 2909.58 1.81447 0.907233 0.420628i \(-0.138190\pi\)
0.907233 + 0.420628i \(0.138190\pi\)
\(138\) 0 0
\(139\) 1414.91 0.863392 0.431696 0.902019i \(-0.357915\pi\)
0.431696 + 0.902019i \(0.357915\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 144.249 0.0852474
\(143\) 2641.51 1.54472
\(144\) 0 0
\(145\) −193.204 −0.110653
\(146\) −1561.47 −0.885125
\(147\) 0 0
\(148\) 615.029 0.341588
\(149\) 2186.63 1.20225 0.601125 0.799155i \(-0.294719\pi\)
0.601125 + 0.799155i \(0.294719\pi\)
\(150\) 0 0
\(151\) 1639.26 0.883450 0.441725 0.897151i \(-0.354367\pi\)
0.441725 + 0.897151i \(0.354367\pi\)
\(152\) −1890.52 −1.00882
\(153\) 0 0
\(154\) 0 0
\(155\) 1475.67 0.764701
\(156\) 0 0
\(157\) 1258.98 0.639986 0.319993 0.947420i \(-0.396320\pi\)
0.319993 + 0.947420i \(0.396320\pi\)
\(158\) −1518.15 −0.764415
\(159\) 0 0
\(160\) 1362.35 0.673147
\(161\) 0 0
\(162\) 0 0
\(163\) −3159.01 −1.51799 −0.758995 0.651096i \(-0.774309\pi\)
−0.758995 + 0.651096i \(0.774309\pi\)
\(164\) −1318.48 −0.627782
\(165\) 0 0
\(166\) −1149.54 −0.537479
\(167\) −1848.90 −0.856718 −0.428359 0.903609i \(-0.640908\pi\)
−0.428359 + 0.903609i \(0.640908\pi\)
\(168\) 0 0
\(169\) 195.548 0.0890068
\(170\) 2667.21 1.20333
\(171\) 0 0
\(172\) 726.703 0.322154
\(173\) −623.157 −0.273860 −0.136930 0.990581i \(-0.543723\pi\)
−0.136930 + 0.990581i \(0.543723\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4318.20 1.84941
\(177\) 0 0
\(178\) −86.8580 −0.0365746
\(179\) −2340.66 −0.977370 −0.488685 0.872460i \(-0.662523\pi\)
−0.488685 + 0.872460i \(0.662523\pi\)
\(180\) 0 0
\(181\) −461.896 −0.189682 −0.0948411 0.995492i \(-0.530234\pi\)
−0.0948411 + 0.995492i \(0.530234\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1378.60 −0.552345
\(185\) 1154.16 0.458680
\(186\) 0 0
\(187\) 5237.13 2.04800
\(188\) 1087.90 0.422038
\(189\) 0 0
\(190\) 3914.48 1.49467
\(191\) −2665.79 −1.00990 −0.504948 0.863150i \(-0.668488\pi\)
−0.504948 + 0.863150i \(0.668488\pi\)
\(192\) 0 0
\(193\) 130.569 0.0486972 0.0243486 0.999704i \(-0.492249\pi\)
0.0243486 + 0.999704i \(0.492249\pi\)
\(194\) 1743.52 0.645245
\(195\) 0 0
\(196\) 0 0
\(197\) 3729.51 1.34882 0.674408 0.738359i \(-0.264399\pi\)
0.674408 + 0.738359i \(0.264399\pi\)
\(198\) 0 0
\(199\) −3772.75 −1.34394 −0.671968 0.740580i \(-0.734551\pi\)
−0.671968 + 0.740580i \(0.734551\pi\)
\(200\) −836.551 −0.295765
\(201\) 0 0
\(202\) −901.296 −0.313935
\(203\) 0 0
\(204\) 0 0
\(205\) −2474.27 −0.842977
\(206\) −3353.77 −1.13431
\(207\) 0 0
\(208\) 3911.20 1.30381
\(209\) 7686.17 2.54384
\(210\) 0 0
\(211\) 2398.28 0.782484 0.391242 0.920288i \(-0.372046\pi\)
0.391242 + 0.920288i \(0.372046\pi\)
\(212\) −2605.48 −0.844081
\(213\) 0 0
\(214\) 7174.22 2.29168
\(215\) 1363.73 0.432585
\(216\) 0 0
\(217\) 0 0
\(218\) −6230.73 −1.93577
\(219\) 0 0
\(220\) −1784.78 −0.546955
\(221\) 4743.53 1.44382
\(222\) 0 0
\(223\) −3338.23 −1.00244 −0.501220 0.865320i \(-0.667115\pi\)
−0.501220 + 0.865320i \(0.667115\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4527.35 1.33254
\(227\) 1269.04 0.371054 0.185527 0.982639i \(-0.440601\pi\)
0.185527 + 0.982639i \(0.440601\pi\)
\(228\) 0 0
\(229\) −2051.48 −0.591990 −0.295995 0.955190i \(-0.595651\pi\)
−0.295995 + 0.955190i \(0.595651\pi\)
\(230\) 2854.50 0.818349
\(231\) 0 0
\(232\) −325.868 −0.0922169
\(233\) 4950.44 1.39191 0.695953 0.718088i \(-0.254982\pi\)
0.695953 + 0.718088i \(0.254982\pi\)
\(234\) 0 0
\(235\) 2041.55 0.566707
\(236\) 1859.55 0.512908
\(237\) 0 0
\(238\) 0 0
\(239\) 262.671 0.0710910 0.0355455 0.999368i \(-0.488683\pi\)
0.0355455 + 0.999368i \(0.488683\pi\)
\(240\) 0 0
\(241\) 2902.37 0.775761 0.387880 0.921710i \(-0.373207\pi\)
0.387880 + 0.921710i \(0.373207\pi\)
\(242\) −5536.73 −1.47072
\(243\) 0 0
\(244\) 475.454 0.124745
\(245\) 0 0
\(246\) 0 0
\(247\) 6961.75 1.79338
\(248\) 2488.94 0.637290
\(249\) 0 0
\(250\) 5170.08 1.30794
\(251\) −6265.68 −1.57564 −0.787821 0.615904i \(-0.788791\pi\)
−0.787821 + 0.615904i \(0.788791\pi\)
\(252\) 0 0
\(253\) 5604.87 1.39279
\(254\) 1089.82 0.269218
\(255\) 0 0
\(256\) 4982.33 1.21639
\(257\) −3420.96 −0.830325 −0.415163 0.909747i \(-0.636275\pi\)
−0.415163 + 0.909747i \(0.636275\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1616.57 −0.385597
\(261\) 0 0
\(262\) −290.810 −0.0685738
\(263\) 8222.52 1.92784 0.963921 0.266188i \(-0.0857642\pi\)
0.963921 + 0.266188i \(0.0857642\pi\)
\(264\) 0 0
\(265\) −4889.45 −1.13342
\(266\) 0 0
\(267\) 0 0
\(268\) 2639.54 0.601626
\(269\) −5493.33 −1.24511 −0.622555 0.782576i \(-0.713905\pi\)
−0.622555 + 0.782576i \(0.713905\pi\)
\(270\) 0 0
\(271\) −1096.48 −0.245781 −0.122891 0.992420i \(-0.539216\pi\)
−0.122891 + 0.992420i \(0.539216\pi\)
\(272\) 7754.45 1.72861
\(273\) 0 0
\(274\) −10161.3 −2.24039
\(275\) 3401.12 0.745800
\(276\) 0 0
\(277\) −1555.47 −0.337398 −0.168699 0.985668i \(-0.553957\pi\)
−0.168699 + 0.985668i \(0.553957\pi\)
\(278\) −4941.39 −1.06606
\(279\) 0 0
\(280\) 0 0
\(281\) 995.950 0.211435 0.105718 0.994396i \(-0.466286\pi\)
0.105718 + 0.994396i \(0.466286\pi\)
\(282\) 0 0
\(283\) −8635.47 −1.81387 −0.906936 0.421269i \(-0.861585\pi\)
−0.906936 + 0.421269i \(0.861585\pi\)
\(284\) −173.337 −0.0362170
\(285\) 0 0
\(286\) −9225.11 −1.90732
\(287\) 0 0
\(288\) 0 0
\(289\) 4491.64 0.914236
\(290\) 674.739 0.136628
\(291\) 0 0
\(292\) 1876.34 0.376042
\(293\) 2180.01 0.434667 0.217333 0.976097i \(-0.430264\pi\)
0.217333 + 0.976097i \(0.430264\pi\)
\(294\) 0 0
\(295\) 3489.63 0.688726
\(296\) 1946.67 0.382257
\(297\) 0 0
\(298\) −7636.49 −1.48446
\(299\) 5076.61 0.981900
\(300\) 0 0
\(301\) 0 0
\(302\) −5724.88 −1.09083
\(303\) 0 0
\(304\) 11380.7 2.14713
\(305\) 892.238 0.167506
\(306\) 0 0
\(307\) 5281.18 0.981800 0.490900 0.871216i \(-0.336668\pi\)
0.490900 + 0.871216i \(0.336668\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5153.57 −0.944204
\(311\) −4297.47 −0.783561 −0.391780 0.920059i \(-0.628141\pi\)
−0.391780 + 0.920059i \(0.628141\pi\)
\(312\) 0 0
\(313\) −2360.96 −0.426356 −0.213178 0.977013i \(-0.568381\pi\)
−0.213178 + 0.977013i \(0.568381\pi\)
\(314\) −4396.82 −0.790213
\(315\) 0 0
\(316\) 1824.28 0.324759
\(317\) 9092.66 1.61102 0.805512 0.592580i \(-0.201891\pi\)
0.805512 + 0.592580i \(0.201891\pi\)
\(318\) 0 0
\(319\) 1324.86 0.232533
\(320\) 279.931 0.0489019
\(321\) 0 0
\(322\) 0 0
\(323\) 13802.5 2.37769
\(324\) 0 0
\(325\) 3080.56 0.525780
\(326\) 11032.4 1.87432
\(327\) 0 0
\(328\) −4173.23 −0.702524
\(329\) 0 0
\(330\) 0 0
\(331\) 4379.01 0.727167 0.363584 0.931562i \(-0.381553\pi\)
0.363584 + 0.931562i \(0.381553\pi\)
\(332\) 1381.34 0.228346
\(333\) 0 0
\(334\) 6457.02 1.05782
\(335\) 4953.37 0.807856
\(336\) 0 0
\(337\) 3314.59 0.535778 0.267889 0.963450i \(-0.413674\pi\)
0.267889 + 0.963450i \(0.413674\pi\)
\(338\) −682.924 −0.109900
\(339\) 0 0
\(340\) −3205.05 −0.511230
\(341\) −10119.1 −1.60699
\(342\) 0 0
\(343\) 0 0
\(344\) 2300.14 0.360510
\(345\) 0 0
\(346\) 2176.29 0.338144
\(347\) −8553.87 −1.32333 −0.661666 0.749799i \(-0.730150\pi\)
−0.661666 + 0.749799i \(0.730150\pi\)
\(348\) 0 0
\(349\) 9832.96 1.50816 0.754078 0.656785i \(-0.228084\pi\)
0.754078 + 0.656785i \(0.228084\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9342.10 −1.41459
\(353\) 6171.41 0.930513 0.465257 0.885176i \(-0.345962\pi\)
0.465257 + 0.885176i \(0.345962\pi\)
\(354\) 0 0
\(355\) −325.284 −0.0486317
\(356\) 104.373 0.0155386
\(357\) 0 0
\(358\) 8174.43 1.20679
\(359\) 9547.02 1.40354 0.701772 0.712401i \(-0.252392\pi\)
0.701772 + 0.712401i \(0.252392\pi\)
\(360\) 0 0
\(361\) 13398.0 1.95335
\(362\) 1613.11 0.234207
\(363\) 0 0
\(364\) 0 0
\(365\) 3521.14 0.504944
\(366\) 0 0
\(367\) −4028.68 −0.573012 −0.286506 0.958078i \(-0.592494\pi\)
−0.286506 + 0.958078i \(0.592494\pi\)
\(368\) 8298.96 1.17558
\(369\) 0 0
\(370\) −4030.76 −0.566349
\(371\) 0 0
\(372\) 0 0
\(373\) 20.0509 0.00278336 0.00139168 0.999999i \(-0.499557\pi\)
0.00139168 + 0.999999i \(0.499557\pi\)
\(374\) −18289.9 −2.52874
\(375\) 0 0
\(376\) 3443.39 0.472285
\(377\) 1199.99 0.163933
\(378\) 0 0
\(379\) −3787.79 −0.513366 −0.256683 0.966496i \(-0.582630\pi\)
−0.256683 + 0.966496i \(0.582630\pi\)
\(380\) −4703.82 −0.635003
\(381\) 0 0
\(382\) 9309.92 1.24695
\(383\) −8001.72 −1.06754 −0.533771 0.845629i \(-0.679226\pi\)
−0.533771 + 0.845629i \(0.679226\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −455.994 −0.0601282
\(387\) 0 0
\(388\) −2095.10 −0.274130
\(389\) −3484.64 −0.454186 −0.227093 0.973873i \(-0.572922\pi\)
−0.227093 + 0.973873i \(0.572922\pi\)
\(390\) 0 0
\(391\) 10065.0 1.30182
\(392\) 0 0
\(393\) 0 0
\(394\) −13024.8 −1.66543
\(395\) 3423.45 0.436082
\(396\) 0 0
\(397\) −7037.76 −0.889710 −0.444855 0.895603i \(-0.646745\pi\)
−0.444855 + 0.895603i \(0.646745\pi\)
\(398\) 13175.8 1.65941
\(399\) 0 0
\(400\) 5035.93 0.629491
\(401\) 8389.73 1.04480 0.522398 0.852702i \(-0.325038\pi\)
0.522398 + 0.852702i \(0.325038\pi\)
\(402\) 0 0
\(403\) −9165.41 −1.13291
\(404\) 1083.04 0.133374
\(405\) 0 0
\(406\) 0 0
\(407\) −7914.47 −0.963896
\(408\) 0 0
\(409\) −13545.5 −1.63761 −0.818804 0.574074i \(-0.805362\pi\)
−0.818804 + 0.574074i \(0.805362\pi\)
\(410\) 8641.03 1.04085
\(411\) 0 0
\(412\) 4030.05 0.481908
\(413\) 0 0
\(414\) 0 0
\(415\) 2592.22 0.306620
\(416\) −8461.61 −0.997270
\(417\) 0 0
\(418\) −26842.9 −3.14098
\(419\) −1450.22 −0.169089 −0.0845443 0.996420i \(-0.526943\pi\)
−0.0845443 + 0.996420i \(0.526943\pi\)
\(420\) 0 0
\(421\) −923.118 −0.106865 −0.0534324 0.998571i \(-0.517016\pi\)
−0.0534324 + 0.998571i \(0.517016\pi\)
\(422\) −8375.64 −0.966161
\(423\) 0 0
\(424\) −8246.80 −0.944575
\(425\) 6107.60 0.697087
\(426\) 0 0
\(427\) 0 0
\(428\) −8620.87 −0.973611
\(429\) 0 0
\(430\) −4762.64 −0.534128
\(431\) 1238.21 0.138382 0.0691908 0.997603i \(-0.477958\pi\)
0.0691908 + 0.997603i \(0.477958\pi\)
\(432\) 0 0
\(433\) 10786.5 1.19715 0.598575 0.801067i \(-0.295734\pi\)
0.598575 + 0.801067i \(0.295734\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7487.13 0.822405
\(437\) 14771.7 1.61700
\(438\) 0 0
\(439\) 3353.49 0.364586 0.182293 0.983244i \(-0.441648\pi\)
0.182293 + 0.983244i \(0.441648\pi\)
\(440\) −5649.15 −0.612074
\(441\) 0 0
\(442\) −16566.1 −1.78274
\(443\) −8090.36 −0.867685 −0.433843 0.900989i \(-0.642843\pi\)
−0.433843 + 0.900989i \(0.642843\pi\)
\(444\) 0 0
\(445\) 195.866 0.0208650
\(446\) 11658.3 1.23775
\(447\) 0 0
\(448\) 0 0
\(449\) −4211.19 −0.442625 −0.221312 0.975203i \(-0.571034\pi\)
−0.221312 + 0.975203i \(0.571034\pi\)
\(450\) 0 0
\(451\) 16966.8 1.77148
\(452\) −5440.27 −0.566126
\(453\) 0 0
\(454\) −4431.95 −0.458154
\(455\) 0 0
\(456\) 0 0
\(457\) −9777.62 −1.00083 −0.500413 0.865787i \(-0.666819\pi\)
−0.500413 + 0.865787i \(0.666819\pi\)
\(458\) 7164.51 0.730951
\(459\) 0 0
\(460\) −3430.10 −0.347672
\(461\) −12360.4 −1.24876 −0.624381 0.781120i \(-0.714649\pi\)
−0.624381 + 0.781120i \(0.714649\pi\)
\(462\) 0 0
\(463\) −16107.0 −1.61675 −0.808377 0.588666i \(-0.799653\pi\)
−0.808377 + 0.588666i \(0.799653\pi\)
\(464\) 1961.68 0.196269
\(465\) 0 0
\(466\) −17288.7 −1.71864
\(467\) −13485.4 −1.33625 −0.668125 0.744049i \(-0.732903\pi\)
−0.668125 + 0.744049i \(0.732903\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −7129.84 −0.699734
\(471\) 0 0
\(472\) 5885.80 0.573974
\(473\) −9351.55 −0.909058
\(474\) 0 0
\(475\) 8963.69 0.865858
\(476\) 0 0
\(477\) 0 0
\(478\) −917.340 −0.0877786
\(479\) −390.965 −0.0372936 −0.0186468 0.999826i \(-0.505936\pi\)
−0.0186468 + 0.999826i \(0.505936\pi\)
\(480\) 0 0
\(481\) −7168.53 −0.679536
\(482\) −10136.1 −0.957860
\(483\) 0 0
\(484\) 6653.18 0.624830
\(485\) −3931.66 −0.368098
\(486\) 0 0
\(487\) −15791.5 −1.46937 −0.734683 0.678410i \(-0.762669\pi\)
−0.734683 + 0.678410i \(0.762669\pi\)
\(488\) 1504.89 0.139597
\(489\) 0 0
\(490\) 0 0
\(491\) 191.606 0.0176111 0.00880557 0.999961i \(-0.497197\pi\)
0.00880557 + 0.999961i \(0.497197\pi\)
\(492\) 0 0
\(493\) 2379.14 0.217345
\(494\) −24312.9 −2.21435
\(495\) 0 0
\(496\) −14983.1 −1.35637
\(497\) 0 0
\(498\) 0 0
\(499\) 5621.00 0.504270 0.252135 0.967692i \(-0.418867\pi\)
0.252135 + 0.967692i \(0.418867\pi\)
\(500\) −6212.61 −0.555672
\(501\) 0 0
\(502\) 21882.0 1.94550
\(503\) −16936.3 −1.50129 −0.750647 0.660704i \(-0.770258\pi\)
−0.750647 + 0.660704i \(0.770258\pi\)
\(504\) 0 0
\(505\) 2032.43 0.179093
\(506\) −19574.2 −1.71973
\(507\) 0 0
\(508\) −1309.58 −0.114376
\(509\) −4225.77 −0.367984 −0.183992 0.982928i \(-0.558902\pi\)
−0.183992 + 0.982928i \(0.558902\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −5335.61 −0.460552
\(513\) 0 0
\(514\) 11947.2 1.02523
\(515\) 7562.80 0.647100
\(516\) 0 0
\(517\) −13999.6 −1.19091
\(518\) 0 0
\(519\) 0 0
\(520\) −5116.71 −0.431505
\(521\) 4084.11 0.343432 0.171716 0.985146i \(-0.445069\pi\)
0.171716 + 0.985146i \(0.445069\pi\)
\(522\) 0 0
\(523\) 16971.4 1.41894 0.709471 0.704734i \(-0.248934\pi\)
0.709471 + 0.704734i \(0.248934\pi\)
\(524\) 349.451 0.0291333
\(525\) 0 0
\(526\) −28716.0 −2.38038
\(527\) −18171.6 −1.50202
\(528\) 0 0
\(529\) −1395.22 −0.114673
\(530\) 17075.7 1.39947
\(531\) 0 0
\(532\) 0 0
\(533\) 15367.7 1.24887
\(534\) 0 0
\(535\) −16177.9 −1.30735
\(536\) 8354.62 0.673255
\(537\) 0 0
\(538\) 19184.7 1.53738
\(539\) 0 0
\(540\) 0 0
\(541\) 630.987 0.0501446 0.0250723 0.999686i \(-0.492018\pi\)
0.0250723 + 0.999686i \(0.492018\pi\)
\(542\) 3829.32 0.303475
\(543\) 0 0
\(544\) −16776.2 −1.32219
\(545\) 14050.4 1.10431
\(546\) 0 0
\(547\) 14377.3 1.12382 0.561910 0.827198i \(-0.310067\pi\)
0.561910 + 0.827198i \(0.310067\pi\)
\(548\) 12210.3 0.951819
\(549\) 0 0
\(550\) −11877.9 −0.920866
\(551\) 3491.70 0.269966
\(552\) 0 0
\(553\) 0 0
\(554\) 5432.27 0.416598
\(555\) 0 0
\(556\) 5937.80 0.452912
\(557\) −12749.6 −0.969867 −0.484934 0.874551i \(-0.661156\pi\)
−0.484934 + 0.874551i \(0.661156\pi\)
\(558\) 0 0
\(559\) −8470.16 −0.640876
\(560\) 0 0
\(561\) 0 0
\(562\) −3478.21 −0.261067
\(563\) 14080.0 1.05400 0.527001 0.849865i \(-0.323316\pi\)
0.527001 + 0.849865i \(0.323316\pi\)
\(564\) 0 0
\(565\) −10209.2 −0.760187
\(566\) 30158.2 2.23965
\(567\) 0 0
\(568\) −548.640 −0.0405289
\(569\) −977.908 −0.0720493 −0.0360246 0.999351i \(-0.511469\pi\)
−0.0360246 + 0.999351i \(0.511469\pi\)
\(570\) 0 0
\(571\) −4877.53 −0.357475 −0.178737 0.983897i \(-0.557201\pi\)
−0.178737 + 0.983897i \(0.557201\pi\)
\(572\) 11085.3 0.810315
\(573\) 0 0
\(574\) 0 0
\(575\) 6536.46 0.474068
\(576\) 0 0
\(577\) 8873.67 0.640235 0.320117 0.947378i \(-0.396278\pi\)
0.320117 + 0.947378i \(0.396278\pi\)
\(578\) −15686.4 −1.12884
\(579\) 0 0
\(580\) −810.797 −0.0580457
\(581\) 0 0
\(582\) 0 0
\(583\) 33528.5 2.38183
\(584\) 5938.93 0.420813
\(585\) 0 0
\(586\) −7613.37 −0.536699
\(587\) −17470.2 −1.22840 −0.614201 0.789150i \(-0.710521\pi\)
−0.614201 + 0.789150i \(0.710521\pi\)
\(588\) 0 0
\(589\) −26669.2 −1.86568
\(590\) −12187.1 −0.850395
\(591\) 0 0
\(592\) −11718.7 −0.813575
\(593\) 17570.5 1.21675 0.608376 0.793649i \(-0.291821\pi\)
0.608376 + 0.793649i \(0.291821\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9176.35 0.630668
\(597\) 0 0
\(598\) −17729.4 −1.21239
\(599\) −2470.61 −0.168525 −0.0842623 0.996444i \(-0.526853\pi\)
−0.0842623 + 0.996444i \(0.526853\pi\)
\(600\) 0 0
\(601\) −7760.05 −0.526688 −0.263344 0.964702i \(-0.584825\pi\)
−0.263344 + 0.964702i \(0.584825\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6879.28 0.463433
\(605\) 12485.4 0.839013
\(606\) 0 0
\(607\) −23384.1 −1.56365 −0.781823 0.623500i \(-0.785710\pi\)
−0.781823 + 0.623500i \(0.785710\pi\)
\(608\) −24621.3 −1.64231
\(609\) 0 0
\(610\) −3116.01 −0.206826
\(611\) −12680.1 −0.839579
\(612\) 0 0
\(613\) 19483.4 1.28373 0.641865 0.766817i \(-0.278161\pi\)
0.641865 + 0.766817i \(0.278161\pi\)
\(614\) −18443.8 −1.21226
\(615\) 0 0
\(616\) 0 0
\(617\) 11177.6 0.729327 0.364664 0.931139i \(-0.381184\pi\)
0.364664 + 0.931139i \(0.381184\pi\)
\(618\) 0 0
\(619\) 6253.28 0.406043 0.203021 0.979174i \(-0.434924\pi\)
0.203021 + 0.979174i \(0.434924\pi\)
\(620\) 6192.77 0.401141
\(621\) 0 0
\(622\) 15008.3 0.967491
\(623\) 0 0
\(624\) 0 0
\(625\) −3786.15 −0.242313
\(626\) 8245.33 0.526437
\(627\) 0 0
\(628\) 5283.42 0.335719
\(629\) −14212.5 −0.900938
\(630\) 0 0
\(631\) −19733.2 −1.24496 −0.622478 0.782637i \(-0.713874\pi\)
−0.622478 + 0.782637i \(0.713874\pi\)
\(632\) 5774.16 0.363424
\(633\) 0 0
\(634\) −31754.8 −1.98919
\(635\) −2457.55 −0.153583
\(636\) 0 0
\(637\) 0 0
\(638\) −4626.90 −0.287117
\(639\) 0 0
\(640\) −11876.5 −0.733528
\(641\) 143.768 0.00885882 0.00442941 0.999990i \(-0.498590\pi\)
0.00442941 + 0.999990i \(0.498590\pi\)
\(642\) 0 0
\(643\) 29565.4 1.81329 0.906645 0.421894i \(-0.138634\pi\)
0.906645 + 0.421894i \(0.138634\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −48203.4 −2.93582
\(647\) −23780.7 −1.44500 −0.722501 0.691370i \(-0.757008\pi\)
−0.722501 + 0.691370i \(0.757008\pi\)
\(648\) 0 0
\(649\) −23929.5 −1.44733
\(650\) −10758.4 −0.649200
\(651\) 0 0
\(652\) −13257.0 −0.796296
\(653\) −1741.59 −0.104370 −0.0521851 0.998637i \(-0.516619\pi\)
−0.0521851 + 0.998637i \(0.516619\pi\)
\(654\) 0 0
\(655\) 655.780 0.0391198
\(656\) 25122.3 1.49521
\(657\) 0 0
\(658\) 0 0
\(659\) 8493.45 0.502061 0.251030 0.967979i \(-0.419231\pi\)
0.251030 + 0.967979i \(0.419231\pi\)
\(660\) 0 0
\(661\) 25014.7 1.47195 0.735976 0.677008i \(-0.236724\pi\)
0.735976 + 0.677008i \(0.236724\pi\)
\(662\) −15293.1 −0.897860
\(663\) 0 0
\(664\) 4372.18 0.255532
\(665\) 0 0
\(666\) 0 0
\(667\) 2546.20 0.147810
\(668\) −7759.05 −0.449411
\(669\) 0 0
\(670\) −17299.0 −0.997489
\(671\) −6118.36 −0.352007
\(672\) 0 0
\(673\) 29696.5 1.70091 0.850456 0.526046i \(-0.176326\pi\)
0.850456 + 0.526046i \(0.176326\pi\)
\(674\) −11575.7 −0.661544
\(675\) 0 0
\(676\) 820.632 0.0466905
\(677\) 3713.27 0.210801 0.105401 0.994430i \(-0.466388\pi\)
0.105401 + 0.994430i \(0.466388\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −10144.5 −0.572096
\(681\) 0 0
\(682\) 35339.7 1.98420
\(683\) 24254.7 1.35883 0.679414 0.733755i \(-0.262234\pi\)
0.679414 + 0.733755i \(0.262234\pi\)
\(684\) 0 0
\(685\) 22913.8 1.27809
\(686\) 0 0
\(687\) 0 0
\(688\) −13846.5 −0.767289
\(689\) 30368.4 1.67917
\(690\) 0 0
\(691\) 14298.7 0.787191 0.393595 0.919284i \(-0.371231\pi\)
0.393595 + 0.919284i \(0.371231\pi\)
\(692\) −2615.13 −0.143659
\(693\) 0 0
\(694\) 29873.2 1.63396
\(695\) 11142.9 0.608164
\(696\) 0 0
\(697\) 30468.4 1.65577
\(698\) −34340.2 −1.86217
\(699\) 0 0
\(700\) 0 0
\(701\) −28913.3 −1.55783 −0.778916 0.627128i \(-0.784230\pi\)
−0.778916 + 0.627128i \(0.784230\pi\)
\(702\) 0 0
\(703\) −20858.7 −1.11906
\(704\) −1919.57 −0.102765
\(705\) 0 0
\(706\) −21552.8 −1.14894
\(707\) 0 0
\(708\) 0 0
\(709\) 10575.2 0.560169 0.280085 0.959975i \(-0.409637\pi\)
0.280085 + 0.959975i \(0.409637\pi\)
\(710\) 1136.01 0.0600473
\(711\) 0 0
\(712\) 330.357 0.0173886
\(713\) −19447.6 −1.02148
\(714\) 0 0
\(715\) 20802.7 1.08808
\(716\) −9822.77 −0.512701
\(717\) 0 0
\(718\) −33341.6 −1.73301
\(719\) −5347.27 −0.277357 −0.138678 0.990337i \(-0.544285\pi\)
−0.138678 + 0.990337i \(0.544285\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −46790.7 −2.41187
\(723\) 0 0
\(724\) −1938.39 −0.0995021
\(725\) 1545.07 0.0791482
\(726\) 0 0
\(727\) −19629.1 −1.00138 −0.500689 0.865627i \(-0.666920\pi\)
−0.500689 + 0.865627i \(0.666920\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −12297.1 −0.623473
\(731\) −16793.2 −0.849682
\(732\) 0 0
\(733\) 2404.87 0.121181 0.0605906 0.998163i \(-0.480702\pi\)
0.0605906 + 0.998163i \(0.480702\pi\)
\(734\) 14069.6 0.707519
\(735\) 0 0
\(736\) −17954.2 −0.899186
\(737\) −33966.9 −1.69767
\(738\) 0 0
\(739\) −19309.0 −0.961153 −0.480577 0.876953i \(-0.659573\pi\)
−0.480577 + 0.876953i \(0.659573\pi\)
\(740\) 4843.54 0.240611
\(741\) 0 0
\(742\) 0 0
\(743\) −801.314 −0.0395658 −0.0197829 0.999804i \(-0.506297\pi\)
−0.0197829 + 0.999804i \(0.506297\pi\)
\(744\) 0 0
\(745\) 17220.4 0.846852
\(746\) −70.0249 −0.00343672
\(747\) 0 0
\(748\) 21978.0 1.07433
\(749\) 0 0
\(750\) 0 0
\(751\) 14872.7 0.722654 0.361327 0.932439i \(-0.382324\pi\)
0.361327 + 0.932439i \(0.382324\pi\)
\(752\) −20728.7 −1.00519
\(753\) 0 0
\(754\) −4190.81 −0.202414
\(755\) 12909.7 0.622292
\(756\) 0 0
\(757\) 9127.52 0.438237 0.219118 0.975698i \(-0.429682\pi\)
0.219118 + 0.975698i \(0.429682\pi\)
\(758\) 13228.3 0.633871
\(759\) 0 0
\(760\) −14888.4 −0.710605
\(761\) 30994.4 1.47641 0.738203 0.674578i \(-0.235675\pi\)
0.738203 + 0.674578i \(0.235675\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −11187.2 −0.529764
\(765\) 0 0
\(766\) 27944.9 1.31813
\(767\) −21674.2 −1.02035
\(768\) 0 0
\(769\) 12979.5 0.608653 0.304326 0.952568i \(-0.401569\pi\)
0.304326 + 0.952568i \(0.401569\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 547.944 0.0255452
\(773\) −28808.1 −1.34043 −0.670217 0.742165i \(-0.733799\pi\)
−0.670217 + 0.742165i \(0.733799\pi\)
\(774\) 0 0
\(775\) −11801.1 −0.546976
\(776\) −6631.35 −0.306767
\(777\) 0 0
\(778\) 12169.6 0.560799
\(779\) 44716.4 2.05665
\(780\) 0 0
\(781\) 2230.57 0.102197
\(782\) −35150.7 −1.60740
\(783\) 0 0
\(784\) 0 0
\(785\) 9914.88 0.450799
\(786\) 0 0
\(787\) −3658.15 −0.165691 −0.0828456 0.996562i \(-0.526401\pi\)
−0.0828456 + 0.996562i \(0.526401\pi\)
\(788\) 15651.2 0.707552
\(789\) 0 0
\(790\) −11955.9 −0.538446
\(791\) 0 0
\(792\) 0 0
\(793\) −5541.70 −0.248161
\(794\) 24578.4 1.09856
\(795\) 0 0
\(796\) −15832.7 −0.704992
\(797\) 20171.4 0.896497 0.448249 0.893909i \(-0.352048\pi\)
0.448249 + 0.893909i \(0.352048\pi\)
\(798\) 0 0
\(799\) −25139.9 −1.11312
\(800\) −10894.9 −0.481489
\(801\) 0 0
\(802\) −29300.0 −1.29005
\(803\) −24145.6 −1.06112
\(804\) 0 0
\(805\) 0 0
\(806\) 32008.9 1.39884
\(807\) 0 0
\(808\) 3428.01 0.149253
\(809\) 30508.2 1.32585 0.662924 0.748686i \(-0.269315\pi\)
0.662924 + 0.748686i \(0.269315\pi\)
\(810\) 0 0
\(811\) 2550.91 0.110449 0.0552247 0.998474i \(-0.482412\pi\)
0.0552247 + 0.998474i \(0.482412\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 27640.2 1.19016
\(815\) −24878.1 −1.06926
\(816\) 0 0
\(817\) −24646.1 −1.05540
\(818\) 47305.7 2.02201
\(819\) 0 0
\(820\) −10383.5 −0.442202
\(821\) 32657.1 1.38824 0.694118 0.719861i \(-0.255794\pi\)
0.694118 + 0.719861i \(0.255794\pi\)
\(822\) 0 0
\(823\) 30390.4 1.28717 0.643587 0.765373i \(-0.277446\pi\)
0.643587 + 0.765373i \(0.277446\pi\)
\(824\) 12755.8 0.539284
\(825\) 0 0
\(826\) 0 0
\(827\) 13100.8 0.550859 0.275430 0.961321i \(-0.411180\pi\)
0.275430 + 0.961321i \(0.411180\pi\)
\(828\) 0 0
\(829\) −24522.6 −1.02739 −0.513694 0.857974i \(-0.671723\pi\)
−0.513694 + 0.857974i \(0.671723\pi\)
\(830\) −9052.97 −0.378594
\(831\) 0 0
\(832\) −1738.65 −0.0724483
\(833\) 0 0
\(834\) 0 0
\(835\) −14560.6 −0.603463
\(836\) 32255.6 1.33443
\(837\) 0 0
\(838\) 5064.71 0.208780
\(839\) 38095.2 1.56757 0.783785 0.621032i \(-0.213286\pi\)
0.783785 + 0.621032i \(0.213286\pi\)
\(840\) 0 0
\(841\) −23787.1 −0.975322
\(842\) 3223.86 0.131950
\(843\) 0 0
\(844\) 10064.6 0.410470
\(845\) 1540.00 0.0626954
\(846\) 0 0
\(847\) 0 0
\(848\) 49644.6 2.01038
\(849\) 0 0
\(850\) −21329.9 −0.860718
\(851\) −15210.5 −0.612702
\(852\) 0 0
\(853\) 27500.3 1.10386 0.551929 0.833891i \(-0.313892\pi\)
0.551929 + 0.833891i \(0.313892\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −27286.6 −1.08953
\(857\) −13903.0 −0.554163 −0.277082 0.960846i \(-0.589367\pi\)
−0.277082 + 0.960846i \(0.589367\pi\)
\(858\) 0 0
\(859\) −41524.3 −1.64935 −0.824674 0.565608i \(-0.808641\pi\)
−0.824674 + 0.565608i \(0.808641\pi\)
\(860\) 5723.01 0.226922
\(861\) 0 0
\(862\) −4324.28 −0.170865
\(863\) 1744.09 0.0687942 0.0343971 0.999408i \(-0.489049\pi\)
0.0343971 + 0.999408i \(0.489049\pi\)
\(864\) 0 0
\(865\) −4907.55 −0.192904
\(866\) −37670.3 −1.47816
\(867\) 0 0
\(868\) 0 0
\(869\) −23475.7 −0.916407
\(870\) 0 0
\(871\) −30765.5 −1.19684
\(872\) 23698.1 0.920319
\(873\) 0 0
\(874\) −51588.2 −1.99656
\(875\) 0 0
\(876\) 0 0
\(877\) 46717.4 1.79879 0.899393 0.437140i \(-0.144009\pi\)
0.899393 + 0.437140i \(0.144009\pi\)
\(878\) −11711.6 −0.450168
\(879\) 0 0
\(880\) 34007.1 1.30270
\(881\) 17214.0 0.658291 0.329145 0.944279i \(-0.393239\pi\)
0.329145 + 0.944279i \(0.393239\pi\)
\(882\) 0 0
\(883\) 20487.2 0.780804 0.390402 0.920645i \(-0.372336\pi\)
0.390402 + 0.920645i \(0.372336\pi\)
\(884\) 19906.6 0.757388
\(885\) 0 0
\(886\) 28254.5 1.07136
\(887\) 18307.5 0.693016 0.346508 0.938047i \(-0.387367\pi\)
0.346508 + 0.938047i \(0.387367\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −684.034 −0.0257628
\(891\) 0 0
\(892\) −14009.1 −0.525853
\(893\) −36896.1 −1.38262
\(894\) 0 0
\(895\) −18433.4 −0.688449
\(896\) 0 0
\(897\) 0 0
\(898\) 14707.0 0.546524
\(899\) −4596.96 −0.170542
\(900\) 0 0
\(901\) 60209.3 2.22626
\(902\) −59254.3 −2.18731
\(903\) 0 0
\(904\) −17219.4 −0.633528
\(905\) −3637.58 −0.133610
\(906\) 0 0
\(907\) 38336.3 1.40346 0.701730 0.712443i \(-0.252411\pi\)
0.701730 + 0.712443i \(0.252411\pi\)
\(908\) 5325.63 0.194645
\(909\) 0 0
\(910\) 0 0
\(911\) −30148.4 −1.09644 −0.548222 0.836333i \(-0.684695\pi\)
−0.548222 + 0.836333i \(0.684695\pi\)
\(912\) 0 0
\(913\) −17775.7 −0.644348
\(914\) 34147.0 1.23576
\(915\) 0 0
\(916\) −8609.21 −0.310542
\(917\) 0 0
\(918\) 0 0
\(919\) −13799.4 −0.495323 −0.247661 0.968847i \(-0.579662\pi\)
−0.247661 + 0.968847i \(0.579662\pi\)
\(920\) −10856.9 −0.389066
\(921\) 0 0
\(922\) 43166.8 1.54189
\(923\) 2020.34 0.0720480
\(924\) 0 0
\(925\) −9229.94 −0.328085
\(926\) 56251.5 1.99626
\(927\) 0 0
\(928\) −4243.96 −0.150124
\(929\) −42953.7 −1.51697 −0.758485 0.651691i \(-0.774060\pi\)
−0.758485 + 0.651691i \(0.774060\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 20774.9 0.730155
\(933\) 0 0
\(934\) 47095.8 1.64991
\(935\) 41244.0 1.44259
\(936\) 0 0
\(937\) −6369.72 −0.222081 −0.111040 0.993816i \(-0.535418\pi\)
−0.111040 + 0.993816i \(0.535418\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8567.54 0.297279
\(941\) 6002.48 0.207944 0.103972 0.994580i \(-0.466845\pi\)
0.103972 + 0.994580i \(0.466845\pi\)
\(942\) 0 0
\(943\) 32607.9 1.12604
\(944\) −35431.7 −1.22161
\(945\) 0 0
\(946\) 32659.0 1.12245
\(947\) 12113.1 0.415652 0.207826 0.978166i \(-0.433361\pi\)
0.207826 + 0.978166i \(0.433361\pi\)
\(948\) 0 0
\(949\) −21869.8 −0.748077
\(950\) −31304.4 −1.06911
\(951\) 0 0
\(952\) 0 0
\(953\) 10130.6 0.344346 0.172173 0.985067i \(-0.444921\pi\)
0.172173 + 0.985067i \(0.444921\pi\)
\(954\) 0 0
\(955\) −20994.0 −0.711360
\(956\) 1102.32 0.0372924
\(957\) 0 0
\(958\) 1365.39 0.0460478
\(959\) 0 0
\(960\) 0 0
\(961\) 5320.00 0.178578
\(962\) 25035.1 0.839047
\(963\) 0 0
\(964\) 12180.0 0.406943
\(965\) 1028.27 0.0343018
\(966\) 0 0
\(967\) −17651.7 −0.587013 −0.293506 0.955957i \(-0.594822\pi\)
−0.293506 + 0.955957i \(0.594822\pi\)
\(968\) 21058.5 0.699221
\(969\) 0 0
\(970\) 13730.8 0.454504
\(971\) 32208.7 1.06450 0.532248 0.846588i \(-0.321347\pi\)
0.532248 + 0.846588i \(0.321347\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 55149.6 1.81428
\(975\) 0 0
\(976\) −9059.27 −0.297111
\(977\) 24098.8 0.789138 0.394569 0.918866i \(-0.370894\pi\)
0.394569 + 0.918866i \(0.370894\pi\)
\(978\) 0 0
\(979\) −1343.11 −0.0438469
\(980\) 0 0
\(981\) 0 0
\(982\) −669.158 −0.0217451
\(983\) 15156.9 0.491790 0.245895 0.969296i \(-0.420918\pi\)
0.245895 + 0.969296i \(0.420918\pi\)
\(984\) 0 0
\(985\) 29371.1 0.950092
\(986\) −8308.82 −0.268364
\(987\) 0 0
\(988\) 29215.5 0.940759
\(989\) −17972.4 −0.577844
\(990\) 0 0
\(991\) 18357.4 0.588437 0.294219 0.955738i \(-0.404941\pi\)
0.294219 + 0.955738i \(0.404941\pi\)
\(992\) 32414.9 1.03747
\(993\) 0 0
\(994\) 0 0
\(995\) −29711.6 −0.946654
\(996\) 0 0
\(997\) 18552.6 0.589335 0.294668 0.955600i \(-0.404791\pi\)
0.294668 + 0.955600i \(0.404791\pi\)
\(998\) −19630.6 −0.622640
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bo.1.2 8
3.2 odd 2 inner 1323.4.a.bo.1.7 8
7.2 even 3 189.4.e.h.109.7 yes 16
7.4 even 3 189.4.e.h.163.7 yes 16
7.6 odd 2 1323.4.a.bn.1.2 8
21.2 odd 6 189.4.e.h.109.2 16
21.11 odd 6 189.4.e.h.163.2 yes 16
21.20 even 2 1323.4.a.bn.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.2 16 21.2 odd 6
189.4.e.h.109.7 yes 16 7.2 even 3
189.4.e.h.163.2 yes 16 21.11 odd 6
189.4.e.h.163.7 yes 16 7.4 even 3
1323.4.a.bn.1.2 8 7.6 odd 2
1323.4.a.bn.1.7 8 21.20 even 2
1323.4.a.bo.1.2 8 1.1 even 1 trivial
1323.4.a.bo.1.7 8 3.2 odd 2 inner