Properties

Label 1323.4.a.bm.1.3
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} + 887x^{4} - 4176x^{2} + 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.49657\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49657 q^{2} -1.76715 q^{4} +14.5857 q^{5} +24.3844 q^{8} +O(q^{10})\) \(q-2.49657 q^{2} -1.76715 q^{4} +14.5857 q^{5} +24.3844 q^{8} -36.4142 q^{10} -0.0794330 q^{11} +86.9394 q^{13} -46.7400 q^{16} +93.0605 q^{17} -147.953 q^{19} -25.7751 q^{20} +0.198310 q^{22} +154.273 q^{23} +87.7423 q^{25} -217.050 q^{26} +205.403 q^{29} +271.281 q^{31} -78.3853 q^{32} -232.332 q^{34} +48.3171 q^{37} +369.375 q^{38} +355.663 q^{40} +52.3857 q^{41} +48.0508 q^{43} +0.140370 q^{44} -385.152 q^{46} -266.115 q^{47} -219.055 q^{50} -153.635 q^{52} +11.8224 q^{53} -1.15859 q^{55} -512.802 q^{58} -542.677 q^{59} +84.4131 q^{61} -677.270 q^{62} +569.614 q^{64} +1268.07 q^{65} -51.0586 q^{67} -164.452 q^{68} +495.085 q^{71} +71.1990 q^{73} -120.627 q^{74} +261.455 q^{76} +378.650 q^{79} -681.735 q^{80} -130.785 q^{82} -486.792 q^{83} +1357.35 q^{85} -119.962 q^{86} -1.93692 q^{88} -1168.36 q^{89} -272.623 q^{92} +664.374 q^{94} -2158.00 q^{95} +1310.92 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 44 q^{4} + 132 q^{10} + 336 q^{13} + 204 q^{16} - 288 q^{19} + 484 q^{22} + 152 q^{25} + 120 q^{31} + 1008 q^{34} + 592 q^{37} + 1620 q^{40} - 1872 q^{43} - 1644 q^{46} + 2400 q^{52} + 1344 q^{55} - 1200 q^{58} + 2400 q^{61} - 1388 q^{64} + 1824 q^{73} + 2844 q^{76} + 2368 q^{79} + 2436 q^{82} + 3512 q^{85} + 3780 q^{88} + 4368 q^{94} + 5712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.49657 −0.882670 −0.441335 0.897342i \(-0.645495\pi\)
−0.441335 + 0.897342i \(0.645495\pi\)
\(3\) 0 0
\(4\) −1.76715 −0.220894
\(5\) 14.5857 1.30458 0.652292 0.757968i \(-0.273808\pi\)
0.652292 + 0.757968i \(0.273808\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 24.3844 1.07765
\(9\) 0 0
\(10\) −36.4142 −1.15152
\(11\) −0.0794330 −0.00217727 −0.00108863 0.999999i \(-0.500347\pi\)
−0.00108863 + 0.999999i \(0.500347\pi\)
\(12\) 0 0
\(13\) 86.9394 1.85482 0.927409 0.374048i \(-0.122030\pi\)
0.927409 + 0.374048i \(0.122030\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −46.7400 −0.730312
\(17\) 93.0605 1.32768 0.663838 0.747877i \(-0.268926\pi\)
0.663838 + 0.747877i \(0.268926\pi\)
\(18\) 0 0
\(19\) −147.953 −1.78646 −0.893230 0.449599i \(-0.851567\pi\)
−0.893230 + 0.449599i \(0.851567\pi\)
\(20\) −25.7751 −0.288175
\(21\) 0 0
\(22\) 0.198310 0.00192181
\(23\) 154.273 1.39861 0.699306 0.714823i \(-0.253493\pi\)
0.699306 + 0.714823i \(0.253493\pi\)
\(24\) 0 0
\(25\) 87.7423 0.701938
\(26\) −217.050 −1.63719
\(27\) 0 0
\(28\) 0 0
\(29\) 205.403 1.31525 0.657626 0.753344i \(-0.271561\pi\)
0.657626 + 0.753344i \(0.271561\pi\)
\(30\) 0 0
\(31\) 271.281 1.57172 0.785862 0.618402i \(-0.212220\pi\)
0.785862 + 0.618402i \(0.212220\pi\)
\(32\) −78.3853 −0.433022
\(33\) 0 0
\(34\) −232.332 −1.17190
\(35\) 0 0
\(36\) 0 0
\(37\) 48.3171 0.214683 0.107342 0.994222i \(-0.465766\pi\)
0.107342 + 0.994222i \(0.465766\pi\)
\(38\) 369.375 1.57685
\(39\) 0 0
\(40\) 355.663 1.40588
\(41\) 52.3857 0.199543 0.0997717 0.995010i \(-0.468189\pi\)
0.0997717 + 0.995010i \(0.468189\pi\)
\(42\) 0 0
\(43\) 48.0508 0.170411 0.0852056 0.996363i \(-0.472845\pi\)
0.0852056 + 0.996363i \(0.472845\pi\)
\(44\) 0.140370 0.000480945 0
\(45\) 0 0
\(46\) −385.152 −1.23451
\(47\) −266.115 −0.825891 −0.412945 0.910756i \(-0.635500\pi\)
−0.412945 + 0.910756i \(0.635500\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −219.055 −0.619580
\(51\) 0 0
\(52\) −153.635 −0.409718
\(53\) 11.8224 0.0306403 0.0153202 0.999883i \(-0.495123\pi\)
0.0153202 + 0.999883i \(0.495123\pi\)
\(54\) 0 0
\(55\) −1.15859 −0.00284043
\(56\) 0 0
\(57\) 0 0
\(58\) −512.802 −1.16093
\(59\) −542.677 −1.19747 −0.598733 0.800948i \(-0.704329\pi\)
−0.598733 + 0.800948i \(0.704329\pi\)
\(60\) 0 0
\(61\) 84.4131 0.177180 0.0885901 0.996068i \(-0.471764\pi\)
0.0885901 + 0.996068i \(0.471764\pi\)
\(62\) −677.270 −1.38731
\(63\) 0 0
\(64\) 569.614 1.11253
\(65\) 1268.07 2.41977
\(66\) 0 0
\(67\) −51.0586 −0.0931015 −0.0465507 0.998916i \(-0.514823\pi\)
−0.0465507 + 0.998916i \(0.514823\pi\)
\(68\) −164.452 −0.293275
\(69\) 0 0
\(70\) 0 0
\(71\) 495.085 0.827547 0.413773 0.910380i \(-0.364211\pi\)
0.413773 + 0.910380i \(0.364211\pi\)
\(72\) 0 0
\(73\) 71.1990 0.114154 0.0570768 0.998370i \(-0.481822\pi\)
0.0570768 + 0.998370i \(0.481822\pi\)
\(74\) −120.627 −0.189494
\(75\) 0 0
\(76\) 261.455 0.394618
\(77\) 0 0
\(78\) 0 0
\(79\) 378.650 0.539259 0.269629 0.962964i \(-0.413099\pi\)
0.269629 + 0.962964i \(0.413099\pi\)
\(80\) −681.735 −0.952753
\(81\) 0 0
\(82\) −130.785 −0.176131
\(83\) −486.792 −0.643763 −0.321882 0.946780i \(-0.604315\pi\)
−0.321882 + 0.946780i \(0.604315\pi\)
\(84\) 0 0
\(85\) 1357.35 1.73206
\(86\) −119.962 −0.150417
\(87\) 0 0
\(88\) −1.93692 −0.00234633
\(89\) −1168.36 −1.39152 −0.695762 0.718273i \(-0.744933\pi\)
−0.695762 + 0.718273i \(0.744933\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −272.623 −0.308945
\(93\) 0 0
\(94\) 664.374 0.728989
\(95\) −2158.00 −2.33059
\(96\) 0 0
\(97\) 1310.92 1.37221 0.686104 0.727504i \(-0.259320\pi\)
0.686104 + 0.727504i \(0.259320\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −155.054 −0.155054
\(101\) −1699.25 −1.67408 −0.837040 0.547142i \(-0.815716\pi\)
−0.837040 + 0.547142i \(0.815716\pi\)
\(102\) 0 0
\(103\) −615.292 −0.588607 −0.294304 0.955712i \(-0.595088\pi\)
−0.294304 + 0.955712i \(0.595088\pi\)
\(104\) 2119.96 1.99884
\(105\) 0 0
\(106\) −29.5155 −0.0270453
\(107\) −1692.95 −1.52957 −0.764783 0.644288i \(-0.777154\pi\)
−0.764783 + 0.644288i \(0.777154\pi\)
\(108\) 0 0
\(109\) 872.784 0.766950 0.383475 0.923551i \(-0.374727\pi\)
0.383475 + 0.923551i \(0.374727\pi\)
\(110\) 2.89249 0.00250716
\(111\) 0 0
\(112\) 0 0
\(113\) −139.808 −0.116389 −0.0581947 0.998305i \(-0.518534\pi\)
−0.0581947 + 0.998305i \(0.518534\pi\)
\(114\) 0 0
\(115\) 2250.17 1.82461
\(116\) −362.978 −0.290531
\(117\) 0 0
\(118\) 1354.83 1.05697
\(119\) 0 0
\(120\) 0 0
\(121\) −1330.99 −0.999995
\(122\) −210.743 −0.156392
\(123\) 0 0
\(124\) −479.394 −0.347184
\(125\) −543.429 −0.388846
\(126\) 0 0
\(127\) 222.475 0.155444 0.0777222 0.996975i \(-0.475235\pi\)
0.0777222 + 0.996975i \(0.475235\pi\)
\(128\) −794.997 −0.548972
\(129\) 0 0
\(130\) −3165.82 −2.13585
\(131\) 1774.60 1.18357 0.591785 0.806096i \(-0.298423\pi\)
0.591785 + 0.806096i \(0.298423\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 127.471 0.0821779
\(135\) 0 0
\(136\) 2269.22 1.43076
\(137\) −1570.56 −0.979433 −0.489717 0.871882i \(-0.662900\pi\)
−0.489717 + 0.871882i \(0.662900\pi\)
\(138\) 0 0
\(139\) −108.881 −0.0664400 −0.0332200 0.999448i \(-0.510576\pi\)
−0.0332200 + 0.999448i \(0.510576\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1236.01 −0.730451
\(143\) −6.90586 −0.00403844
\(144\) 0 0
\(145\) 2995.94 1.71586
\(146\) −177.753 −0.100760
\(147\) 0 0
\(148\) −85.3836 −0.0474222
\(149\) 2975.29 1.63588 0.817938 0.575307i \(-0.195117\pi\)
0.817938 + 0.575307i \(0.195117\pi\)
\(150\) 0 0
\(151\) −3220.19 −1.73546 −0.867732 0.497032i \(-0.834423\pi\)
−0.867732 + 0.497032i \(0.834423\pi\)
\(152\) −3607.74 −1.92517
\(153\) 0 0
\(154\) 0 0
\(155\) 3956.81 2.05044
\(156\) 0 0
\(157\) −1640.62 −0.833988 −0.416994 0.908909i \(-0.636916\pi\)
−0.416994 + 0.908909i \(0.636916\pi\)
\(158\) −945.325 −0.475987
\(159\) 0 0
\(160\) −1143.30 −0.564913
\(161\) 0 0
\(162\) 0 0
\(163\) −2135.64 −1.02624 −0.513118 0.858318i \(-0.671510\pi\)
−0.513118 + 0.858318i \(0.671510\pi\)
\(164\) −92.5735 −0.0440779
\(165\) 0 0
\(166\) 1215.31 0.568231
\(167\) 162.606 0.0753464 0.0376732 0.999290i \(-0.488005\pi\)
0.0376732 + 0.999290i \(0.488005\pi\)
\(168\) 0 0
\(169\) 5361.46 2.44035
\(170\) −3388.72 −1.52884
\(171\) 0 0
\(172\) −84.9131 −0.0376428
\(173\) 4239.10 1.86296 0.931481 0.363789i \(-0.118517\pi\)
0.931481 + 0.363789i \(0.118517\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.71270 0.00159009
\(177\) 0 0
\(178\) 2916.88 1.22826
\(179\) −799.480 −0.333832 −0.166916 0.985971i \(-0.553381\pi\)
−0.166916 + 0.985971i \(0.553381\pi\)
\(180\) 0 0
\(181\) 1993.81 0.818776 0.409388 0.912360i \(-0.365742\pi\)
0.409388 + 0.912360i \(0.365742\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3761.84 1.50721
\(185\) 704.738 0.280072
\(186\) 0 0
\(187\) −7.39208 −0.00289071
\(188\) 470.266 0.182434
\(189\) 0 0
\(190\) 5387.58 2.05714
\(191\) 3120.39 1.18211 0.591057 0.806630i \(-0.298711\pi\)
0.591057 + 0.806630i \(0.298711\pi\)
\(192\) 0 0
\(193\) −53.5595 −0.0199756 −0.00998781 0.999950i \(-0.503179\pi\)
−0.00998781 + 0.999950i \(0.503179\pi\)
\(194\) −3272.81 −1.21121
\(195\) 0 0
\(196\) 0 0
\(197\) −2174.32 −0.786366 −0.393183 0.919460i \(-0.628626\pi\)
−0.393183 + 0.919460i \(0.628626\pi\)
\(198\) 0 0
\(199\) 3765.55 1.34137 0.670686 0.741741i \(-0.266000\pi\)
0.670686 + 0.741741i \(0.266000\pi\)
\(200\) 2139.54 0.756441
\(201\) 0 0
\(202\) 4242.30 1.47766
\(203\) 0 0
\(204\) 0 0
\(205\) 764.082 0.260321
\(206\) 1536.12 0.519546
\(207\) 0 0
\(208\) −4063.54 −1.35460
\(209\) 11.7524 0.00388961
\(210\) 0 0
\(211\) −705.039 −0.230032 −0.115016 0.993364i \(-0.536692\pi\)
−0.115016 + 0.993364i \(0.536692\pi\)
\(212\) −20.8921 −0.00676826
\(213\) 0 0
\(214\) 4226.56 1.35010
\(215\) 700.854 0.222316
\(216\) 0 0
\(217\) 0 0
\(218\) −2178.96 −0.676964
\(219\) 0 0
\(220\) 2.04740 0.000627434 0
\(221\) 8090.62 2.46260
\(222\) 0 0
\(223\) 2724.83 0.818243 0.409121 0.912480i \(-0.365835\pi\)
0.409121 + 0.912480i \(0.365835\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 349.039 0.102733
\(227\) 617.477 0.180544 0.0902718 0.995917i \(-0.471226\pi\)
0.0902718 + 0.995917i \(0.471226\pi\)
\(228\) 0 0
\(229\) 4558.34 1.31539 0.657694 0.753285i \(-0.271532\pi\)
0.657694 + 0.753285i \(0.271532\pi\)
\(230\) −5617.71 −1.61052
\(231\) 0 0
\(232\) 5008.61 1.41738
\(233\) 2825.59 0.794465 0.397232 0.917718i \(-0.369971\pi\)
0.397232 + 0.917718i \(0.369971\pi\)
\(234\) 0 0
\(235\) −3881.47 −1.07744
\(236\) 958.992 0.264513
\(237\) 0 0
\(238\) 0 0
\(239\) −5809.06 −1.57220 −0.786102 0.618097i \(-0.787904\pi\)
−0.786102 + 0.618097i \(0.787904\pi\)
\(240\) 0 0
\(241\) 4726.10 1.26321 0.631607 0.775289i \(-0.282396\pi\)
0.631607 + 0.775289i \(0.282396\pi\)
\(242\) 3322.92 0.882666
\(243\) 0 0
\(244\) −149.171 −0.0391380
\(245\) 0 0
\(246\) 0 0
\(247\) −12862.9 −3.31356
\(248\) 6615.00 1.69376
\(249\) 0 0
\(250\) 1356.71 0.343223
\(251\) 3020.59 0.759595 0.379797 0.925070i \(-0.375994\pi\)
0.379797 + 0.925070i \(0.375994\pi\)
\(252\) 0 0
\(253\) −12.2543 −0.00304515
\(254\) −555.423 −0.137206
\(255\) 0 0
\(256\) −2572.15 −0.627966
\(257\) −4268.71 −1.03609 −0.518044 0.855354i \(-0.673340\pi\)
−0.518044 + 0.855354i \(0.673340\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2240.87 −0.534512
\(261\) 0 0
\(262\) −4430.41 −1.04470
\(263\) 997.520 0.233877 0.116939 0.993139i \(-0.462692\pi\)
0.116939 + 0.993139i \(0.462692\pi\)
\(264\) 0 0
\(265\) 172.439 0.0399729
\(266\) 0 0
\(267\) 0 0
\(268\) 90.2282 0.0205655
\(269\) 4965.74 1.12553 0.562763 0.826618i \(-0.309738\pi\)
0.562763 + 0.826618i \(0.309738\pi\)
\(270\) 0 0
\(271\) −2393.95 −0.536612 −0.268306 0.963334i \(-0.586464\pi\)
−0.268306 + 0.963334i \(0.586464\pi\)
\(272\) −4349.64 −0.969617
\(273\) 0 0
\(274\) 3921.02 0.864516
\(275\) −6.96964 −0.00152831
\(276\) 0 0
\(277\) −1679.74 −0.364353 −0.182177 0.983266i \(-0.558314\pi\)
−0.182177 + 0.983266i \(0.558314\pi\)
\(278\) 271.829 0.0586446
\(279\) 0 0
\(280\) 0 0
\(281\) 7139.07 1.51559 0.757795 0.652492i \(-0.226277\pi\)
0.757795 + 0.652492i \(0.226277\pi\)
\(282\) 0 0
\(283\) 4403.14 0.924874 0.462437 0.886652i \(-0.346975\pi\)
0.462437 + 0.886652i \(0.346975\pi\)
\(284\) −874.891 −0.182800
\(285\) 0 0
\(286\) 17.2409 0.00356461
\(287\) 0 0
\(288\) 0 0
\(289\) 3747.26 0.762723
\(290\) −7479.57 −1.51454
\(291\) 0 0
\(292\) −125.819 −0.0252158
\(293\) 3403.11 0.678539 0.339270 0.940689i \(-0.389820\pi\)
0.339270 + 0.940689i \(0.389820\pi\)
\(294\) 0 0
\(295\) −7915.32 −1.56220
\(296\) 1178.18 0.231352
\(297\) 0 0
\(298\) −7428.02 −1.44394
\(299\) 13412.4 2.59417
\(300\) 0 0
\(301\) 0 0
\(302\) 8039.41 1.53184
\(303\) 0 0
\(304\) 6915.32 1.30467
\(305\) 1231.22 0.231146
\(306\) 0 0
\(307\) −641.152 −0.119194 −0.0595969 0.998223i \(-0.518982\pi\)
−0.0595969 + 0.998223i \(0.518982\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −9878.45 −1.80987
\(311\) −618.270 −0.112730 −0.0563648 0.998410i \(-0.517951\pi\)
−0.0563648 + 0.998410i \(0.517951\pi\)
\(312\) 0 0
\(313\) −4574.93 −0.826167 −0.413083 0.910693i \(-0.635548\pi\)
−0.413083 + 0.910693i \(0.635548\pi\)
\(314\) 4095.93 0.736136
\(315\) 0 0
\(316\) −669.131 −0.119119
\(317\) −4064.03 −0.720059 −0.360029 0.932941i \(-0.617233\pi\)
−0.360029 + 0.932941i \(0.617233\pi\)
\(318\) 0 0
\(319\) −16.3158 −0.00286366
\(320\) 8308.21 1.45138
\(321\) 0 0
\(322\) 0 0
\(323\) −13768.6 −2.37184
\(324\) 0 0
\(325\) 7628.26 1.30197
\(326\) 5331.78 0.905828
\(327\) 0 0
\(328\) 1277.39 0.215037
\(329\) 0 0
\(330\) 0 0
\(331\) 10290.0 1.70873 0.854363 0.519677i \(-0.173948\pi\)
0.854363 + 0.519677i \(0.173948\pi\)
\(332\) 860.235 0.142203
\(333\) 0 0
\(334\) −405.957 −0.0665060
\(335\) −744.724 −0.121459
\(336\) 0 0
\(337\) 6307.22 1.01951 0.509757 0.860318i \(-0.329735\pi\)
0.509757 + 0.860318i \(0.329735\pi\)
\(338\) −13385.2 −2.15403
\(339\) 0 0
\(340\) −2398.65 −0.382602
\(341\) −21.5486 −0.00342206
\(342\) 0 0
\(343\) 0 0
\(344\) 1171.69 0.183643
\(345\) 0 0
\(346\) −10583.2 −1.64438
\(347\) 165.837 0.0256559 0.0128280 0.999918i \(-0.495917\pi\)
0.0128280 + 0.999918i \(0.495917\pi\)
\(348\) 0 0
\(349\) −8456.39 −1.29702 −0.648510 0.761206i \(-0.724608\pi\)
−0.648510 + 0.761206i \(0.724608\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.22638 0.000942805 0
\(353\) 5211.87 0.785836 0.392918 0.919574i \(-0.371466\pi\)
0.392918 + 0.919574i \(0.371466\pi\)
\(354\) 0 0
\(355\) 7221.16 1.07960
\(356\) 2064.66 0.307379
\(357\) 0 0
\(358\) 1995.96 0.294664
\(359\) −6313.94 −0.928237 −0.464119 0.885773i \(-0.653629\pi\)
−0.464119 + 0.885773i \(0.653629\pi\)
\(360\) 0 0
\(361\) 15031.1 2.19144
\(362\) −4977.67 −0.722709
\(363\) 0 0
\(364\) 0 0
\(365\) 1038.49 0.148923
\(366\) 0 0
\(367\) −1375.97 −0.195708 −0.0978542 0.995201i \(-0.531198\pi\)
−0.0978542 + 0.995201i \(0.531198\pi\)
\(368\) −7210.70 −1.02142
\(369\) 0 0
\(370\) −1759.42 −0.247211
\(371\) 0 0
\(372\) 0 0
\(373\) 3951.97 0.548593 0.274296 0.961645i \(-0.411555\pi\)
0.274296 + 0.961645i \(0.411555\pi\)
\(374\) 18.4548 0.00255154
\(375\) 0 0
\(376\) −6489.04 −0.890018
\(377\) 17857.6 2.43956
\(378\) 0 0
\(379\) 11050.5 1.49769 0.748845 0.662745i \(-0.230609\pi\)
0.748845 + 0.662745i \(0.230609\pi\)
\(380\) 3813.51 0.514812
\(381\) 0 0
\(382\) −7790.27 −1.04342
\(383\) 803.663 0.107220 0.0536100 0.998562i \(-0.482927\pi\)
0.0536100 + 0.998562i \(0.482927\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 133.715 0.0176319
\(387\) 0 0
\(388\) −2316.60 −0.303112
\(389\) 3215.21 0.419068 0.209534 0.977801i \(-0.432805\pi\)
0.209534 + 0.977801i \(0.432805\pi\)
\(390\) 0 0
\(391\) 14356.7 1.85690
\(392\) 0 0
\(393\) 0 0
\(394\) 5428.35 0.694102
\(395\) 5522.87 0.703508
\(396\) 0 0
\(397\) 12381.6 1.56528 0.782639 0.622476i \(-0.213873\pi\)
0.782639 + 0.622476i \(0.213873\pi\)
\(398\) −9400.96 −1.18399
\(399\) 0 0
\(400\) −4101.07 −0.512634
\(401\) −10000.8 −1.24543 −0.622715 0.782449i \(-0.713970\pi\)
−0.622715 + 0.782449i \(0.713970\pi\)
\(402\) 0 0
\(403\) 23585.0 2.91526
\(404\) 3002.84 0.369794
\(405\) 0 0
\(406\) 0 0
\(407\) −3.83797 −0.000467423 0
\(408\) 0 0
\(409\) −13897.4 −1.68015 −0.840074 0.542472i \(-0.817488\pi\)
−0.840074 + 0.542472i \(0.817488\pi\)
\(410\) −1907.58 −0.229778
\(411\) 0 0
\(412\) 1087.31 0.130020
\(413\) 0 0
\(414\) 0 0
\(415\) −7100.20 −0.839843
\(416\) −6814.77 −0.803177
\(417\) 0 0
\(418\) −29.3406 −0.00343324
\(419\) −4850.62 −0.565557 −0.282778 0.959185i \(-0.591256\pi\)
−0.282778 + 0.959185i \(0.591256\pi\)
\(420\) 0 0
\(421\) −498.467 −0.0577050 −0.0288525 0.999584i \(-0.509185\pi\)
−0.0288525 + 0.999584i \(0.509185\pi\)
\(422\) 1760.18 0.203043
\(423\) 0 0
\(424\) 288.283 0.0330194
\(425\) 8165.34 0.931946
\(426\) 0 0
\(427\) 0 0
\(428\) 2991.70 0.337872
\(429\) 0 0
\(430\) −1749.73 −0.196231
\(431\) −15515.7 −1.73403 −0.867013 0.498286i \(-0.833963\pi\)
−0.867013 + 0.498286i \(0.833963\pi\)
\(432\) 0 0
\(433\) −2259.28 −0.250748 −0.125374 0.992110i \(-0.540013\pi\)
−0.125374 + 0.992110i \(0.540013\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1542.34 −0.169415
\(437\) −22825.1 −2.49856
\(438\) 0 0
\(439\) −4732.09 −0.514465 −0.257233 0.966349i \(-0.582811\pi\)
−0.257233 + 0.966349i \(0.582811\pi\)
\(440\) −28.2514 −0.00306098
\(441\) 0 0
\(442\) −20198.8 −2.17366
\(443\) 12706.8 1.36279 0.681396 0.731915i \(-0.261373\pi\)
0.681396 + 0.731915i \(0.261373\pi\)
\(444\) 0 0
\(445\) −17041.3 −1.81536
\(446\) −6802.72 −0.722238
\(447\) 0 0
\(448\) 0 0
\(449\) −9176.08 −0.964468 −0.482234 0.876042i \(-0.660174\pi\)
−0.482234 + 0.876042i \(0.660174\pi\)
\(450\) 0 0
\(451\) −4.16116 −0.000434460 0
\(452\) 247.061 0.0257097
\(453\) 0 0
\(454\) −1541.57 −0.159360
\(455\) 0 0
\(456\) 0 0
\(457\) −3666.07 −0.375255 −0.187627 0.982240i \(-0.560080\pi\)
−0.187627 + 0.982240i \(0.560080\pi\)
\(458\) −11380.2 −1.16105
\(459\) 0 0
\(460\) −3976.40 −0.403044
\(461\) 6409.12 0.647511 0.323756 0.946141i \(-0.395054\pi\)
0.323756 + 0.946141i \(0.395054\pi\)
\(462\) 0 0
\(463\) −13191.9 −1.32414 −0.662071 0.749441i \(-0.730322\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(464\) −9600.52 −0.960545
\(465\) 0 0
\(466\) −7054.27 −0.701250
\(467\) −6765.27 −0.670363 −0.335181 0.942154i \(-0.608798\pi\)
−0.335181 + 0.942154i \(0.608798\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 9690.35 0.951027
\(471\) 0 0
\(472\) −13232.8 −1.29045
\(473\) −3.81682 −0.000371031 0
\(474\) 0 0
\(475\) −12981.7 −1.25399
\(476\) 0 0
\(477\) 0 0
\(478\) 14502.7 1.38774
\(479\) 11347.2 1.08239 0.541195 0.840897i \(-0.317972\pi\)
0.541195 + 0.840897i \(0.317972\pi\)
\(480\) 0 0
\(481\) 4200.66 0.398198
\(482\) −11799.0 −1.11500
\(483\) 0 0
\(484\) 2352.07 0.220893
\(485\) 19120.7 1.79016
\(486\) 0 0
\(487\) 4958.91 0.461416 0.230708 0.973023i \(-0.425896\pi\)
0.230708 + 0.973023i \(0.425896\pi\)
\(488\) 2058.36 0.190938
\(489\) 0 0
\(490\) 0 0
\(491\) −18475.0 −1.69810 −0.849048 0.528316i \(-0.822823\pi\)
−0.849048 + 0.528316i \(0.822823\pi\)
\(492\) 0 0
\(493\) 19114.9 1.74623
\(494\) 32113.2 2.92478
\(495\) 0 0
\(496\) −12679.6 −1.14785
\(497\) 0 0
\(498\) 0 0
\(499\) −2702.96 −0.242487 −0.121243 0.992623i \(-0.538688\pi\)
−0.121243 + 0.992623i \(0.538688\pi\)
\(500\) 960.322 0.0858938
\(501\) 0 0
\(502\) −7541.12 −0.670471
\(503\) −15684.2 −1.39031 −0.695154 0.718861i \(-0.744664\pi\)
−0.695154 + 0.718861i \(0.744664\pi\)
\(504\) 0 0
\(505\) −24784.8 −2.18398
\(506\) 30.5938 0.00268787
\(507\) 0 0
\(508\) −393.147 −0.0343367
\(509\) −10016.1 −0.872214 −0.436107 0.899895i \(-0.643643\pi\)
−0.436107 + 0.899895i \(0.643643\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 12781.5 1.10326
\(513\) 0 0
\(514\) 10657.1 0.914523
\(515\) −8974.46 −0.767887
\(516\) 0 0
\(517\) 21.1383 0.00179819
\(518\) 0 0
\(519\) 0 0
\(520\) 30921.1 2.60765
\(521\) 9230.68 0.776206 0.388103 0.921616i \(-0.373130\pi\)
0.388103 + 0.921616i \(0.373130\pi\)
\(522\) 0 0
\(523\) −7760.93 −0.648875 −0.324438 0.945907i \(-0.605175\pi\)
−0.324438 + 0.945907i \(0.605175\pi\)
\(524\) −3135.99 −0.261443
\(525\) 0 0
\(526\) −2490.38 −0.206436
\(527\) 25245.5 2.08674
\(528\) 0 0
\(529\) 11633.0 0.956115
\(530\) −430.504 −0.0352829
\(531\) 0 0
\(532\) 0 0
\(533\) 4554.38 0.370117
\(534\) 0 0
\(535\) −24692.8 −1.99545
\(536\) −1245.03 −0.100330
\(537\) 0 0
\(538\) −12397.3 −0.993467
\(539\) 0 0
\(540\) 0 0
\(541\) −4005.35 −0.318306 −0.159153 0.987254i \(-0.550876\pi\)
−0.159153 + 0.987254i \(0.550876\pi\)
\(542\) 5976.65 0.473651
\(543\) 0 0
\(544\) −7294.58 −0.574913
\(545\) 12730.2 1.00055
\(546\) 0 0
\(547\) −6489.15 −0.507232 −0.253616 0.967305i \(-0.581620\pi\)
−0.253616 + 0.967305i \(0.581620\pi\)
\(548\) 2775.42 0.216351
\(549\) 0 0
\(550\) 17.4002 0.00134899
\(551\) −30390.0 −2.34965
\(552\) 0 0
\(553\) 0 0
\(554\) 4193.59 0.321604
\(555\) 0 0
\(556\) 192.409 0.0146762
\(557\) −23695.8 −1.80256 −0.901279 0.433240i \(-0.857370\pi\)
−0.901279 + 0.433240i \(0.857370\pi\)
\(558\) 0 0
\(559\) 4177.51 0.316082
\(560\) 0 0
\(561\) 0 0
\(562\) −17823.2 −1.33777
\(563\) 13621.8 1.01970 0.509848 0.860265i \(-0.329702\pi\)
0.509848 + 0.860265i \(0.329702\pi\)
\(564\) 0 0
\(565\) −2039.19 −0.151840
\(566\) −10992.7 −0.816359
\(567\) 0 0
\(568\) 12072.3 0.891803
\(569\) −4843.75 −0.356873 −0.178436 0.983951i \(-0.557104\pi\)
−0.178436 + 0.983951i \(0.557104\pi\)
\(570\) 0 0
\(571\) 22696.4 1.66342 0.831710 0.555210i \(-0.187362\pi\)
0.831710 + 0.555210i \(0.187362\pi\)
\(572\) 12.2037 0.000892067 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13536.2 0.981739
\(576\) 0 0
\(577\) −20143.2 −1.45333 −0.726665 0.686992i \(-0.758931\pi\)
−0.726665 + 0.686992i \(0.758931\pi\)
\(578\) −9355.28 −0.673232
\(579\) 0 0
\(580\) −5294.28 −0.379022
\(581\) 0 0
\(582\) 0 0
\(583\) −0.939093 −6.67123e−5 0
\(584\) 1736.14 0.123017
\(585\) 0 0
\(586\) −8496.10 −0.598926
\(587\) 1974.15 0.138811 0.0694055 0.997589i \(-0.477890\pi\)
0.0694055 + 0.997589i \(0.477890\pi\)
\(588\) 0 0
\(589\) −40136.8 −2.80782
\(590\) 19761.1 1.37890
\(591\) 0 0
\(592\) −2258.34 −0.156786
\(593\) −23558.1 −1.63139 −0.815697 0.578479i \(-0.803647\pi\)
−0.815697 + 0.578479i \(0.803647\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5257.79 −0.361355
\(597\) 0 0
\(598\) −33484.9 −2.28980
\(599\) −7564.46 −0.515986 −0.257993 0.966147i \(-0.583061\pi\)
−0.257993 + 0.966147i \(0.583061\pi\)
\(600\) 0 0
\(601\) 16361.7 1.11050 0.555248 0.831685i \(-0.312623\pi\)
0.555248 + 0.831685i \(0.312623\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 5690.56 0.383353
\(605\) −19413.5 −1.30458
\(606\) 0 0
\(607\) 27722.5 1.85374 0.926870 0.375383i \(-0.122489\pi\)
0.926870 + 0.375383i \(0.122489\pi\)
\(608\) 11597.3 0.773577
\(609\) 0 0
\(610\) −3073.83 −0.204026
\(611\) −23135.9 −1.53188
\(612\) 0 0
\(613\) 5301.97 0.349338 0.174669 0.984627i \(-0.444114\pi\)
0.174669 + 0.984627i \(0.444114\pi\)
\(614\) 1600.68 0.105209
\(615\) 0 0
\(616\) 0 0
\(617\) 4998.08 0.326118 0.163059 0.986616i \(-0.447864\pi\)
0.163059 + 0.986616i \(0.447864\pi\)
\(618\) 0 0
\(619\) 4922.19 0.319612 0.159806 0.987148i \(-0.448913\pi\)
0.159806 + 0.987148i \(0.448913\pi\)
\(620\) −6992.29 −0.452931
\(621\) 0 0
\(622\) 1543.55 0.0995030
\(623\) 0 0
\(624\) 0 0
\(625\) −18894.1 −1.20922
\(626\) 11421.6 0.729233
\(627\) 0 0
\(628\) 2899.23 0.184223
\(629\) 4496.41 0.285030
\(630\) 0 0
\(631\) 14950.4 0.943213 0.471607 0.881809i \(-0.343674\pi\)
0.471607 + 0.881809i \(0.343674\pi\)
\(632\) 9233.13 0.581130
\(633\) 0 0
\(634\) 10146.1 0.635574
\(635\) 3244.95 0.202790
\(636\) 0 0
\(637\) 0 0
\(638\) 40.7334 0.00252767
\(639\) 0 0
\(640\) −11595.6 −0.716180
\(641\) 5471.53 0.337149 0.168575 0.985689i \(-0.446084\pi\)
0.168575 + 0.985689i \(0.446084\pi\)
\(642\) 0 0
\(643\) −4008.65 −0.245857 −0.122928 0.992416i \(-0.539229\pi\)
−0.122928 + 0.992416i \(0.539229\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 34374.2 2.09355
\(647\) −5301.48 −0.322137 −0.161069 0.986943i \(-0.551494\pi\)
−0.161069 + 0.986943i \(0.551494\pi\)
\(648\) 0 0
\(649\) 43.1065 0.00260721
\(650\) −19044.5 −1.14921
\(651\) 0 0
\(652\) 3774.01 0.226689
\(653\) 15639.9 0.937271 0.468635 0.883392i \(-0.344746\pi\)
0.468635 + 0.883392i \(0.344746\pi\)
\(654\) 0 0
\(655\) 25883.8 1.54407
\(656\) −2448.51 −0.145729
\(657\) 0 0
\(658\) 0 0
\(659\) 1496.34 0.0884507 0.0442254 0.999022i \(-0.485918\pi\)
0.0442254 + 0.999022i \(0.485918\pi\)
\(660\) 0 0
\(661\) −18248.7 −1.07382 −0.536908 0.843641i \(-0.680408\pi\)
−0.536908 + 0.843641i \(0.680408\pi\)
\(662\) −25689.6 −1.50824
\(663\) 0 0
\(664\) −11870.1 −0.693749
\(665\) 0 0
\(666\) 0 0
\(667\) 31688.0 1.83953
\(668\) −287.350 −0.0166436
\(669\) 0 0
\(670\) 1859.25 0.107208
\(671\) −6.70519 −0.000385769 0
\(672\) 0 0
\(673\) −5442.26 −0.311715 −0.155857 0.987780i \(-0.549814\pi\)
−0.155857 + 0.987780i \(0.549814\pi\)
\(674\) −15746.4 −0.899894
\(675\) 0 0
\(676\) −9474.50 −0.539059
\(677\) 1298.38 0.0737085 0.0368542 0.999321i \(-0.488266\pi\)
0.0368542 + 0.999321i \(0.488266\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 33098.1 1.86655
\(681\) 0 0
\(682\) 53.7976 0.00302055
\(683\) 19142.2 1.07241 0.536204 0.844088i \(-0.319858\pi\)
0.536204 + 0.844088i \(0.319858\pi\)
\(684\) 0 0
\(685\) −22907.8 −1.27775
\(686\) 0 0
\(687\) 0 0
\(688\) −2245.89 −0.124453
\(689\) 1027.84 0.0568323
\(690\) 0 0
\(691\) −789.395 −0.0434588 −0.0217294 0.999764i \(-0.506917\pi\)
−0.0217294 + 0.999764i \(0.506917\pi\)
\(692\) −7491.12 −0.411517
\(693\) 0 0
\(694\) −414.024 −0.0226457
\(695\) −1588.10 −0.0866765
\(696\) 0 0
\(697\) 4875.04 0.264929
\(698\) 21111.9 1.14484
\(699\) 0 0
\(700\) 0 0
\(701\) 25438.5 1.37061 0.685306 0.728256i \(-0.259669\pi\)
0.685306 + 0.728256i \(0.259669\pi\)
\(702\) 0 0
\(703\) −7148.66 −0.383523
\(704\) −45.2462 −0.00242227
\(705\) 0 0
\(706\) −13011.8 −0.693634
\(707\) 0 0
\(708\) 0 0
\(709\) −10178.1 −0.539137 −0.269568 0.962981i \(-0.586881\pi\)
−0.269568 + 0.962981i \(0.586881\pi\)
\(710\) −18028.1 −0.952934
\(711\) 0 0
\(712\) −28489.6 −1.49957
\(713\) 41851.2 2.19823
\(714\) 0 0
\(715\) −100.727 −0.00526848
\(716\) 1412.80 0.0737415
\(717\) 0 0
\(718\) 15763.2 0.819327
\(719\) 32744.0 1.69839 0.849196 0.528077i \(-0.177087\pi\)
0.849196 + 0.528077i \(0.177087\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −37526.1 −1.93432
\(723\) 0 0
\(724\) −3523.36 −0.180863
\(725\) 18022.5 0.923226
\(726\) 0 0
\(727\) −32742.7 −1.67037 −0.835185 0.549969i \(-0.814640\pi\)
−0.835185 + 0.549969i \(0.814640\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2592.65 −0.131450
\(731\) 4471.63 0.226251
\(732\) 0 0
\(733\) 19002.5 0.957536 0.478768 0.877942i \(-0.341084\pi\)
0.478768 + 0.877942i \(0.341084\pi\)
\(734\) 3435.20 0.172746
\(735\) 0 0
\(736\) −12092.7 −0.605629
\(737\) 4.05574 0.000202707 0
\(738\) 0 0
\(739\) −9502.74 −0.473023 −0.236511 0.971629i \(-0.576004\pi\)
−0.236511 + 0.971629i \(0.576004\pi\)
\(740\) −1245.38 −0.0618662
\(741\) 0 0
\(742\) 0 0
\(743\) −4885.65 −0.241234 −0.120617 0.992699i \(-0.538487\pi\)
−0.120617 + 0.992699i \(0.538487\pi\)
\(744\) 0 0
\(745\) 43396.7 2.13414
\(746\) −9866.35 −0.484226
\(747\) 0 0
\(748\) 13.0629 0.000638540 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20093.1 −0.976311 −0.488155 0.872757i \(-0.662330\pi\)
−0.488155 + 0.872757i \(0.662330\pi\)
\(752\) 12438.2 0.603158
\(753\) 0 0
\(754\) −44582.7 −2.15332
\(755\) −46968.6 −2.26406
\(756\) 0 0
\(757\) −38123.9 −1.83043 −0.915216 0.402964i \(-0.867980\pi\)
−0.915216 + 0.402964i \(0.867980\pi\)
\(758\) −27588.2 −1.32197
\(759\) 0 0
\(760\) −52621.3 −2.51155
\(761\) −6800.32 −0.323931 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −5514.21 −0.261122
\(765\) 0 0
\(766\) −2006.40 −0.0946399
\(767\) −47180.0 −2.22108
\(768\) 0 0
\(769\) 27880.3 1.30740 0.653699 0.756755i \(-0.273216\pi\)
0.653699 + 0.756755i \(0.273216\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 94.6477 0.00441249
\(773\) −40273.3 −1.87391 −0.936954 0.349452i \(-0.886368\pi\)
−0.936954 + 0.349452i \(0.886368\pi\)
\(774\) 0 0
\(775\) 23802.8 1.10325
\(776\) 31966.0 1.47875
\(777\) 0 0
\(778\) −8026.98 −0.369899
\(779\) −7750.63 −0.356476
\(780\) 0 0
\(781\) −39.3261 −0.00180179
\(782\) −35842.4 −1.63903
\(783\) 0 0
\(784\) 0 0
\(785\) −23929.6 −1.08801
\(786\) 0 0
\(787\) 13454.8 0.609419 0.304710 0.952445i \(-0.401441\pi\)
0.304710 + 0.952445i \(0.401441\pi\)
\(788\) 3842.36 0.173704
\(789\) 0 0
\(790\) −13788.2 −0.620965
\(791\) 0 0
\(792\) 0 0
\(793\) 7338.83 0.328637
\(794\) −30911.5 −1.38162
\(795\) 0 0
\(796\) −6654.30 −0.296301
\(797\) −7642.86 −0.339679 −0.169839 0.985472i \(-0.554325\pi\)
−0.169839 + 0.985472i \(0.554325\pi\)
\(798\) 0 0
\(799\) −24764.8 −1.09652
\(800\) −6877.71 −0.303955
\(801\) 0 0
\(802\) 24967.7 1.09930
\(803\) −5.65555 −0.000248543 0
\(804\) 0 0
\(805\) 0 0
\(806\) −58881.5 −2.57321
\(807\) 0 0
\(808\) −41435.2 −1.80407
\(809\) 18212.2 0.791480 0.395740 0.918363i \(-0.370488\pi\)
0.395740 + 0.918363i \(0.370488\pi\)
\(810\) 0 0
\(811\) −29294.1 −1.26838 −0.634188 0.773179i \(-0.718666\pi\)
−0.634188 + 0.773179i \(0.718666\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 9.58175 0.000412580 0
\(815\) −31149.8 −1.33881
\(816\) 0 0
\(817\) −7109.26 −0.304433
\(818\) 34695.7 1.48302
\(819\) 0 0
\(820\) −1350.25 −0.0575033
\(821\) −25827.3 −1.09790 −0.548951 0.835855i \(-0.684973\pi\)
−0.548951 + 0.835855i \(0.684973\pi\)
\(822\) 0 0
\(823\) −19831.0 −0.839932 −0.419966 0.907540i \(-0.637958\pi\)
−0.419966 + 0.907540i \(0.637958\pi\)
\(824\) −15003.5 −0.634310
\(825\) 0 0
\(826\) 0 0
\(827\) 3488.51 0.146684 0.0733418 0.997307i \(-0.476634\pi\)
0.0733418 + 0.997307i \(0.476634\pi\)
\(828\) 0 0
\(829\) 19751.2 0.827486 0.413743 0.910394i \(-0.364221\pi\)
0.413743 + 0.910394i \(0.364221\pi\)
\(830\) 17726.1 0.741304
\(831\) 0 0
\(832\) 49521.9 2.06354
\(833\) 0 0
\(834\) 0 0
\(835\) 2371.72 0.0982957
\(836\) −20.7682 −0.000859190 0
\(837\) 0 0
\(838\) 12109.9 0.499200
\(839\) −11436.6 −0.470604 −0.235302 0.971922i \(-0.575608\pi\)
−0.235302 + 0.971922i \(0.575608\pi\)
\(840\) 0 0
\(841\) 17801.3 0.729890
\(842\) 1244.46 0.0509345
\(843\) 0 0
\(844\) 1245.91 0.0508128
\(845\) 78200.5 3.18364
\(846\) 0 0
\(847\) 0 0
\(848\) −552.581 −0.0223770
\(849\) 0 0
\(850\) −20385.3 −0.822601
\(851\) 7454.00 0.300258
\(852\) 0 0
\(853\) 17685.8 0.709907 0.354953 0.934884i \(-0.384497\pi\)
0.354953 + 0.934884i \(0.384497\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −41281.5 −1.64833
\(857\) 18601.9 0.741458 0.370729 0.928741i \(-0.379108\pi\)
0.370729 + 0.928741i \(0.379108\pi\)
\(858\) 0 0
\(859\) 20873.8 0.829109 0.414554 0.910025i \(-0.363937\pi\)
0.414554 + 0.910025i \(0.363937\pi\)
\(860\) −1238.52 −0.0491082
\(861\) 0 0
\(862\) 38736.0 1.53057
\(863\) 3891.74 0.153507 0.0767533 0.997050i \(-0.475545\pi\)
0.0767533 + 0.997050i \(0.475545\pi\)
\(864\) 0 0
\(865\) 61830.1 2.43039
\(866\) 5640.44 0.221328
\(867\) 0 0
\(868\) 0 0
\(869\) −30.0773 −0.00117411
\(870\) 0 0
\(871\) −4439.00 −0.172686
\(872\) 21282.3 0.826501
\(873\) 0 0
\(874\) 56984.4 2.20541
\(875\) 0 0
\(876\) 0 0
\(877\) 5848.66 0.225194 0.112597 0.993641i \(-0.464083\pi\)
0.112597 + 0.993641i \(0.464083\pi\)
\(878\) 11814.0 0.454103
\(879\) 0 0
\(880\) 54.1522 0.00207440
\(881\) −48386.3 −1.85037 −0.925185 0.379517i \(-0.876090\pi\)
−0.925185 + 0.379517i \(0.876090\pi\)
\(882\) 0 0
\(883\) 21834.4 0.832149 0.416075 0.909331i \(-0.363406\pi\)
0.416075 + 0.909331i \(0.363406\pi\)
\(884\) −14297.4 −0.543973
\(885\) 0 0
\(886\) −31723.3 −1.20290
\(887\) 30545.0 1.15626 0.578129 0.815945i \(-0.303783\pi\)
0.578129 + 0.815945i \(0.303783\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 42544.7 1.60236
\(891\) 0 0
\(892\) −4815.19 −0.180745
\(893\) 39372.5 1.47542
\(894\) 0 0
\(895\) −11661.0 −0.435512
\(896\) 0 0
\(897\) 0 0
\(898\) 22908.7 0.851307
\(899\) 55721.8 2.06721
\(900\) 0 0
\(901\) 1100.20 0.0406804
\(902\) 10.3886 0.000383484 0
\(903\) 0 0
\(904\) −3409.12 −0.125427
\(905\) 29081.0 1.06816
\(906\) 0 0
\(907\) 31375.7 1.14864 0.574318 0.818632i \(-0.305267\pi\)
0.574318 + 0.818632i \(0.305267\pi\)
\(908\) −1091.18 −0.0398810
\(909\) 0 0
\(910\) 0 0
\(911\) −88.9027 −0.00323324 −0.00161662 0.999999i \(-0.500515\pi\)
−0.00161662 + 0.999999i \(0.500515\pi\)
\(912\) 0 0
\(913\) 38.6674 0.00140165
\(914\) 9152.59 0.331226
\(915\) 0 0
\(916\) −8055.28 −0.290561
\(917\) 0 0
\(918\) 0 0
\(919\) −22290.5 −0.800104 −0.400052 0.916492i \(-0.631008\pi\)
−0.400052 + 0.916492i \(0.631008\pi\)
\(920\) 54869.0 1.96628
\(921\) 0 0
\(922\) −16000.8 −0.571539
\(923\) 43042.4 1.53495
\(924\) 0 0
\(925\) 4239.45 0.150694
\(926\) 32934.4 1.16878
\(927\) 0 0
\(928\) −16100.6 −0.569533
\(929\) −48888.8 −1.72658 −0.863289 0.504710i \(-0.831599\pi\)
−0.863289 + 0.504710i \(0.831599\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −4993.24 −0.175492
\(933\) 0 0
\(934\) 16890.0 0.591709
\(935\) −107.819 −0.00377117
\(936\) 0 0
\(937\) 23882.4 0.832662 0.416331 0.909213i \(-0.363316\pi\)
0.416331 + 0.909213i \(0.363316\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 6859.15 0.238001
\(941\) 1236.76 0.0428451 0.0214226 0.999771i \(-0.493180\pi\)
0.0214226 + 0.999771i \(0.493180\pi\)
\(942\) 0 0
\(943\) 8081.69 0.279084
\(944\) 25364.7 0.874524
\(945\) 0 0
\(946\) 9.52895 0.000327498 0
\(947\) −26627.8 −0.913712 −0.456856 0.889541i \(-0.651025\pi\)
−0.456856 + 0.889541i \(0.651025\pi\)
\(948\) 0 0
\(949\) 6190.00 0.211734
\(950\) 32409.8 1.10685
\(951\) 0 0
\(952\) 0 0
\(953\) −10274.3 −0.349232 −0.174616 0.984637i \(-0.555868\pi\)
−0.174616 + 0.984637i \(0.555868\pi\)
\(954\) 0 0
\(955\) 45513.1 1.54217
\(956\) 10265.5 0.347290
\(957\) 0 0
\(958\) −28329.0 −0.955393
\(959\) 0 0
\(960\) 0 0
\(961\) 43802.1 1.47031
\(962\) −10487.2 −0.351478
\(963\) 0 0
\(964\) −8351.73 −0.279036
\(965\) −781.202 −0.0260599
\(966\) 0 0
\(967\) 43332.4 1.44103 0.720515 0.693440i \(-0.243906\pi\)
0.720515 + 0.693440i \(0.243906\pi\)
\(968\) −32455.4 −1.07764
\(969\) 0 0
\(970\) −47736.2 −1.58012
\(971\) 45019.6 1.48790 0.743949 0.668237i \(-0.232951\pi\)
0.743949 + 0.668237i \(0.232951\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −12380.3 −0.407278
\(975\) 0 0
\(976\) −3945.47 −0.129397
\(977\) 45287.6 1.48299 0.741494 0.670960i \(-0.234118\pi\)
0.741494 + 0.670960i \(0.234118\pi\)
\(978\) 0 0
\(979\) 92.8061 0.00302972
\(980\) 0 0
\(981\) 0 0
\(982\) 46124.1 1.49886
\(983\) 42418.0 1.37632 0.688161 0.725558i \(-0.258418\pi\)
0.688161 + 0.725558i \(0.258418\pi\)
\(984\) 0 0
\(985\) −31714.0 −1.02588
\(986\) −47721.6 −1.54134
\(987\) 0 0
\(988\) 22730.8 0.731945
\(989\) 7412.93 0.238339
\(990\) 0 0
\(991\) −13307.1 −0.426552 −0.213276 0.976992i \(-0.568413\pi\)
−0.213276 + 0.976992i \(0.568413\pi\)
\(992\) −21264.4 −0.680591
\(993\) 0 0
\(994\) 0 0
\(995\) 54923.2 1.74993
\(996\) 0 0
\(997\) 58374.0 1.85429 0.927143 0.374707i \(-0.122257\pi\)
0.927143 + 0.374707i \(0.122257\pi\)
\(998\) 6748.12 0.214036
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bm.1.3 yes 8
3.2 odd 2 inner 1323.4.a.bm.1.6 yes 8
7.6 odd 2 1323.4.a.bl.1.3 8
21.20 even 2 1323.4.a.bl.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bl.1.3 8 7.6 odd 2
1323.4.a.bl.1.6 yes 8 21.20 even 2
1323.4.a.bm.1.3 yes 8 1.1 even 1 trivial
1323.4.a.bm.1.6 yes 8 3.2 odd 2 inner