Properties

Label 1323.4.a.bm.1.8
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} + 887x^{4} - 4176x^{2} + 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(5.00098\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00098 q^{2} +17.0098 q^{4} +3.98256 q^{5} +45.0578 q^{8} +O(q^{10})\) \(q+5.00098 q^{2} +17.0098 q^{4} +3.98256 q^{5} +45.0578 q^{8} +19.9167 q^{10} -5.53706 q^{11} +33.8302 q^{13} +89.2547 q^{16} +103.352 q^{17} +124.036 q^{19} +67.7424 q^{20} -27.6907 q^{22} -151.087 q^{23} -109.139 q^{25} +169.184 q^{26} +103.634 q^{29} -60.2612 q^{31} +85.8986 q^{32} +516.859 q^{34} +413.638 q^{37} +620.303 q^{38} +179.445 q^{40} +153.584 q^{41} -261.492 q^{43} -94.1843 q^{44} -755.582 q^{46} -104.807 q^{47} -545.803 q^{50} +575.444 q^{52} +716.150 q^{53} -22.0517 q^{55} +518.272 q^{58} -647.384 q^{59} +269.514 q^{61} -301.365 q^{62} -284.461 q^{64} +134.731 q^{65} +483.808 q^{67} +1757.99 q^{68} -362.885 q^{71} +908.060 q^{73} +2068.60 q^{74} +2109.83 q^{76} +162.439 q^{79} +355.462 q^{80} +768.069 q^{82} -419.276 q^{83} +411.603 q^{85} -1307.72 q^{86} -249.488 q^{88} +1019.47 q^{89} -2569.96 q^{92} -524.140 q^{94} +493.981 q^{95} -346.785 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 44 q^{4} + 132 q^{10} + 336 q^{13} + 204 q^{16} - 288 q^{19} + 484 q^{22} + 152 q^{25} + 120 q^{31} + 1008 q^{34} + 592 q^{37} + 1620 q^{40} - 1872 q^{43} - 1644 q^{46} + 2400 q^{52} + 1344 q^{55} - 1200 q^{58} + 2400 q^{61} - 1388 q^{64} + 1824 q^{73} + 2844 q^{76} + 2368 q^{79} + 2436 q^{82} + 3512 q^{85} + 3780 q^{88} + 4368 q^{94} + 5712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.00098 1.76811 0.884057 0.467380i \(-0.154802\pi\)
0.884057 + 0.467380i \(0.154802\pi\)
\(3\) 0 0
\(4\) 17.0098 2.12622
\(5\) 3.98256 0.356211 0.178105 0.984011i \(-0.443003\pi\)
0.178105 + 0.984011i \(0.443003\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 45.0578 1.99129
\(9\) 0 0
\(10\) 19.9167 0.629821
\(11\) −5.53706 −0.151772 −0.0758858 0.997117i \(-0.524178\pi\)
−0.0758858 + 0.997117i \(0.524178\pi\)
\(12\) 0 0
\(13\) 33.8302 0.721754 0.360877 0.932613i \(-0.382477\pi\)
0.360877 + 0.932613i \(0.382477\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 89.2547 1.39460
\(17\) 103.352 1.47450 0.737248 0.675623i \(-0.236125\pi\)
0.737248 + 0.675623i \(0.236125\pi\)
\(18\) 0 0
\(19\) 124.036 1.49768 0.748839 0.662752i \(-0.230612\pi\)
0.748839 + 0.662752i \(0.230612\pi\)
\(20\) 67.7424 0.757384
\(21\) 0 0
\(22\) −27.6907 −0.268349
\(23\) −151.087 −1.36973 −0.684865 0.728670i \(-0.740139\pi\)
−0.684865 + 0.728670i \(0.740139\pi\)
\(24\) 0 0
\(25\) −109.139 −0.873114
\(26\) 169.184 1.27614
\(27\) 0 0
\(28\) 0 0
\(29\) 103.634 0.663599 0.331799 0.943350i \(-0.392344\pi\)
0.331799 + 0.943350i \(0.392344\pi\)
\(30\) 0 0
\(31\) −60.2612 −0.349137 −0.174568 0.984645i \(-0.555853\pi\)
−0.174568 + 0.984645i \(0.555853\pi\)
\(32\) 85.8986 0.474527
\(33\) 0 0
\(34\) 516.859 2.60707
\(35\) 0 0
\(36\) 0 0
\(37\) 413.638 1.83788 0.918942 0.394392i \(-0.129045\pi\)
0.918942 + 0.394392i \(0.129045\pi\)
\(38\) 620.303 2.64806
\(39\) 0 0
\(40\) 179.445 0.709319
\(41\) 153.584 0.585018 0.292509 0.956263i \(-0.405510\pi\)
0.292509 + 0.956263i \(0.405510\pi\)
\(42\) 0 0
\(43\) −261.492 −0.927377 −0.463689 0.885998i \(-0.653474\pi\)
−0.463689 + 0.885998i \(0.653474\pi\)
\(44\) −94.1843 −0.322700
\(45\) 0 0
\(46\) −755.582 −2.42184
\(47\) −104.807 −0.325271 −0.162636 0.986686i \(-0.551999\pi\)
−0.162636 + 0.986686i \(0.551999\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −545.803 −1.54376
\(51\) 0 0
\(52\) 575.444 1.53461
\(53\) 716.150 1.85605 0.928027 0.372514i \(-0.121504\pi\)
0.928027 + 0.372514i \(0.121504\pi\)
\(54\) 0 0
\(55\) −22.0517 −0.0540626
\(56\) 0 0
\(57\) 0 0
\(58\) 518.272 1.17332
\(59\) −647.384 −1.42851 −0.714256 0.699884i \(-0.753235\pi\)
−0.714256 + 0.699884i \(0.753235\pi\)
\(60\) 0 0
\(61\) 269.514 0.565700 0.282850 0.959164i \(-0.408720\pi\)
0.282850 + 0.959164i \(0.408720\pi\)
\(62\) −301.365 −0.617313
\(63\) 0 0
\(64\) −284.461 −0.555587
\(65\) 134.731 0.257096
\(66\) 0 0
\(67\) 483.808 0.882187 0.441094 0.897461i \(-0.354591\pi\)
0.441094 + 0.897461i \(0.354591\pi\)
\(68\) 1757.99 3.13511
\(69\) 0 0
\(70\) 0 0
\(71\) −362.885 −0.606572 −0.303286 0.952900i \(-0.598084\pi\)
−0.303286 + 0.952900i \(0.598084\pi\)
\(72\) 0 0
\(73\) 908.060 1.45590 0.727948 0.685633i \(-0.240474\pi\)
0.727948 + 0.685633i \(0.240474\pi\)
\(74\) 2068.60 3.24959
\(75\) 0 0
\(76\) 2109.83 3.18440
\(77\) 0 0
\(78\) 0 0
\(79\) 162.439 0.231339 0.115669 0.993288i \(-0.463099\pi\)
0.115669 + 0.993288i \(0.463099\pi\)
\(80\) 355.462 0.496773
\(81\) 0 0
\(82\) 768.069 1.03438
\(83\) −419.276 −0.554476 −0.277238 0.960801i \(-0.589419\pi\)
−0.277238 + 0.960801i \(0.589419\pi\)
\(84\) 0 0
\(85\) 411.603 0.525231
\(86\) −1307.72 −1.63971
\(87\) 0 0
\(88\) −249.488 −0.302221
\(89\) 1019.47 1.21420 0.607101 0.794625i \(-0.292332\pi\)
0.607101 + 0.794625i \(0.292332\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2569.96 −2.91235
\(93\) 0 0
\(94\) −524.140 −0.575116
\(95\) 493.981 0.533489
\(96\) 0 0
\(97\) −346.785 −0.362997 −0.181499 0.983391i \(-0.558095\pi\)
−0.181499 + 0.983391i \(0.558095\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1856.44 −1.85644
\(101\) 1427.73 1.40658 0.703291 0.710902i \(-0.251713\pi\)
0.703291 + 0.710902i \(0.251713\pi\)
\(102\) 0 0
\(103\) −853.502 −0.816486 −0.408243 0.912873i \(-0.633858\pi\)
−0.408243 + 0.912873i \(0.633858\pi\)
\(104\) 1524.31 1.43722
\(105\) 0 0
\(106\) 3581.45 3.28171
\(107\) −730.508 −0.660008 −0.330004 0.943980i \(-0.607050\pi\)
−0.330004 + 0.943980i \(0.607050\pi\)
\(108\) 0 0
\(109\) −1812.87 −1.59304 −0.796521 0.604611i \(-0.793329\pi\)
−0.796521 + 0.604611i \(0.793329\pi\)
\(110\) −110.280 −0.0955889
\(111\) 0 0
\(112\) 0 0
\(113\) 472.343 0.393224 0.196612 0.980481i \(-0.437006\pi\)
0.196612 + 0.980481i \(0.437006\pi\)
\(114\) 0 0
\(115\) −601.712 −0.487912
\(116\) 1762.79 1.41096
\(117\) 0 0
\(118\) −3237.55 −2.52577
\(119\) 0 0
\(120\) 0 0
\(121\) −1300.34 −0.976965
\(122\) 1347.83 1.00022
\(123\) 0 0
\(124\) −1025.03 −0.742342
\(125\) −932.473 −0.667223
\(126\) 0 0
\(127\) −660.594 −0.461561 −0.230781 0.973006i \(-0.574128\pi\)
−0.230781 + 0.973006i \(0.574128\pi\)
\(128\) −2109.77 −1.45687
\(129\) 0 0
\(130\) 673.785 0.454575
\(131\) 1294.58 0.863417 0.431709 0.902013i \(-0.357911\pi\)
0.431709 + 0.902013i \(0.357911\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2419.51 1.55981
\(135\) 0 0
\(136\) 4656.79 2.93615
\(137\) −798.203 −0.497774 −0.248887 0.968532i \(-0.580065\pi\)
−0.248887 + 0.968532i \(0.580065\pi\)
\(138\) 0 0
\(139\) 956.430 0.583621 0.291811 0.956476i \(-0.405742\pi\)
0.291811 + 0.956476i \(0.405742\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1814.78 −1.07249
\(143\) −187.320 −0.109542
\(144\) 0 0
\(145\) 412.729 0.236381
\(146\) 4541.19 2.57419
\(147\) 0 0
\(148\) 7035.90 3.90775
\(149\) −1212.30 −0.666546 −0.333273 0.942830i \(-0.608153\pi\)
−0.333273 + 0.942830i \(0.608153\pi\)
\(150\) 0 0
\(151\) 2686.26 1.44771 0.723857 0.689950i \(-0.242368\pi\)
0.723857 + 0.689950i \(0.242368\pi\)
\(152\) 5588.80 2.98231
\(153\) 0 0
\(154\) 0 0
\(155\) −239.994 −0.124366
\(156\) 0 0
\(157\) −1441.07 −0.732549 −0.366275 0.930507i \(-0.619367\pi\)
−0.366275 + 0.930507i \(0.619367\pi\)
\(158\) 812.352 0.409033
\(159\) 0 0
\(160\) 342.096 0.169032
\(161\) 0 0
\(162\) 0 0
\(163\) −3093.82 −1.48667 −0.743334 0.668921i \(-0.766757\pi\)
−0.743334 + 0.668921i \(0.766757\pi\)
\(164\) 2612.43 1.24388
\(165\) 0 0
\(166\) −2096.79 −0.980377
\(167\) −1905.39 −0.882896 −0.441448 0.897287i \(-0.645535\pi\)
−0.441448 + 0.897287i \(0.645535\pi\)
\(168\) 0 0
\(169\) −1052.52 −0.479071
\(170\) 2058.42 0.928668
\(171\) 0 0
\(172\) −4447.93 −1.97181
\(173\) −2901.01 −1.27491 −0.637456 0.770487i \(-0.720013\pi\)
−0.637456 + 0.770487i \(0.720013\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −494.209 −0.211661
\(177\) 0 0
\(178\) 5098.36 2.14685
\(179\) 1375.68 0.574430 0.287215 0.957866i \(-0.407271\pi\)
0.287215 + 0.957866i \(0.407271\pi\)
\(180\) 0 0
\(181\) −4558.15 −1.87185 −0.935924 0.352203i \(-0.885433\pi\)
−0.935924 + 0.352203i \(0.885433\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6807.64 −2.72753
\(185\) 1647.34 0.654674
\(186\) 0 0
\(187\) −572.264 −0.223786
\(188\) −1782.75 −0.691599
\(189\) 0 0
\(190\) 2470.39 0.943268
\(191\) −4740.73 −1.79595 −0.897976 0.440044i \(-0.854963\pi\)
−0.897976 + 0.440044i \(0.854963\pi\)
\(192\) 0 0
\(193\) 2427.21 0.905255 0.452628 0.891700i \(-0.350487\pi\)
0.452628 + 0.891700i \(0.350487\pi\)
\(194\) −1734.27 −0.641820
\(195\) 0 0
\(196\) 0 0
\(197\) 4374.12 1.58194 0.790972 0.611852i \(-0.209575\pi\)
0.790972 + 0.611852i \(0.209575\pi\)
\(198\) 0 0
\(199\) 367.938 0.131068 0.0655338 0.997850i \(-0.479125\pi\)
0.0655338 + 0.997850i \(0.479125\pi\)
\(200\) −4917.57 −1.73862
\(201\) 0 0
\(202\) 7140.07 2.48700
\(203\) 0 0
\(204\) 0 0
\(205\) 611.656 0.208390
\(206\) −4268.34 −1.44364
\(207\) 0 0
\(208\) 3019.50 1.00656
\(209\) −686.797 −0.227305
\(210\) 0 0
\(211\) 2224.16 0.725677 0.362838 0.931852i \(-0.381808\pi\)
0.362838 + 0.931852i \(0.381808\pi\)
\(212\) 12181.6 3.94638
\(213\) 0 0
\(214\) −3653.25 −1.16697
\(215\) −1041.41 −0.330342
\(216\) 0 0
\(217\) 0 0
\(218\) −9066.13 −2.81668
\(219\) 0 0
\(220\) −375.094 −0.114949
\(221\) 3496.40 1.06422
\(222\) 0 0
\(223\) 3675.92 1.10385 0.551923 0.833895i \(-0.313894\pi\)
0.551923 + 0.833895i \(0.313894\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2362.18 0.695264
\(227\) −5870.47 −1.71646 −0.858230 0.513265i \(-0.828436\pi\)
−0.858230 + 0.513265i \(0.828436\pi\)
\(228\) 0 0
\(229\) 1505.34 0.434393 0.217196 0.976128i \(-0.430309\pi\)
0.217196 + 0.976128i \(0.430309\pi\)
\(230\) −3009.15 −0.862684
\(231\) 0 0
\(232\) 4669.52 1.32142
\(233\) 713.257 0.200545 0.100273 0.994960i \(-0.468028\pi\)
0.100273 + 0.994960i \(0.468028\pi\)
\(234\) 0 0
\(235\) −417.402 −0.115865
\(236\) −11011.9 −3.03734
\(237\) 0 0
\(238\) 0 0
\(239\) 195.054 0.0527908 0.0263954 0.999652i \(-0.491597\pi\)
0.0263954 + 0.999652i \(0.491597\pi\)
\(240\) 0 0
\(241\) 968.228 0.258793 0.129396 0.991593i \(-0.458696\pi\)
0.129396 + 0.991593i \(0.458696\pi\)
\(242\) −6502.98 −1.72739
\(243\) 0 0
\(244\) 4584.37 1.20280
\(245\) 0 0
\(246\) 0 0
\(247\) 4196.17 1.08095
\(248\) −2715.24 −0.695233
\(249\) 0 0
\(250\) −4663.28 −1.17973
\(251\) −3482.07 −0.875642 −0.437821 0.899062i \(-0.644250\pi\)
−0.437821 + 0.899062i \(0.644250\pi\)
\(252\) 0 0
\(253\) 836.577 0.207886
\(254\) −3303.62 −0.816092
\(255\) 0 0
\(256\) −8275.23 −2.02032
\(257\) −5337.90 −1.29560 −0.647800 0.761811i \(-0.724311\pi\)
−0.647800 + 0.761811i \(0.724311\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2291.74 0.546645
\(261\) 0 0
\(262\) 6474.15 1.52662
\(263\) −1182.24 −0.277186 −0.138593 0.990349i \(-0.544258\pi\)
−0.138593 + 0.990349i \(0.544258\pi\)
\(264\) 0 0
\(265\) 2852.11 0.661146
\(266\) 0 0
\(267\) 0 0
\(268\) 8229.47 1.87573
\(269\) −5038.16 −1.14194 −0.570971 0.820971i \(-0.693433\pi\)
−0.570971 + 0.820971i \(0.693433\pi\)
\(270\) 0 0
\(271\) 3004.05 0.673370 0.336685 0.941617i \(-0.390694\pi\)
0.336685 + 0.941617i \(0.390694\pi\)
\(272\) 9224.61 2.05634
\(273\) 0 0
\(274\) −3991.80 −0.880121
\(275\) 604.311 0.132514
\(276\) 0 0
\(277\) −322.006 −0.0698465 −0.0349233 0.999390i \(-0.511119\pi\)
−0.0349233 + 0.999390i \(0.511119\pi\)
\(278\) 4783.09 1.03191
\(279\) 0 0
\(280\) 0 0
\(281\) 249.602 0.0529894 0.0264947 0.999649i \(-0.491565\pi\)
0.0264947 + 0.999649i \(0.491565\pi\)
\(282\) 0 0
\(283\) 2539.25 0.533366 0.266683 0.963784i \(-0.414072\pi\)
0.266683 + 0.963784i \(0.414072\pi\)
\(284\) −6172.61 −1.28971
\(285\) 0 0
\(286\) −936.782 −0.193682
\(287\) 0 0
\(288\) 0 0
\(289\) 5768.53 1.17414
\(290\) 2064.05 0.417948
\(291\) 0 0
\(292\) 15445.9 3.09556
\(293\) −8928.79 −1.78029 −0.890146 0.455675i \(-0.849398\pi\)
−0.890146 + 0.455675i \(0.849398\pi\)
\(294\) 0 0
\(295\) −2578.24 −0.508851
\(296\) 18637.6 3.65976
\(297\) 0 0
\(298\) −6062.68 −1.17853
\(299\) −5111.29 −0.988608
\(300\) 0 0
\(301\) 0 0
\(302\) 13433.9 2.55972
\(303\) 0 0
\(304\) 11070.8 2.08867
\(305\) 1073.35 0.201508
\(306\) 0 0
\(307\) 6792.76 1.26281 0.631406 0.775452i \(-0.282478\pi\)
0.631406 + 0.775452i \(0.282478\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1200.20 −0.219893
\(311\) 699.942 0.127621 0.0638104 0.997962i \(-0.479675\pi\)
0.0638104 + 0.997962i \(0.479675\pi\)
\(312\) 0 0
\(313\) 9620.06 1.73725 0.868623 0.495474i \(-0.165005\pi\)
0.868623 + 0.495474i \(0.165005\pi\)
\(314\) −7206.78 −1.29523
\(315\) 0 0
\(316\) 2763.05 0.491878
\(317\) −3863.90 −0.684601 −0.342300 0.939591i \(-0.611206\pi\)
−0.342300 + 0.939591i \(0.611206\pi\)
\(318\) 0 0
\(319\) −573.828 −0.100715
\(320\) −1132.88 −0.197906
\(321\) 0 0
\(322\) 0 0
\(323\) 12819.3 2.20832
\(324\) 0 0
\(325\) −3692.20 −0.630173
\(326\) −15472.1 −2.62860
\(327\) 0 0
\(328\) 6920.14 1.16494
\(329\) 0 0
\(330\) 0 0
\(331\) −5030.07 −0.835280 −0.417640 0.908613i \(-0.637143\pi\)
−0.417640 + 0.908613i \(0.637143\pi\)
\(332\) −7131.80 −1.17894
\(333\) 0 0
\(334\) −9528.83 −1.56106
\(335\) 1926.79 0.314244
\(336\) 0 0
\(337\) −7351.34 −1.18829 −0.594144 0.804359i \(-0.702509\pi\)
−0.594144 + 0.804359i \(0.702509\pi\)
\(338\) −5263.63 −0.847052
\(339\) 0 0
\(340\) 7001.28 1.11676
\(341\) 333.670 0.0529890
\(342\) 0 0
\(343\) 0 0
\(344\) −11782.3 −1.84668
\(345\) 0 0
\(346\) −14507.9 −2.25419
\(347\) −12562.2 −1.94344 −0.971719 0.236141i \(-0.924117\pi\)
−0.971719 + 0.236141i \(0.924117\pi\)
\(348\) 0 0
\(349\) 1050.54 0.161129 0.0805647 0.996749i \(-0.474328\pi\)
0.0805647 + 0.996749i \(0.474328\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −475.626 −0.0720197
\(353\) 7770.20 1.17157 0.585787 0.810465i \(-0.300785\pi\)
0.585787 + 0.810465i \(0.300785\pi\)
\(354\) 0 0
\(355\) −1445.21 −0.216067
\(356\) 17341.0 2.58166
\(357\) 0 0
\(358\) 6879.74 1.01566
\(359\) −5712.35 −0.839794 −0.419897 0.907572i \(-0.637934\pi\)
−0.419897 + 0.907572i \(0.637934\pi\)
\(360\) 0 0
\(361\) 8526.00 1.24304
\(362\) −22795.2 −3.30964
\(363\) 0 0
\(364\) 0 0
\(365\) 3616.40 0.518605
\(366\) 0 0
\(367\) 6489.45 0.923016 0.461508 0.887136i \(-0.347309\pi\)
0.461508 + 0.887136i \(0.347309\pi\)
\(368\) −13485.2 −1.91023
\(369\) 0 0
\(370\) 8238.30 1.15754
\(371\) 0 0
\(372\) 0 0
\(373\) −6133.45 −0.851415 −0.425707 0.904861i \(-0.639975\pi\)
−0.425707 + 0.904861i \(0.639975\pi\)
\(374\) −2861.88 −0.395680
\(375\) 0 0
\(376\) −4722.39 −0.647709
\(377\) 3505.96 0.478955
\(378\) 0 0
\(379\) −3611.83 −0.489518 −0.244759 0.969584i \(-0.578709\pi\)
−0.244759 + 0.969584i \(0.578709\pi\)
\(380\) 8402.52 1.13432
\(381\) 0 0
\(382\) −23708.3 −3.17545
\(383\) −800.143 −0.106750 −0.0533752 0.998575i \(-0.516998\pi\)
−0.0533752 + 0.998575i \(0.516998\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12138.4 1.60059
\(387\) 0 0
\(388\) −5898.75 −0.771813
\(389\) 10775.2 1.40443 0.702214 0.711966i \(-0.252195\pi\)
0.702214 + 0.711966i \(0.252195\pi\)
\(390\) 0 0
\(391\) −15615.1 −2.01966
\(392\) 0 0
\(393\) 0 0
\(394\) 21874.9 2.79706
\(395\) 646.921 0.0824053
\(396\) 0 0
\(397\) −7359.38 −0.930369 −0.465185 0.885214i \(-0.654012\pi\)
−0.465185 + 0.885214i \(0.654012\pi\)
\(398\) 1840.05 0.231742
\(399\) 0 0
\(400\) −9741.19 −1.21765
\(401\) −13789.0 −1.71718 −0.858589 0.512664i \(-0.828659\pi\)
−0.858589 + 0.512664i \(0.828659\pi\)
\(402\) 0 0
\(403\) −2038.65 −0.251991
\(404\) 24285.5 2.99071
\(405\) 0 0
\(406\) 0 0
\(407\) −2290.34 −0.278939
\(408\) 0 0
\(409\) 7668.11 0.927050 0.463525 0.886084i \(-0.346584\pi\)
0.463525 + 0.886084i \(0.346584\pi\)
\(410\) 3058.88 0.368456
\(411\) 0 0
\(412\) −14517.9 −1.73603
\(413\) 0 0
\(414\) 0 0
\(415\) −1669.79 −0.197510
\(416\) 2905.96 0.342492
\(417\) 0 0
\(418\) −3434.66 −0.401901
\(419\) −10488.8 −1.22293 −0.611467 0.791270i \(-0.709420\pi\)
−0.611467 + 0.791270i \(0.709420\pi\)
\(420\) 0 0
\(421\) 5841.77 0.676272 0.338136 0.941097i \(-0.390204\pi\)
0.338136 + 0.941097i \(0.390204\pi\)
\(422\) 11123.0 1.28308
\(423\) 0 0
\(424\) 32268.1 3.69594
\(425\) −11279.7 −1.28740
\(426\) 0 0
\(427\) 0 0
\(428\) −12425.8 −1.40333
\(429\) 0 0
\(430\) −5208.06 −0.584081
\(431\) 13825.6 1.54515 0.772573 0.634926i \(-0.218969\pi\)
0.772573 + 0.634926i \(0.218969\pi\)
\(432\) 0 0
\(433\) 9226.76 1.02404 0.512021 0.858973i \(-0.328897\pi\)
0.512021 + 0.858973i \(0.328897\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −30836.6 −3.38716
\(437\) −18740.3 −2.05141
\(438\) 0 0
\(439\) −10674.4 −1.16051 −0.580255 0.814435i \(-0.697047\pi\)
−0.580255 + 0.814435i \(0.697047\pi\)
\(440\) −993.599 −0.107654
\(441\) 0 0
\(442\) 17485.4 1.88167
\(443\) −7788.79 −0.835342 −0.417671 0.908598i \(-0.637153\pi\)
−0.417671 + 0.908598i \(0.637153\pi\)
\(444\) 0 0
\(445\) 4060.11 0.432511
\(446\) 18383.2 1.95172
\(447\) 0 0
\(448\) 0 0
\(449\) −6445.65 −0.677481 −0.338741 0.940880i \(-0.610001\pi\)
−0.338741 + 0.940880i \(0.610001\pi\)
\(450\) 0 0
\(451\) −850.402 −0.0887891
\(452\) 8034.45 0.836081
\(453\) 0 0
\(454\) −29358.1 −3.03490
\(455\) 0 0
\(456\) 0 0
\(457\) −8375.21 −0.857278 −0.428639 0.903476i \(-0.641007\pi\)
−0.428639 + 0.903476i \(0.641007\pi\)
\(458\) 7528.19 0.768055
\(459\) 0 0
\(460\) −10235.0 −1.03741
\(461\) −14339.5 −1.44871 −0.724356 0.689426i \(-0.757863\pi\)
−0.724356 + 0.689426i \(0.757863\pi\)
\(462\) 0 0
\(463\) 285.260 0.0286332 0.0143166 0.999898i \(-0.495443\pi\)
0.0143166 + 0.999898i \(0.495443\pi\)
\(464\) 9249.83 0.925458
\(465\) 0 0
\(466\) 3566.99 0.354587
\(467\) −15511.4 −1.53700 −0.768501 0.639849i \(-0.778997\pi\)
−0.768501 + 0.639849i \(0.778997\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2087.42 −0.204862
\(471\) 0 0
\(472\) −29169.7 −2.84458
\(473\) 1447.90 0.140749
\(474\) 0 0
\(475\) −13537.2 −1.30764
\(476\) 0 0
\(477\) 0 0
\(478\) 975.461 0.0933400
\(479\) 16229.9 1.54815 0.774074 0.633095i \(-0.218216\pi\)
0.774074 + 0.633095i \(0.218216\pi\)
\(480\) 0 0
\(481\) 13993.5 1.32650
\(482\) 4842.09 0.457575
\(483\) 0 0
\(484\) −22118.5 −2.07725
\(485\) −1381.09 −0.129303
\(486\) 0 0
\(487\) 17014.8 1.58319 0.791596 0.611044i \(-0.209250\pi\)
0.791596 + 0.611044i \(0.209250\pi\)
\(488\) 12143.7 1.12647
\(489\) 0 0
\(490\) 0 0
\(491\) −9821.77 −0.902750 −0.451375 0.892334i \(-0.649066\pi\)
−0.451375 + 0.892334i \(0.649066\pi\)
\(492\) 0 0
\(493\) 10710.7 0.978473
\(494\) 20985.0 1.91125
\(495\) 0 0
\(496\) −5378.59 −0.486907
\(497\) 0 0
\(498\) 0 0
\(499\) −8967.25 −0.804468 −0.402234 0.915537i \(-0.631766\pi\)
−0.402234 + 0.915537i \(0.631766\pi\)
\(500\) −15861.2 −1.41867
\(501\) 0 0
\(502\) −17413.7 −1.54823
\(503\) −16119.0 −1.42884 −0.714422 0.699715i \(-0.753310\pi\)
−0.714422 + 0.699715i \(0.753310\pi\)
\(504\) 0 0
\(505\) 5686.03 0.501040
\(506\) 4183.71 0.367566
\(507\) 0 0
\(508\) −11236.6 −0.981382
\(509\) 10807.7 0.941141 0.470570 0.882362i \(-0.344048\pi\)
0.470570 + 0.882362i \(0.344048\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −24506.1 −2.11529
\(513\) 0 0
\(514\) −26694.7 −2.29077
\(515\) −3399.12 −0.290841
\(516\) 0 0
\(517\) 580.325 0.0493669
\(518\) 0 0
\(519\) 0 0
\(520\) 6070.66 0.511954
\(521\) −13837.5 −1.16359 −0.581797 0.813334i \(-0.697650\pi\)
−0.581797 + 0.813334i \(0.697650\pi\)
\(522\) 0 0
\(523\) 20126.9 1.68276 0.841382 0.540440i \(-0.181742\pi\)
0.841382 + 0.540440i \(0.181742\pi\)
\(524\) 22020.5 1.83582
\(525\) 0 0
\(526\) −5912.35 −0.490097
\(527\) −6228.09 −0.514800
\(528\) 0 0
\(529\) 10660.2 0.876160
\(530\) 14263.3 1.16898
\(531\) 0 0
\(532\) 0 0
\(533\) 5195.76 0.422239
\(534\) 0 0
\(535\) −2909.29 −0.235102
\(536\) 21799.3 1.75669
\(537\) 0 0
\(538\) −25195.7 −2.01908
\(539\) 0 0
\(540\) 0 0
\(541\) −3879.16 −0.308277 −0.154139 0.988049i \(-0.549260\pi\)
−0.154139 + 0.988049i \(0.549260\pi\)
\(542\) 15023.2 1.19059
\(543\) 0 0
\(544\) 8877.75 0.699688
\(545\) −7219.86 −0.567459
\(546\) 0 0
\(547\) −14131.4 −1.10460 −0.552298 0.833647i \(-0.686249\pi\)
−0.552298 + 0.833647i \(0.686249\pi\)
\(548\) −13577.3 −1.05838
\(549\) 0 0
\(550\) 3022.15 0.234300
\(551\) 12854.4 0.993857
\(552\) 0 0
\(553\) 0 0
\(554\) −1610.35 −0.123497
\(555\) 0 0
\(556\) 16268.7 1.24091
\(557\) −2501.36 −0.190280 −0.0951402 0.995464i \(-0.530330\pi\)
−0.0951402 + 0.995464i \(0.530330\pi\)
\(558\) 0 0
\(559\) −8846.33 −0.669338
\(560\) 0 0
\(561\) 0 0
\(562\) 1248.25 0.0936912
\(563\) 23407.2 1.75221 0.876106 0.482118i \(-0.160132\pi\)
0.876106 + 0.482118i \(0.160132\pi\)
\(564\) 0 0
\(565\) 1881.13 0.140070
\(566\) 12698.7 0.943051
\(567\) 0 0
\(568\) −16350.8 −1.20786
\(569\) −18623.5 −1.37213 −0.686063 0.727542i \(-0.740663\pi\)
−0.686063 + 0.727542i \(0.740663\pi\)
\(570\) 0 0
\(571\) −9576.20 −0.701841 −0.350921 0.936405i \(-0.614131\pi\)
−0.350921 + 0.936405i \(0.614131\pi\)
\(572\) −3186.27 −0.232910
\(573\) 0 0
\(574\) 0 0
\(575\) 16489.5 1.19593
\(576\) 0 0
\(577\) −8469.72 −0.611090 −0.305545 0.952178i \(-0.598839\pi\)
−0.305545 + 0.952178i \(0.598839\pi\)
\(578\) 28848.3 2.07601
\(579\) 0 0
\(580\) 7020.43 0.502599
\(581\) 0 0
\(582\) 0 0
\(583\) −3965.37 −0.281696
\(584\) 40915.2 2.89911
\(585\) 0 0
\(586\) −44652.7 −3.14776
\(587\) −445.290 −0.0313102 −0.0156551 0.999877i \(-0.504983\pi\)
−0.0156551 + 0.999877i \(0.504983\pi\)
\(588\) 0 0
\(589\) −7474.58 −0.522894
\(590\) −12893.7 −0.899707
\(591\) 0 0
\(592\) 36919.2 2.56312
\(593\) −5518.68 −0.382167 −0.191083 0.981574i \(-0.561200\pi\)
−0.191083 + 0.981574i \(0.561200\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −20620.9 −1.41723
\(597\) 0 0
\(598\) −25561.5 −1.74797
\(599\) 24007.1 1.63757 0.818784 0.574101i \(-0.194649\pi\)
0.818784 + 0.574101i \(0.194649\pi\)
\(600\) 0 0
\(601\) 19449.9 1.32009 0.660047 0.751224i \(-0.270536\pi\)
0.660047 + 0.751224i \(0.270536\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 45692.7 3.07816
\(605\) −5178.68 −0.348005
\(606\) 0 0
\(607\) 17741.4 1.18633 0.593165 0.805081i \(-0.297878\pi\)
0.593165 + 0.805081i \(0.297878\pi\)
\(608\) 10654.5 0.710689
\(609\) 0 0
\(610\) 5367.82 0.356289
\(611\) −3545.65 −0.234766
\(612\) 0 0
\(613\) −5438.44 −0.358331 −0.179165 0.983819i \(-0.557340\pi\)
−0.179165 + 0.983819i \(0.557340\pi\)
\(614\) 33970.5 2.23280
\(615\) 0 0
\(616\) 0 0
\(617\) 3557.73 0.232138 0.116069 0.993241i \(-0.462971\pi\)
0.116069 + 0.993241i \(0.462971\pi\)
\(618\) 0 0
\(619\) −17458.2 −1.13361 −0.566806 0.823851i \(-0.691821\pi\)
−0.566806 + 0.823851i \(0.691821\pi\)
\(620\) −4082.24 −0.264430
\(621\) 0 0
\(622\) 3500.40 0.225648
\(623\) 0 0
\(624\) 0 0
\(625\) 9928.78 0.635442
\(626\) 48109.7 3.07165
\(627\) 0 0
\(628\) −24512.4 −1.55756
\(629\) 42750.1 2.70995
\(630\) 0 0
\(631\) 10359.5 0.653573 0.326787 0.945098i \(-0.394034\pi\)
0.326787 + 0.945098i \(0.394034\pi\)
\(632\) 7319.12 0.460663
\(633\) 0 0
\(634\) −19323.3 −1.21045
\(635\) −2630.85 −0.164413
\(636\) 0 0
\(637\) 0 0
\(638\) −2869.70 −0.178076
\(639\) 0 0
\(640\) −8402.28 −0.518952
\(641\) −1433.28 −0.0883172 −0.0441586 0.999025i \(-0.514061\pi\)
−0.0441586 + 0.999025i \(0.514061\pi\)
\(642\) 0 0
\(643\) 25175.8 1.54407 0.772034 0.635581i \(-0.219239\pi\)
0.772034 + 0.635581i \(0.219239\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 64109.2 3.90456
\(647\) −7551.11 −0.458832 −0.229416 0.973328i \(-0.573682\pi\)
−0.229416 + 0.973328i \(0.573682\pi\)
\(648\) 0 0
\(649\) 3584.61 0.216808
\(650\) −18464.6 −1.11422
\(651\) 0 0
\(652\) −52625.3 −3.16099
\(653\) 2302.17 0.137965 0.0689824 0.997618i \(-0.478025\pi\)
0.0689824 + 0.997618i \(0.478025\pi\)
\(654\) 0 0
\(655\) 5155.72 0.307558
\(656\) 13708.1 0.815869
\(657\) 0 0
\(658\) 0 0
\(659\) 10145.8 0.599733 0.299866 0.953981i \(-0.403058\pi\)
0.299866 + 0.953981i \(0.403058\pi\)
\(660\) 0 0
\(661\) 18080.7 1.06393 0.531965 0.846766i \(-0.321454\pi\)
0.531965 + 0.846766i \(0.321454\pi\)
\(662\) −25155.3 −1.47687
\(663\) 0 0
\(664\) −18891.7 −1.10412
\(665\) 0 0
\(666\) 0 0
\(667\) −15657.7 −0.908951
\(668\) −32410.3 −1.87724
\(669\) 0 0
\(670\) 9635.85 0.555620
\(671\) −1492.31 −0.0858572
\(672\) 0 0
\(673\) −1488.08 −0.0852324 −0.0426162 0.999092i \(-0.513569\pi\)
−0.0426162 + 0.999092i \(0.513569\pi\)
\(674\) −36763.9 −2.10103
\(675\) 0 0
\(676\) −17903.1 −1.01861
\(677\) 19326.7 1.09717 0.548587 0.836094i \(-0.315166\pi\)
0.548587 + 0.836094i \(0.315166\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 18545.9 1.04589
\(681\) 0 0
\(682\) 1668.68 0.0936905
\(683\) 26176.2 1.46648 0.733238 0.679972i \(-0.238008\pi\)
0.733238 + 0.679972i \(0.238008\pi\)
\(684\) 0 0
\(685\) −3178.89 −0.177312
\(686\) 0 0
\(687\) 0 0
\(688\) −23339.4 −1.29332
\(689\) 24227.5 1.33961
\(690\) 0 0
\(691\) 25360.2 1.39616 0.698082 0.716018i \(-0.254037\pi\)
0.698082 + 0.716018i \(0.254037\pi\)
\(692\) −49345.6 −2.71075
\(693\) 0 0
\(694\) −62823.2 −3.43622
\(695\) 3809.04 0.207892
\(696\) 0 0
\(697\) 15873.1 0.862607
\(698\) 5253.73 0.284895
\(699\) 0 0
\(700\) 0 0
\(701\) 6628.89 0.357161 0.178580 0.983925i \(-0.442850\pi\)
0.178580 + 0.983925i \(0.442850\pi\)
\(702\) 0 0
\(703\) 51306.2 2.75256
\(704\) 1575.08 0.0843223
\(705\) 0 0
\(706\) 38858.6 2.07148
\(707\) 0 0
\(708\) 0 0
\(709\) 3173.90 0.168122 0.0840608 0.996461i \(-0.473211\pi\)
0.0840608 + 0.996461i \(0.473211\pi\)
\(710\) −7227.47 −0.382031
\(711\) 0 0
\(712\) 45935.2 2.41783
\(713\) 9104.68 0.478223
\(714\) 0 0
\(715\) −746.011 −0.0390199
\(716\) 23400.0 1.22137
\(717\) 0 0
\(718\) −28567.3 −1.48485
\(719\) −2683.55 −0.139193 −0.0695963 0.997575i \(-0.522171\pi\)
−0.0695963 + 0.997575i \(0.522171\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 42638.3 2.19783
\(723\) 0 0
\(724\) −77533.1 −3.97997
\(725\) −11310.5 −0.579397
\(726\) 0 0
\(727\) 6401.88 0.326592 0.163296 0.986577i \(-0.447787\pi\)
0.163296 + 0.986577i \(0.447787\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 18085.5 0.916953
\(731\) −27025.6 −1.36741
\(732\) 0 0
\(733\) −5888.94 −0.296744 −0.148372 0.988932i \(-0.547403\pi\)
−0.148372 + 0.988932i \(0.547403\pi\)
\(734\) 32453.6 1.63200
\(735\) 0 0
\(736\) −12978.1 −0.649974
\(737\) −2678.87 −0.133891
\(738\) 0 0
\(739\) 18593.3 0.925530 0.462765 0.886481i \(-0.346857\pi\)
0.462765 + 0.886481i \(0.346857\pi\)
\(740\) 28020.9 1.39198
\(741\) 0 0
\(742\) 0 0
\(743\) −27522.3 −1.35894 −0.679471 0.733702i \(-0.737791\pi\)
−0.679471 + 0.733702i \(0.737791\pi\)
\(744\) 0 0
\(745\) −4828.05 −0.237431
\(746\) −30673.2 −1.50540
\(747\) 0 0
\(748\) −9734.09 −0.475820
\(749\) 0 0
\(750\) 0 0
\(751\) 16609.7 0.807053 0.403526 0.914968i \(-0.367784\pi\)
0.403526 + 0.914968i \(0.367784\pi\)
\(752\) −9354.56 −0.453624
\(753\) 0 0
\(754\) 17533.2 0.846847
\(755\) 10698.2 0.515691
\(756\) 0 0
\(757\) −23386.2 −1.12284 −0.561418 0.827532i \(-0.689744\pi\)
−0.561418 + 0.827532i \(0.689744\pi\)
\(758\) −18062.7 −0.865522
\(759\) 0 0
\(760\) 22257.7 1.06233
\(761\) −20245.9 −0.964409 −0.482204 0.876059i \(-0.660164\pi\)
−0.482204 + 0.876059i \(0.660164\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −80638.8 −3.81860
\(765\) 0 0
\(766\) −4001.50 −0.188747
\(767\) −21901.1 −1.03103
\(768\) 0 0
\(769\) 8846.54 0.414843 0.207422 0.978252i \(-0.433493\pi\)
0.207422 + 0.978252i \(0.433493\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 41286.3 1.92478
\(773\) 9788.82 0.455471 0.227736 0.973723i \(-0.426868\pi\)
0.227736 + 0.973723i \(0.426868\pi\)
\(774\) 0 0
\(775\) 6576.86 0.304836
\(776\) −15625.4 −0.722833
\(777\) 0 0
\(778\) 53886.4 2.48319
\(779\) 19049.9 0.876169
\(780\) 0 0
\(781\) 2009.32 0.0920603
\(782\) −78090.6 −3.57099
\(783\) 0 0
\(784\) 0 0
\(785\) −5739.16 −0.260942
\(786\) 0 0
\(787\) −6582.93 −0.298165 −0.149083 0.988825i \(-0.547632\pi\)
−0.149083 + 0.988825i \(0.547632\pi\)
\(788\) 74402.8 3.36357
\(789\) 0 0
\(790\) 3235.24 0.145702
\(791\) 0 0
\(792\) 0 0
\(793\) 9117.69 0.408296
\(794\) −36804.1 −1.64500
\(795\) 0 0
\(796\) 6258.55 0.278679
\(797\) −37369.9 −1.66087 −0.830434 0.557117i \(-0.811907\pi\)
−0.830434 + 0.557117i \(0.811907\pi\)
\(798\) 0 0
\(799\) −10832.0 −0.479611
\(800\) −9374.91 −0.414316
\(801\) 0 0
\(802\) −68958.4 −3.03617
\(803\) −5027.99 −0.220964
\(804\) 0 0
\(805\) 0 0
\(806\) −10195.2 −0.445548
\(807\) 0 0
\(808\) 64330.5 2.80092
\(809\) 28089.7 1.22074 0.610371 0.792116i \(-0.291020\pi\)
0.610371 + 0.792116i \(0.291020\pi\)
\(810\) 0 0
\(811\) −9732.34 −0.421392 −0.210696 0.977552i \(-0.567573\pi\)
−0.210696 + 0.977552i \(0.567573\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −11453.9 −0.493195
\(815\) −12321.3 −0.529567
\(816\) 0 0
\(817\) −32434.5 −1.38891
\(818\) 38348.0 1.63913
\(819\) 0 0
\(820\) 10404.1 0.443083
\(821\) 31157.5 1.32449 0.662244 0.749288i \(-0.269604\pi\)
0.662244 + 0.749288i \(0.269604\pi\)
\(822\) 0 0
\(823\) 36684.6 1.55376 0.776880 0.629649i \(-0.216801\pi\)
0.776880 + 0.629649i \(0.216801\pi\)
\(824\) −38456.9 −1.62586
\(825\) 0 0
\(826\) 0 0
\(827\) −22589.9 −0.949853 −0.474927 0.880025i \(-0.657525\pi\)
−0.474927 + 0.880025i \(0.657525\pi\)
\(828\) 0 0
\(829\) −9519.37 −0.398820 −0.199410 0.979916i \(-0.563902\pi\)
−0.199410 + 0.979916i \(0.563902\pi\)
\(830\) −8350.59 −0.349221
\(831\) 0 0
\(832\) −9623.35 −0.400997
\(833\) 0 0
\(834\) 0 0
\(835\) −7588.33 −0.314497
\(836\) −11682.3 −0.483301
\(837\) 0 0
\(838\) −52454.1 −2.16229
\(839\) −38805.6 −1.59680 −0.798402 0.602124i \(-0.794321\pi\)
−0.798402 + 0.602124i \(0.794321\pi\)
\(840\) 0 0
\(841\) −13649.0 −0.559637
\(842\) 29214.6 1.19573
\(843\) 0 0
\(844\) 37832.6 1.54295
\(845\) −4191.72 −0.170650
\(846\) 0 0
\(847\) 0 0
\(848\) 63919.8 2.58846
\(849\) 0 0
\(850\) −56409.6 −2.27627
\(851\) −62495.3 −2.51741
\(852\) 0 0
\(853\) 203.914 0.00818507 0.00409254 0.999992i \(-0.498697\pi\)
0.00409254 + 0.999992i \(0.498697\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −32915.1 −1.31427
\(857\) −5606.57 −0.223473 −0.111737 0.993738i \(-0.535641\pi\)
−0.111737 + 0.993738i \(0.535641\pi\)
\(858\) 0 0
\(859\) −13425.5 −0.533263 −0.266632 0.963799i \(-0.585911\pi\)
−0.266632 + 0.963799i \(0.585911\pi\)
\(860\) −17714.1 −0.702380
\(861\) 0 0
\(862\) 69141.8 2.73199
\(863\) −10490.2 −0.413778 −0.206889 0.978364i \(-0.566334\pi\)
−0.206889 + 0.978364i \(0.566334\pi\)
\(864\) 0 0
\(865\) −11553.4 −0.454137
\(866\) 46142.9 1.81062
\(867\) 0 0
\(868\) 0 0
\(869\) −899.432 −0.0351106
\(870\) 0 0
\(871\) 16367.3 0.636722
\(872\) −81684.0 −3.17221
\(873\) 0 0
\(874\) −93719.6 −3.62713
\(875\) 0 0
\(876\) 0 0
\(877\) −20405.9 −0.785699 −0.392850 0.919603i \(-0.628511\pi\)
−0.392850 + 0.919603i \(0.628511\pi\)
\(878\) −53382.7 −2.05191
\(879\) 0 0
\(880\) −1968.21 −0.0753960
\(881\) 29977.0 1.14637 0.573184 0.819427i \(-0.305708\pi\)
0.573184 + 0.819427i \(0.305708\pi\)
\(882\) 0 0
\(883\) 18717.7 0.713365 0.356682 0.934226i \(-0.383908\pi\)
0.356682 + 0.934226i \(0.383908\pi\)
\(884\) 59473.0 2.26278
\(885\) 0 0
\(886\) −38951.6 −1.47698
\(887\) 28343.6 1.07293 0.536463 0.843924i \(-0.319760\pi\)
0.536463 + 0.843924i \(0.319760\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 20304.5 0.764729
\(891\) 0 0
\(892\) 62526.6 2.34702
\(893\) −12999.9 −0.487151
\(894\) 0 0
\(895\) 5478.71 0.204618
\(896\) 0 0
\(897\) 0 0
\(898\) −32234.6 −1.19786
\(899\) −6245.11 −0.231687
\(900\) 0 0
\(901\) 74015.2 2.73674
\(902\) −4252.85 −0.156989
\(903\) 0 0
\(904\) 21282.7 0.783023
\(905\) −18153.1 −0.666772
\(906\) 0 0
\(907\) 29101.8 1.06539 0.532695 0.846307i \(-0.321179\pi\)
0.532695 + 0.846307i \(0.321179\pi\)
\(908\) −99855.4 −3.64958
\(909\) 0 0
\(910\) 0 0
\(911\) 7099.57 0.258199 0.129099 0.991632i \(-0.458791\pi\)
0.129099 + 0.991632i \(0.458791\pi\)
\(912\) 0 0
\(913\) 2321.56 0.0841538
\(914\) −41884.3 −1.51576
\(915\) 0 0
\(916\) 25605.6 0.923616
\(917\) 0 0
\(918\) 0 0
\(919\) −17499.6 −0.628138 −0.314069 0.949400i \(-0.601692\pi\)
−0.314069 + 0.949400i \(0.601692\pi\)
\(920\) −27111.8 −0.971575
\(921\) 0 0
\(922\) −71711.5 −2.56149
\(923\) −12276.5 −0.437795
\(924\) 0 0
\(925\) −45144.2 −1.60468
\(926\) 1426.58 0.0506267
\(927\) 0 0
\(928\) 8902.02 0.314896
\(929\) 638.171 0.0225379 0.0112690 0.999937i \(-0.496413\pi\)
0.0112690 + 0.999937i \(0.496413\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12132.4 0.426404
\(933\) 0 0
\(934\) −77571.9 −2.71759
\(935\) −2279.07 −0.0797151
\(936\) 0 0
\(937\) −3768.72 −0.131397 −0.0656984 0.997840i \(-0.520928\pi\)
−0.0656984 + 0.997840i \(0.520928\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −7099.91 −0.246355
\(941\) 14086.8 0.488009 0.244004 0.969774i \(-0.421539\pi\)
0.244004 + 0.969774i \(0.421539\pi\)
\(942\) 0 0
\(943\) −23204.5 −0.801317
\(944\) −57782.1 −1.99221
\(945\) 0 0
\(946\) 7240.92 0.248861
\(947\) 40861.3 1.40213 0.701064 0.713099i \(-0.252709\pi\)
0.701064 + 0.713099i \(0.252709\pi\)
\(948\) 0 0
\(949\) 30719.8 1.05080
\(950\) −67699.4 −2.31206
\(951\) 0 0
\(952\) 0 0
\(953\) 34318.7 1.16652 0.583259 0.812286i \(-0.301777\pi\)
0.583259 + 0.812286i \(0.301777\pi\)
\(954\) 0 0
\(955\) −18880.2 −0.639737
\(956\) 3317.83 0.112245
\(957\) 0 0
\(958\) 81165.4 2.73730
\(959\) 0 0
\(960\) 0 0
\(961\) −26159.6 −0.878104
\(962\) 69981.0 2.34540
\(963\) 0 0
\(964\) 16469.3 0.550251
\(965\) 9666.49 0.322461
\(966\) 0 0
\(967\) 56456.3 1.87747 0.938735 0.344639i \(-0.111999\pi\)
0.938735 + 0.344639i \(0.111999\pi\)
\(968\) −58590.5 −1.94542
\(969\) 0 0
\(970\) −6906.81 −0.228623
\(971\) −4430.47 −0.146427 −0.0732134 0.997316i \(-0.523325\pi\)
−0.0732134 + 0.997316i \(0.523325\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 85090.7 2.79926
\(975\) 0 0
\(976\) 24055.4 0.788928
\(977\) −44537.3 −1.45842 −0.729209 0.684291i \(-0.760112\pi\)
−0.729209 + 0.684291i \(0.760112\pi\)
\(978\) 0 0
\(979\) −5644.89 −0.184281
\(980\) 0 0
\(981\) 0 0
\(982\) −49118.4 −1.59616
\(983\) 18190.6 0.590225 0.295112 0.955463i \(-0.404643\pi\)
0.295112 + 0.955463i \(0.404643\pi\)
\(984\) 0 0
\(985\) 17420.2 0.563505
\(986\) 53564.2 1.73005
\(987\) 0 0
\(988\) 71376.0 2.29835
\(989\) 39508.1 1.27026
\(990\) 0 0
\(991\) −5077.83 −0.162768 −0.0813838 0.996683i \(-0.525934\pi\)
−0.0813838 + 0.996683i \(0.525934\pi\)
\(992\) −5176.35 −0.165675
\(993\) 0 0
\(994\) 0 0
\(995\) 1465.33 0.0466877
\(996\) 0 0
\(997\) 54583.4 1.73387 0.866937 0.498418i \(-0.166085\pi\)
0.866937 + 0.498418i \(0.166085\pi\)
\(998\) −44845.1 −1.42239
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bm.1.8 yes 8
3.2 odd 2 inner 1323.4.a.bm.1.1 yes 8
7.6 odd 2 1323.4.a.bl.1.8 yes 8
21.20 even 2 1323.4.a.bl.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bl.1.1 8 21.20 even 2
1323.4.a.bl.1.8 yes 8 7.6 odd 2
1323.4.a.bm.1.1 yes 8 3.2 odd 2 inner
1323.4.a.bm.1.8 yes 8 1.1 even 1 trivial