Properties

Label 1323.4.a.bm.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} + 887x^{4} - 4176x^{2} + 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.67291\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.67291 q^{2} +13.8361 q^{4} -15.5408 q^{5} -27.2713 q^{8} +O(q^{10})\) \(q-4.67291 q^{2} +13.8361 q^{4} -15.5408 q^{5} -27.2713 q^{8} +72.6208 q^{10} -63.4897 q^{11} +53.1931 q^{13} +16.7479 q^{16} -68.4660 q^{17} -86.0311 q^{19} -215.024 q^{20} +296.682 q^{22} -46.9229 q^{23} +116.517 q^{25} -248.567 q^{26} +169.768 q^{29} -141.842 q^{31} +139.909 q^{32} +319.935 q^{34} -411.923 q^{37} +402.015 q^{38} +423.819 q^{40} -49.0000 q^{41} -356.204 q^{43} -878.447 q^{44} +219.266 q^{46} -387.186 q^{47} -544.475 q^{50} +735.983 q^{52} +184.468 q^{53} +986.683 q^{55} -793.308 q^{58} -627.676 q^{59} +821.903 q^{61} +662.816 q^{62} -787.766 q^{64} -826.666 q^{65} -95.9610 q^{67} -947.298 q^{68} -733.093 q^{71} -750.676 q^{73} +1924.88 q^{74} -1190.33 q^{76} +23.5747 q^{79} -260.276 q^{80} +228.972 q^{82} -592.109 q^{83} +1064.02 q^{85} +1664.51 q^{86} +1731.45 q^{88} +864.292 q^{89} -649.227 q^{92} +1809.29 q^{94} +1337.00 q^{95} +614.268 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 44 q^{4} + 132 q^{10} + 336 q^{13} + 204 q^{16} - 288 q^{19} + 484 q^{22} + 152 q^{25} + 120 q^{31} + 1008 q^{34} + 592 q^{37} + 1620 q^{40} - 1872 q^{43} - 1644 q^{46} + 2400 q^{52} + 1344 q^{55} - 1200 q^{58} + 2400 q^{61} - 1388 q^{64} + 1824 q^{73} + 2844 q^{76} + 2368 q^{79} + 2436 q^{82} + 3512 q^{85} + 3780 q^{88} + 4368 q^{94} + 5712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.67291 −1.65212 −0.826061 0.563581i \(-0.809423\pi\)
−0.826061 + 0.563581i \(0.809423\pi\)
\(3\) 0 0
\(4\) 13.8361 1.72951
\(5\) −15.5408 −1.39001 −0.695007 0.719003i \(-0.744599\pi\)
−0.695007 + 0.719003i \(0.744599\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −27.2713 −1.20523
\(9\) 0 0
\(10\) 72.6208 2.29647
\(11\) −63.4897 −1.74026 −0.870131 0.492821i \(-0.835966\pi\)
−0.870131 + 0.492821i \(0.835966\pi\)
\(12\) 0 0
\(13\) 53.1931 1.13486 0.567428 0.823423i \(-0.307939\pi\)
0.567428 + 0.823423i \(0.307939\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.7479 0.261686
\(17\) −68.4660 −0.976790 −0.488395 0.872623i \(-0.662418\pi\)
−0.488395 + 0.872623i \(0.662418\pi\)
\(18\) 0 0
\(19\) −86.0311 −1.03878 −0.519392 0.854536i \(-0.673842\pi\)
−0.519392 + 0.854536i \(0.673842\pi\)
\(20\) −215.024 −2.40404
\(21\) 0 0
\(22\) 296.682 2.87512
\(23\) −46.9229 −0.425395 −0.212698 0.977118i \(-0.568225\pi\)
−0.212698 + 0.977118i \(0.568225\pi\)
\(24\) 0 0
\(25\) 116.517 0.932140
\(26\) −248.567 −1.87492
\(27\) 0 0
\(28\) 0 0
\(29\) 169.768 1.08707 0.543535 0.839386i \(-0.317085\pi\)
0.543535 + 0.839386i \(0.317085\pi\)
\(30\) 0 0
\(31\) −141.842 −0.821794 −0.410897 0.911682i \(-0.634784\pi\)
−0.410897 + 0.911682i \(0.634784\pi\)
\(32\) 139.909 0.772897
\(33\) 0 0
\(34\) 319.935 1.61378
\(35\) 0 0
\(36\) 0 0
\(37\) −411.923 −1.83026 −0.915132 0.403155i \(-0.867914\pi\)
−0.915132 + 0.403155i \(0.867914\pi\)
\(38\) 402.015 1.71620
\(39\) 0 0
\(40\) 423.819 1.67529
\(41\) −49.0000 −0.186647 −0.0933234 0.995636i \(-0.529749\pi\)
−0.0933234 + 0.995636i \(0.529749\pi\)
\(42\) 0 0
\(43\) −356.204 −1.26327 −0.631636 0.775265i \(-0.717616\pi\)
−0.631636 + 0.775265i \(0.717616\pi\)
\(44\) −878.447 −3.00979
\(45\) 0 0
\(46\) 219.266 0.702805
\(47\) −387.186 −1.20164 −0.600819 0.799385i \(-0.705159\pi\)
−0.600819 + 0.799385i \(0.705159\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −544.475 −1.54001
\(51\) 0 0
\(52\) 735.983 1.96274
\(53\) 184.468 0.478088 0.239044 0.971009i \(-0.423166\pi\)
0.239044 + 0.971009i \(0.423166\pi\)
\(54\) 0 0
\(55\) 986.683 2.41899
\(56\) 0 0
\(57\) 0 0
\(58\) −793.308 −1.79597
\(59\) −627.676 −1.38503 −0.692513 0.721406i \(-0.743496\pi\)
−0.692513 + 0.721406i \(0.743496\pi\)
\(60\) 0 0
\(61\) 821.903 1.72515 0.862573 0.505933i \(-0.168852\pi\)
0.862573 + 0.505933i \(0.168852\pi\)
\(62\) 662.816 1.35770
\(63\) 0 0
\(64\) −787.766 −1.53860
\(65\) −826.666 −1.57747
\(66\) 0 0
\(67\) −95.9610 −0.174978 −0.0874888 0.996166i \(-0.527884\pi\)
−0.0874888 + 0.996166i \(0.527884\pi\)
\(68\) −947.298 −1.68936
\(69\) 0 0
\(70\) 0 0
\(71\) −733.093 −1.22538 −0.612691 0.790322i \(-0.709913\pi\)
−0.612691 + 0.790322i \(0.709913\pi\)
\(72\) 0 0
\(73\) −750.676 −1.20356 −0.601781 0.798661i \(-0.705542\pi\)
−0.601781 + 0.798661i \(0.705542\pi\)
\(74\) 1924.88 3.02382
\(75\) 0 0
\(76\) −1190.33 −1.79658
\(77\) 0 0
\(78\) 0 0
\(79\) 23.5747 0.0335742 0.0167871 0.999859i \(-0.494656\pi\)
0.0167871 + 0.999859i \(0.494656\pi\)
\(80\) −260.276 −0.363747
\(81\) 0 0
\(82\) 228.972 0.308363
\(83\) −592.109 −0.783042 −0.391521 0.920169i \(-0.628051\pi\)
−0.391521 + 0.920169i \(0.628051\pi\)
\(84\) 0 0
\(85\) 1064.02 1.35775
\(86\) 1664.51 2.08708
\(87\) 0 0
\(88\) 1731.45 2.09742
\(89\) 864.292 1.02938 0.514690 0.857376i \(-0.327907\pi\)
0.514690 + 0.857376i \(0.327907\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −649.227 −0.735724
\(93\) 0 0
\(94\) 1809.29 1.98525
\(95\) 1337.00 1.44392
\(96\) 0 0
\(97\) 614.268 0.642984 0.321492 0.946912i \(-0.395816\pi\)
0.321492 + 0.946912i \(0.395816\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1612.14 1.61214
\(101\) −541.906 −0.533878 −0.266939 0.963713i \(-0.586012\pi\)
−0.266939 + 0.963713i \(0.586012\pi\)
\(102\) 0 0
\(103\) −984.892 −0.942177 −0.471089 0.882086i \(-0.656139\pi\)
−0.471089 + 0.882086i \(0.656139\pi\)
\(104\) −1450.65 −1.36777
\(105\) 0 0
\(106\) −862.003 −0.789860
\(107\) −1531.02 −1.38326 −0.691631 0.722251i \(-0.743108\pi\)
−0.691631 + 0.722251i \(0.743108\pi\)
\(108\) 0 0
\(109\) −1794.60 −1.57699 −0.788494 0.615042i \(-0.789139\pi\)
−0.788494 + 0.615042i \(0.789139\pi\)
\(110\) −4610.68 −3.99646
\(111\) 0 0
\(112\) 0 0
\(113\) −677.500 −0.564016 −0.282008 0.959412i \(-0.591000\pi\)
−0.282008 + 0.959412i \(0.591000\pi\)
\(114\) 0 0
\(115\) 729.220 0.591306
\(116\) 2348.91 1.88010
\(117\) 0 0
\(118\) 2933.07 2.28823
\(119\) 0 0
\(120\) 0 0
\(121\) 2699.95 2.02851
\(122\) −3840.68 −2.85015
\(123\) 0 0
\(124\) −1962.54 −1.42130
\(125\) 131.825 0.0943266
\(126\) 0 0
\(127\) −2287.68 −1.59842 −0.799208 0.601055i \(-0.794747\pi\)
−0.799208 + 0.601055i \(0.794747\pi\)
\(128\) 2561.88 1.76907
\(129\) 0 0
\(130\) 3862.93 2.60616
\(131\) 122.720 0.0818480 0.0409240 0.999162i \(-0.486970\pi\)
0.0409240 + 0.999162i \(0.486970\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 448.417 0.289084
\(135\) 0 0
\(136\) 1867.16 1.17726
\(137\) −780.935 −0.487005 −0.243503 0.969900i \(-0.578296\pi\)
−0.243503 + 0.969900i \(0.578296\pi\)
\(138\) 0 0
\(139\) −2052.89 −1.25269 −0.626345 0.779546i \(-0.715450\pi\)
−0.626345 + 0.779546i \(0.715450\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3425.68 2.02448
\(143\) −3377.22 −1.97495
\(144\) 0 0
\(145\) −2638.33 −1.51104
\(146\) 3507.84 1.98843
\(147\) 0 0
\(148\) −5699.39 −3.16545
\(149\) −2327.88 −1.27992 −0.639958 0.768410i \(-0.721048\pi\)
−0.639958 + 0.768410i \(0.721048\pi\)
\(150\) 0 0
\(151\) −2547.61 −1.37299 −0.686494 0.727135i \(-0.740851\pi\)
−0.686494 + 0.727135i \(0.740851\pi\)
\(152\) 2346.18 1.25198
\(153\) 0 0
\(154\) 0 0
\(155\) 2204.35 1.14231
\(156\) 0 0
\(157\) 2882.74 1.46540 0.732699 0.680553i \(-0.238260\pi\)
0.732699 + 0.680553i \(0.238260\pi\)
\(158\) −110.162 −0.0554686
\(159\) 0 0
\(160\) −2174.31 −1.07434
\(161\) 0 0
\(162\) 0 0
\(163\) −889.835 −0.427591 −0.213795 0.976878i \(-0.568583\pi\)
−0.213795 + 0.976878i \(0.568583\pi\)
\(164\) −677.967 −0.322807
\(165\) 0 0
\(166\) 2766.87 1.29368
\(167\) −980.968 −0.454548 −0.227274 0.973831i \(-0.572981\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(168\) 0 0
\(169\) 632.510 0.287897
\(170\) −4972.06 −2.24317
\(171\) 0 0
\(172\) −4928.46 −2.18484
\(173\) 1016.91 0.446903 0.223451 0.974715i \(-0.428268\pi\)
0.223451 + 0.974715i \(0.428268\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1063.32 −0.455402
\(177\) 0 0
\(178\) −4038.76 −1.70066
\(179\) 4232.30 1.76725 0.883623 0.468200i \(-0.155097\pi\)
0.883623 + 0.468200i \(0.155097\pi\)
\(180\) 0 0
\(181\) −1002.46 −0.411670 −0.205835 0.978587i \(-0.565991\pi\)
−0.205835 + 0.978587i \(0.565991\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1279.65 0.512701
\(185\) 6401.63 2.54409
\(186\) 0 0
\(187\) 4346.89 1.69987
\(188\) −5357.13 −2.07824
\(189\) 0 0
\(190\) −6247.65 −2.38554
\(191\) 755.900 0.286361 0.143181 0.989697i \(-0.454267\pi\)
0.143181 + 0.989697i \(0.454267\pi\)
\(192\) 0 0
\(193\) 4938.52 1.84188 0.920939 0.389707i \(-0.127424\pi\)
0.920939 + 0.389707i \(0.127424\pi\)
\(194\) −2870.42 −1.06229
\(195\) 0 0
\(196\) 0 0
\(197\) −2404.91 −0.869762 −0.434881 0.900488i \(-0.643210\pi\)
−0.434881 + 0.900488i \(0.643210\pi\)
\(198\) 0 0
\(199\) −2727.55 −0.971613 −0.485807 0.874066i \(-0.661474\pi\)
−0.485807 + 0.874066i \(0.661474\pi\)
\(200\) −3177.58 −1.12345
\(201\) 0 0
\(202\) 2532.28 0.882031
\(203\) 0 0
\(204\) 0 0
\(205\) 761.501 0.259442
\(206\) 4602.31 1.55659
\(207\) 0 0
\(208\) 890.873 0.296975
\(209\) 5462.09 1.80776
\(210\) 0 0
\(211\) −1860.21 −0.606931 −0.303465 0.952842i \(-0.598144\pi\)
−0.303465 + 0.952842i \(0.598144\pi\)
\(212\) 2552.31 0.826856
\(213\) 0 0
\(214\) 7154.30 2.28532
\(215\) 5535.71 1.75597
\(216\) 0 0
\(217\) 0 0
\(218\) 8386.01 2.60538
\(219\) 0 0
\(220\) 13651.8 4.18366
\(221\) −3641.92 −1.10852
\(222\) 0 0
\(223\) −1199.45 −0.360185 −0.180093 0.983650i \(-0.557640\pi\)
−0.180093 + 0.983650i \(0.557640\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3165.89 0.931823
\(227\) 3209.78 0.938505 0.469252 0.883064i \(-0.344523\pi\)
0.469252 + 0.883064i \(0.344523\pi\)
\(228\) 0 0
\(229\) 878.498 0.253506 0.126753 0.991934i \(-0.459545\pi\)
0.126753 + 0.991934i \(0.459545\pi\)
\(230\) −3407.58 −0.976909
\(231\) 0 0
\(232\) −4629.79 −1.31017
\(233\) −399.636 −0.112365 −0.0561824 0.998421i \(-0.517893\pi\)
−0.0561824 + 0.998421i \(0.517893\pi\)
\(234\) 0 0
\(235\) 6017.20 1.67029
\(236\) −8684.56 −2.39541
\(237\) 0 0
\(238\) 0 0
\(239\) −5624.75 −1.52232 −0.761161 0.648563i \(-0.775370\pi\)
−0.761161 + 0.648563i \(0.775370\pi\)
\(240\) 0 0
\(241\) 4800.67 1.28315 0.641573 0.767062i \(-0.278282\pi\)
0.641573 + 0.767062i \(0.278282\pi\)
\(242\) −12616.6 −3.35134
\(243\) 0 0
\(244\) 11371.9 2.98365
\(245\) 0 0
\(246\) 0 0
\(247\) −4576.27 −1.17887
\(248\) 3868.23 0.990454
\(249\) 0 0
\(250\) −616.008 −0.155839
\(251\) 3247.06 0.816545 0.408273 0.912860i \(-0.366131\pi\)
0.408273 + 0.912860i \(0.366131\pi\)
\(252\) 0 0
\(253\) 2979.12 0.740299
\(254\) 10690.1 2.64078
\(255\) 0 0
\(256\) −5669.31 −1.38411
\(257\) 6449.64 1.56544 0.782719 0.622376i \(-0.213832\pi\)
0.782719 + 0.622376i \(0.213832\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −11437.8 −2.72824
\(261\) 0 0
\(262\) −573.459 −0.135223
\(263\) 5008.98 1.17440 0.587199 0.809443i \(-0.300231\pi\)
0.587199 + 0.809443i \(0.300231\pi\)
\(264\) 0 0
\(265\) −2866.79 −0.664549
\(266\) 0 0
\(267\) 0 0
\(268\) −1327.72 −0.302625
\(269\) −3426.54 −0.776654 −0.388327 0.921522i \(-0.626947\pi\)
−0.388327 + 0.921522i \(0.626947\pi\)
\(270\) 0 0
\(271\) 933.312 0.209205 0.104603 0.994514i \(-0.466643\pi\)
0.104603 + 0.994514i \(0.466643\pi\)
\(272\) −1146.66 −0.255612
\(273\) 0 0
\(274\) 3649.23 0.804592
\(275\) −7397.66 −1.62217
\(276\) 0 0
\(277\) −1542.04 −0.334485 −0.167243 0.985916i \(-0.553486\pi\)
−0.167243 + 0.985916i \(0.553486\pi\)
\(278\) 9592.96 2.06960
\(279\) 0 0
\(280\) 0 0
\(281\) 5352.87 1.13639 0.568195 0.822894i \(-0.307642\pi\)
0.568195 + 0.822894i \(0.307642\pi\)
\(282\) 0 0
\(283\) 36.3436 0.00763394 0.00381697 0.999993i \(-0.498785\pi\)
0.00381697 + 0.999993i \(0.498785\pi\)
\(284\) −10143.1 −2.11931
\(285\) 0 0
\(286\) 15781.4 3.26285
\(287\) 0 0
\(288\) 0 0
\(289\) −225.413 −0.0458809
\(290\) 12328.7 2.49643
\(291\) 0 0
\(292\) −10386.4 −2.08157
\(293\) 5226.71 1.04214 0.521071 0.853513i \(-0.325532\pi\)
0.521071 + 0.853513i \(0.325532\pi\)
\(294\) 0 0
\(295\) 9754.62 1.92521
\(296\) 11233.7 2.20589
\(297\) 0 0
\(298\) 10878.0 2.11458
\(299\) −2495.97 −0.482762
\(300\) 0 0
\(301\) 0 0
\(302\) 11904.7 2.26834
\(303\) 0 0
\(304\) −1440.84 −0.271835
\(305\) −12773.1 −2.39798
\(306\) 0 0
\(307\) 3761.08 0.699205 0.349603 0.936898i \(-0.386317\pi\)
0.349603 + 0.936898i \(0.386317\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −10300.7 −1.88723
\(311\) 3235.35 0.589903 0.294952 0.955512i \(-0.404696\pi\)
0.294952 + 0.955512i \(0.404696\pi\)
\(312\) 0 0
\(313\) 5297.18 0.956595 0.478298 0.878198i \(-0.341254\pi\)
0.478298 + 0.878198i \(0.341254\pi\)
\(314\) −13470.8 −2.42102
\(315\) 0 0
\(316\) 326.181 0.0580668
\(317\) −1524.55 −0.270117 −0.135058 0.990838i \(-0.543122\pi\)
−0.135058 + 0.990838i \(0.543122\pi\)
\(318\) 0 0
\(319\) −10778.5 −1.89179
\(320\) 12242.5 2.13868
\(321\) 0 0
\(322\) 0 0
\(323\) 5890.20 1.01467
\(324\) 0 0
\(325\) 6197.93 1.05784
\(326\) 4158.12 0.706432
\(327\) 0 0
\(328\) 1336.30 0.224953
\(329\) 0 0
\(330\) 0 0
\(331\) 7950.08 1.32017 0.660084 0.751191i \(-0.270520\pi\)
0.660084 + 0.751191i \(0.270520\pi\)
\(332\) −8192.46 −1.35428
\(333\) 0 0
\(334\) 4583.97 0.750969
\(335\) 1491.31 0.243221
\(336\) 0 0
\(337\) 55.9475 0.00904348 0.00452174 0.999990i \(-0.498561\pi\)
0.00452174 + 0.999990i \(0.498561\pi\)
\(338\) −2955.66 −0.475641
\(339\) 0 0
\(340\) 14721.8 2.34824
\(341\) 9005.53 1.43014
\(342\) 0 0
\(343\) 0 0
\(344\) 9714.16 1.52254
\(345\) 0 0
\(346\) −4751.92 −0.738338
\(347\) 8902.88 1.37733 0.688663 0.725082i \(-0.258198\pi\)
0.688663 + 0.725082i \(0.258198\pi\)
\(348\) 0 0
\(349\) 10134.5 1.55441 0.777203 0.629250i \(-0.216638\pi\)
0.777203 + 0.629250i \(0.216638\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8882.80 −1.34504
\(353\) −13.7977 −0.00208039 −0.00104020 0.999999i \(-0.500331\pi\)
−0.00104020 + 0.999999i \(0.500331\pi\)
\(354\) 0 0
\(355\) 11392.9 1.70330
\(356\) 11958.4 1.78032
\(357\) 0 0
\(358\) −19777.1 −2.91970
\(359\) −6930.38 −1.01886 −0.509431 0.860512i \(-0.670144\pi\)
−0.509431 + 0.860512i \(0.670144\pi\)
\(360\) 0 0
\(361\) 542.357 0.0790723
\(362\) 4684.40 0.680129
\(363\) 0 0
\(364\) 0 0
\(365\) 11666.1 1.67297
\(366\) 0 0
\(367\) 1430.43 0.203455 0.101727 0.994812i \(-0.467563\pi\)
0.101727 + 0.994812i \(0.467563\pi\)
\(368\) −785.859 −0.111320
\(369\) 0 0
\(370\) −29914.2 −4.20315
\(371\) 0 0
\(372\) 0 0
\(373\) −1524.04 −0.211560 −0.105780 0.994390i \(-0.533734\pi\)
−0.105780 + 0.994390i \(0.533734\pi\)
\(374\) −20312.6 −2.80839
\(375\) 0 0
\(376\) 10559.1 1.44825
\(377\) 9030.47 1.23367
\(378\) 0 0
\(379\) −1058.04 −0.143398 −0.0716988 0.997426i \(-0.522842\pi\)
−0.0716988 + 0.997426i \(0.522842\pi\)
\(380\) 18498.7 2.49728
\(381\) 0 0
\(382\) −3532.25 −0.473104
\(383\) 3781.23 0.504470 0.252235 0.967666i \(-0.418834\pi\)
0.252235 + 0.967666i \(0.418834\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23077.2 −3.04301
\(387\) 0 0
\(388\) 8499.04 1.11204
\(389\) −8396.19 −1.09435 −0.547177 0.837017i \(-0.684298\pi\)
−0.547177 + 0.837017i \(0.684298\pi\)
\(390\) 0 0
\(391\) 3212.62 0.415522
\(392\) 0 0
\(393\) 0 0
\(394\) 11237.9 1.43695
\(395\) −366.370 −0.0466686
\(396\) 0 0
\(397\) 3124.08 0.394945 0.197472 0.980308i \(-0.436727\pi\)
0.197472 + 0.980308i \(0.436727\pi\)
\(398\) 12745.6 1.60522
\(399\) 0 0
\(400\) 1951.42 0.243928
\(401\) 6482.85 0.807327 0.403664 0.914908i \(-0.367737\pi\)
0.403664 + 0.914908i \(0.367737\pi\)
\(402\) 0 0
\(403\) −7545.04 −0.932618
\(404\) −7497.84 −0.923345
\(405\) 0 0
\(406\) 0 0
\(407\) 26152.9 3.18514
\(408\) 0 0
\(409\) −13147.6 −1.58950 −0.794749 0.606938i \(-0.792398\pi\)
−0.794749 + 0.606938i \(0.792398\pi\)
\(410\) −3558.42 −0.428629
\(411\) 0 0
\(412\) −13627.0 −1.62950
\(413\) 0 0
\(414\) 0 0
\(415\) 9201.87 1.08844
\(416\) 7442.21 0.877126
\(417\) 0 0
\(418\) −25523.9 −2.98663
\(419\) 1727.45 0.201411 0.100706 0.994916i \(-0.467890\pi\)
0.100706 + 0.994916i \(0.467890\pi\)
\(420\) 0 0
\(421\) −4600.25 −0.532548 −0.266274 0.963897i \(-0.585793\pi\)
−0.266274 + 0.963897i \(0.585793\pi\)
\(422\) 8692.60 1.00272
\(423\) 0 0
\(424\) −5030.69 −0.576208
\(425\) −7977.48 −0.910505
\(426\) 0 0
\(427\) 0 0
\(428\) −21183.2 −2.39236
\(429\) 0 0
\(430\) −25867.9 −2.90107
\(431\) 5707.15 0.637828 0.318914 0.947784i \(-0.396682\pi\)
0.318914 + 0.947784i \(0.396682\pi\)
\(432\) 0 0
\(433\) −3097.55 −0.343785 −0.171892 0.985116i \(-0.554988\pi\)
−0.171892 + 0.985116i \(0.554988\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −24830.2 −2.72741
\(437\) 4036.83 0.441894
\(438\) 0 0
\(439\) −8161.15 −0.887267 −0.443634 0.896208i \(-0.646311\pi\)
−0.443634 + 0.896208i \(0.646311\pi\)
\(440\) −26908.1 −2.91544
\(441\) 0 0
\(442\) 17018.3 1.83140
\(443\) −10224.6 −1.09658 −0.548292 0.836287i \(-0.684722\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(444\) 0 0
\(445\) −13431.8 −1.43085
\(446\) 5604.93 0.595070
\(447\) 0 0
\(448\) 0 0
\(449\) −2365.73 −0.248654 −0.124327 0.992241i \(-0.539677\pi\)
−0.124327 + 0.992241i \(0.539677\pi\)
\(450\) 0 0
\(451\) 3111.00 0.324814
\(452\) −9373.92 −0.975469
\(453\) 0 0
\(454\) −14999.0 −1.55052
\(455\) 0 0
\(456\) 0 0
\(457\) 1172.54 0.120020 0.0600100 0.998198i \(-0.480887\pi\)
0.0600100 + 0.998198i \(0.480887\pi\)
\(458\) −4105.14 −0.418822
\(459\) 0 0
\(460\) 10089.5 1.02267
\(461\) 2447.81 0.247302 0.123651 0.992326i \(-0.460540\pi\)
0.123651 + 0.992326i \(0.460540\pi\)
\(462\) 0 0
\(463\) −9459.57 −0.949510 −0.474755 0.880118i \(-0.657463\pi\)
−0.474755 + 0.880118i \(0.657463\pi\)
\(464\) 2843.25 0.284471
\(465\) 0 0
\(466\) 1867.46 0.185640
\(467\) −3585.45 −0.355278 −0.177639 0.984096i \(-0.556846\pi\)
−0.177639 + 0.984096i \(0.556846\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −28117.8 −2.75953
\(471\) 0 0
\(472\) 17117.6 1.66928
\(473\) 22615.3 2.19842
\(474\) 0 0
\(475\) −10024.1 −0.968292
\(476\) 0 0
\(477\) 0 0
\(478\) 26283.9 2.51506
\(479\) 4209.89 0.401575 0.200788 0.979635i \(-0.435650\pi\)
0.200788 + 0.979635i \(0.435650\pi\)
\(480\) 0 0
\(481\) −21911.5 −2.07708
\(482\) −22433.1 −2.11991
\(483\) 0 0
\(484\) 37356.6 3.50832
\(485\) −9546.23 −0.893757
\(486\) 0 0
\(487\) 1245.26 0.115868 0.0579342 0.998320i \(-0.481549\pi\)
0.0579342 + 0.998320i \(0.481549\pi\)
\(488\) −22414.4 −2.07920
\(489\) 0 0
\(490\) 0 0
\(491\) −4102.67 −0.377089 −0.188545 0.982065i \(-0.560377\pi\)
−0.188545 + 0.982065i \(0.560377\pi\)
\(492\) 0 0
\(493\) −11623.3 −1.06184
\(494\) 21384.5 1.94764
\(495\) 0 0
\(496\) −2375.56 −0.215052
\(497\) 0 0
\(498\) 0 0
\(499\) 12712.3 1.14044 0.570221 0.821491i \(-0.306858\pi\)
0.570221 + 0.821491i \(0.306858\pi\)
\(500\) 1823.94 0.163139
\(501\) 0 0
\(502\) −15173.2 −1.34903
\(503\) −1928.88 −0.170983 −0.0854915 0.996339i \(-0.527246\pi\)
−0.0854915 + 0.996339i \(0.527246\pi\)
\(504\) 0 0
\(505\) 8421.67 0.742098
\(506\) −13921.1 −1.22306
\(507\) 0 0
\(508\) −31652.4 −2.76447
\(509\) −6517.96 −0.567591 −0.283795 0.958885i \(-0.591594\pi\)
−0.283795 + 0.958885i \(0.591594\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 5997.08 0.517648
\(513\) 0 0
\(514\) −30138.6 −2.58629
\(515\) 15306.0 1.30964
\(516\) 0 0
\(517\) 24582.4 2.09116
\(518\) 0 0
\(519\) 0 0
\(520\) 22544.3 1.90121
\(521\) −2677.83 −0.225178 −0.112589 0.993642i \(-0.535914\pi\)
−0.112589 + 0.993642i \(0.535914\pi\)
\(522\) 0 0
\(523\) −643.647 −0.0538140 −0.0269070 0.999638i \(-0.508566\pi\)
−0.0269070 + 0.999638i \(0.508566\pi\)
\(524\) 1697.96 0.141557
\(525\) 0 0
\(526\) −23406.5 −1.94025
\(527\) 9711.37 0.802721
\(528\) 0 0
\(529\) −9965.25 −0.819039
\(530\) 13396.2 1.09792
\(531\) 0 0
\(532\) 0 0
\(533\) −2606.46 −0.211817
\(534\) 0 0
\(535\) 23793.3 1.92275
\(536\) 2616.98 0.210889
\(537\) 0 0
\(538\) 16011.9 1.28313
\(539\) 0 0
\(540\) 0 0
\(541\) 3974.55 0.315858 0.157929 0.987450i \(-0.449518\pi\)
0.157929 + 0.987450i \(0.449518\pi\)
\(542\) −4361.28 −0.345633
\(543\) 0 0
\(544\) −9579.02 −0.754958
\(545\) 27889.6 2.19204
\(546\) 0 0
\(547\) −13685.7 −1.06976 −0.534879 0.844929i \(-0.679643\pi\)
−0.534879 + 0.844929i \(0.679643\pi\)
\(548\) −10805.1 −0.842279
\(549\) 0 0
\(550\) 34568.6 2.68002
\(551\) −14605.3 −1.12923
\(552\) 0 0
\(553\) 0 0
\(554\) 7205.83 0.552611
\(555\) 0 0
\(556\) −28403.9 −2.16653
\(557\) −14712.7 −1.11921 −0.559603 0.828761i \(-0.689046\pi\)
−0.559603 + 0.828761i \(0.689046\pi\)
\(558\) 0 0
\(559\) −18947.6 −1.43363
\(560\) 0 0
\(561\) 0 0
\(562\) −25013.5 −1.87745
\(563\) 10464.2 0.783325 0.391663 0.920109i \(-0.371900\pi\)
0.391663 + 0.920109i \(0.371900\pi\)
\(564\) 0 0
\(565\) 10528.9 0.783990
\(566\) −169.830 −0.0126122
\(567\) 0 0
\(568\) 19992.4 1.47687
\(569\) −23684.3 −1.74499 −0.872494 0.488625i \(-0.837499\pi\)
−0.872494 + 0.488625i \(0.837499\pi\)
\(570\) 0 0
\(571\) −3879.52 −0.284331 −0.142165 0.989843i \(-0.545407\pi\)
−0.142165 + 0.989843i \(0.545407\pi\)
\(572\) −46727.4 −3.41568
\(573\) 0 0
\(574\) 0 0
\(575\) −5467.33 −0.396528
\(576\) 0 0
\(577\) 5894.79 0.425309 0.212654 0.977127i \(-0.431789\pi\)
0.212654 + 0.977127i \(0.431789\pi\)
\(578\) 1053.33 0.0758008
\(579\) 0 0
\(580\) −36504.1 −2.61336
\(581\) 0 0
\(582\) 0 0
\(583\) −11711.8 −0.831998
\(584\) 20471.9 1.45057
\(585\) 0 0
\(586\) −24423.9 −1.72175
\(587\) −6780.32 −0.476752 −0.238376 0.971173i \(-0.576615\pi\)
−0.238376 + 0.971173i \(0.576615\pi\)
\(588\) 0 0
\(589\) 12202.9 0.853667
\(590\) −45582.4 −3.18067
\(591\) 0 0
\(592\) −6898.84 −0.478954
\(593\) −22883.7 −1.58469 −0.792344 0.610075i \(-0.791139\pi\)
−0.792344 + 0.610075i \(0.791139\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −32208.7 −2.21362
\(597\) 0 0
\(598\) 11663.5 0.797582
\(599\) 9410.57 0.641912 0.320956 0.947094i \(-0.395996\pi\)
0.320956 + 0.947094i \(0.395996\pi\)
\(600\) 0 0
\(601\) −17409.2 −1.18159 −0.590796 0.806821i \(-0.701186\pi\)
−0.590796 + 0.806821i \(0.701186\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −35248.8 −2.37459
\(605\) −41959.4 −2.81966
\(606\) 0 0
\(607\) 14517.2 0.970731 0.485366 0.874311i \(-0.338687\pi\)
0.485366 + 0.874311i \(0.338687\pi\)
\(608\) −12036.5 −0.802873
\(609\) 0 0
\(610\) 59687.3 3.96175
\(611\) −20595.7 −1.36368
\(612\) 0 0
\(613\) −28807.4 −1.89807 −0.949037 0.315165i \(-0.897940\pi\)
−0.949037 + 0.315165i \(0.897940\pi\)
\(614\) −17575.2 −1.15517
\(615\) 0 0
\(616\) 0 0
\(617\) 3925.52 0.256135 0.128068 0.991765i \(-0.459123\pi\)
0.128068 + 0.991765i \(0.459123\pi\)
\(618\) 0 0
\(619\) −22349.6 −1.45122 −0.725612 0.688104i \(-0.758443\pi\)
−0.725612 + 0.688104i \(0.758443\pi\)
\(620\) 30499.5 1.97563
\(621\) 0 0
\(622\) −15118.5 −0.974592
\(623\) 0 0
\(624\) 0 0
\(625\) −16613.4 −1.06326
\(626\) −24753.2 −1.58041
\(627\) 0 0
\(628\) 39885.7 2.53442
\(629\) 28202.7 1.78778
\(630\) 0 0
\(631\) 18686.1 1.17889 0.589447 0.807807i \(-0.299346\pi\)
0.589447 + 0.807807i \(0.299346\pi\)
\(632\) −642.913 −0.0404647
\(633\) 0 0
\(634\) 7124.06 0.446266
\(635\) 35552.4 2.22182
\(636\) 0 0
\(637\) 0 0
\(638\) 50366.9 3.12546
\(639\) 0 0
\(640\) −39813.8 −2.45903
\(641\) 6863.23 0.422903 0.211452 0.977388i \(-0.432181\pi\)
0.211452 + 0.977388i \(0.432181\pi\)
\(642\) 0 0
\(643\) 13442.9 0.824472 0.412236 0.911077i \(-0.364748\pi\)
0.412236 + 0.911077i \(0.364748\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −27524.4 −1.67637
\(647\) 16015.4 0.973156 0.486578 0.873637i \(-0.338245\pi\)
0.486578 + 0.873637i \(0.338245\pi\)
\(648\) 0 0
\(649\) 39851.0 2.41031
\(650\) −28962.3 −1.74769
\(651\) 0 0
\(652\) −12311.8 −0.739521
\(653\) −4455.45 −0.267007 −0.133503 0.991048i \(-0.542623\pi\)
−0.133503 + 0.991048i \(0.542623\pi\)
\(654\) 0 0
\(655\) −1907.17 −0.113770
\(656\) −820.647 −0.0488428
\(657\) 0 0
\(658\) 0 0
\(659\) 13973.4 0.825990 0.412995 0.910733i \(-0.364483\pi\)
0.412995 + 0.910733i \(0.364483\pi\)
\(660\) 0 0
\(661\) 14950.0 0.879710 0.439855 0.898069i \(-0.355030\pi\)
0.439855 + 0.898069i \(0.355030\pi\)
\(662\) −37150.0 −2.18108
\(663\) 0 0
\(664\) 16147.6 0.943748
\(665\) 0 0
\(666\) 0 0
\(667\) −7965.98 −0.462435
\(668\) −13572.7 −0.786144
\(669\) 0 0
\(670\) −6968.77 −0.401831
\(671\) −52182.4 −3.00220
\(672\) 0 0
\(673\) −15041.5 −0.861527 −0.430764 0.902465i \(-0.641756\pi\)
−0.430764 + 0.902465i \(0.641756\pi\)
\(674\) −261.437 −0.0149409
\(675\) 0 0
\(676\) 8751.43 0.497920
\(677\) 28889.4 1.64005 0.820023 0.572330i \(-0.193960\pi\)
0.820023 + 0.572330i \(0.193960\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −29017.2 −1.63641
\(681\) 0 0
\(682\) −42082.0 −2.36276
\(683\) 12029.7 0.673941 0.336971 0.941515i \(-0.390598\pi\)
0.336971 + 0.941515i \(0.390598\pi\)
\(684\) 0 0
\(685\) 12136.4 0.676945
\(686\) 0 0
\(687\) 0 0
\(688\) −5965.67 −0.330580
\(689\) 9812.45 0.542561
\(690\) 0 0
\(691\) 10239.0 0.563689 0.281845 0.959460i \(-0.409054\pi\)
0.281845 + 0.959460i \(0.409054\pi\)
\(692\) 14070.0 0.772921
\(693\) 0 0
\(694\) −41602.3 −2.27551
\(695\) 31903.6 1.74126
\(696\) 0 0
\(697\) 3354.83 0.182315
\(698\) −47357.6 −2.56807
\(699\) 0 0
\(700\) 0 0
\(701\) −21368.4 −1.15132 −0.575659 0.817690i \(-0.695254\pi\)
−0.575659 + 0.817690i \(0.695254\pi\)
\(702\) 0 0
\(703\) 35438.2 1.90125
\(704\) 50015.0 2.67757
\(705\) 0 0
\(706\) 64.4755 0.00343706
\(707\) 0 0
\(708\) 0 0
\(709\) −1402.56 −0.0742935 −0.0371467 0.999310i \(-0.511827\pi\)
−0.0371467 + 0.999310i \(0.511827\pi\)
\(710\) −53237.9 −2.81406
\(711\) 0 0
\(712\) −23570.4 −1.24064
\(713\) 6655.65 0.349588
\(714\) 0 0
\(715\) 52484.8 2.74520
\(716\) 58558.3 3.05646
\(717\) 0 0
\(718\) 32385.0 1.68328
\(719\) −29924.0 −1.55212 −0.776061 0.630658i \(-0.782785\pi\)
−0.776061 + 0.630658i \(0.782785\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2534.38 −0.130637
\(723\) 0 0
\(724\) −13870.1 −0.711985
\(725\) 19780.9 1.01330
\(726\) 0 0
\(727\) 18010.8 0.918823 0.459411 0.888224i \(-0.348060\pi\)
0.459411 + 0.888224i \(0.348060\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −54514.7 −2.76395
\(731\) 24387.9 1.23395
\(732\) 0 0
\(733\) 37857.6 1.90764 0.953820 0.300378i \(-0.0971127\pi\)
0.953820 + 0.300378i \(0.0971127\pi\)
\(734\) −6684.27 −0.336132
\(735\) 0 0
\(736\) −6564.94 −0.328787
\(737\) 6092.54 0.304507
\(738\) 0 0
\(739\) −23780.5 −1.18374 −0.591868 0.806035i \(-0.701609\pi\)
−0.591868 + 0.806035i \(0.701609\pi\)
\(740\) 88573.3 4.40002
\(741\) 0 0
\(742\) 0 0
\(743\) −10018.2 −0.494659 −0.247330 0.968931i \(-0.579553\pi\)
−0.247330 + 0.968931i \(0.579553\pi\)
\(744\) 0 0
\(745\) 36177.2 1.77910
\(746\) 7121.71 0.349523
\(747\) 0 0
\(748\) 60143.7 2.93994
\(749\) 0 0
\(750\) 0 0
\(751\) 18282.2 0.888319 0.444159 0.895948i \(-0.353502\pi\)
0.444159 + 0.895948i \(0.353502\pi\)
\(752\) −6484.55 −0.314451
\(753\) 0 0
\(754\) −42198.5 −2.03817
\(755\) 39591.9 1.90847
\(756\) 0 0
\(757\) 19815.3 0.951388 0.475694 0.879611i \(-0.342197\pi\)
0.475694 + 0.879611i \(0.342197\pi\)
\(758\) 4944.10 0.236910
\(759\) 0 0
\(760\) −36461.6 −1.74027
\(761\) −37697.8 −1.79572 −0.897860 0.440282i \(-0.854879\pi\)
−0.897860 + 0.440282i \(0.854879\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 10458.7 0.495264
\(765\) 0 0
\(766\) −17669.3 −0.833446
\(767\) −33388.1 −1.57180
\(768\) 0 0
\(769\) −34511.3 −1.61835 −0.809174 0.587569i \(-0.800085\pi\)
−0.809174 + 0.587569i \(0.800085\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 68329.6 3.18554
\(773\) −12845.1 −0.597681 −0.298841 0.954303i \(-0.596600\pi\)
−0.298841 + 0.954303i \(0.596600\pi\)
\(774\) 0 0
\(775\) −16527.1 −0.766027
\(776\) −16751.9 −0.774946
\(777\) 0 0
\(778\) 39234.6 1.80801
\(779\) 4215.53 0.193886
\(780\) 0 0
\(781\) 46543.9 2.13249
\(782\) −15012.3 −0.686493
\(783\) 0 0
\(784\) 0 0
\(785\) −44800.1 −2.03692
\(786\) 0 0
\(787\) −5906.18 −0.267513 −0.133756 0.991014i \(-0.542704\pi\)
−0.133756 + 0.991014i \(0.542704\pi\)
\(788\) −33274.5 −1.50426
\(789\) 0 0
\(790\) 1712.01 0.0771022
\(791\) 0 0
\(792\) 0 0
\(793\) 43719.6 1.95779
\(794\) −14598.5 −0.652497
\(795\) 0 0
\(796\) −37738.5 −1.68041
\(797\) 11027.5 0.490106 0.245053 0.969510i \(-0.421195\pi\)
0.245053 + 0.969510i \(0.421195\pi\)
\(798\) 0 0
\(799\) 26509.1 1.17375
\(800\) 16301.9 0.720448
\(801\) 0 0
\(802\) −30293.8 −1.33380
\(803\) 47660.2 2.09451
\(804\) 0 0
\(805\) 0 0
\(806\) 35257.2 1.54080
\(807\) 0 0
\(808\) 14778.5 0.643447
\(809\) −33735.3 −1.46609 −0.733047 0.680178i \(-0.761902\pi\)
−0.733047 + 0.680178i \(0.761902\pi\)
\(810\) 0 0
\(811\) 38016.9 1.64606 0.823029 0.567999i \(-0.192282\pi\)
0.823029 + 0.567999i \(0.192282\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −122210. −5.26223
\(815\) 13828.8 0.594357
\(816\) 0 0
\(817\) 30644.7 1.31227
\(818\) 61437.3 2.62605
\(819\) 0 0
\(820\) 10536.2 0.448706
\(821\) 485.730 0.0206481 0.0103241 0.999947i \(-0.496714\pi\)
0.0103241 + 0.999947i \(0.496714\pi\)
\(822\) 0 0
\(823\) 19018.1 0.805505 0.402753 0.915309i \(-0.368054\pi\)
0.402753 + 0.915309i \(0.368054\pi\)
\(824\) 26859.3 1.13554
\(825\) 0 0
\(826\) 0 0
\(827\) 24657.9 1.03681 0.518404 0.855136i \(-0.326526\pi\)
0.518404 + 0.855136i \(0.326526\pi\)
\(828\) 0 0
\(829\) −33962.3 −1.42287 −0.711435 0.702752i \(-0.751955\pi\)
−0.711435 + 0.702752i \(0.751955\pi\)
\(830\) −42999.5 −1.79823
\(831\) 0 0
\(832\) −41903.7 −1.74609
\(833\) 0 0
\(834\) 0 0
\(835\) 15245.1 0.631828
\(836\) 75573.8 3.12652
\(837\) 0 0
\(838\) −8072.20 −0.332756
\(839\) −20209.3 −0.831586 −0.415793 0.909459i \(-0.636496\pi\)
−0.415793 + 0.909459i \(0.636496\pi\)
\(840\) 0 0
\(841\) 4432.03 0.181723
\(842\) 21496.5 0.879834
\(843\) 0 0
\(844\) −25738.0 −1.04969
\(845\) −9829.73 −0.400181
\(846\) 0 0
\(847\) 0 0
\(848\) 3089.45 0.125109
\(849\) 0 0
\(850\) 37278.0 1.50427
\(851\) 19328.6 0.778585
\(852\) 0 0
\(853\) −2271.91 −0.0911944 −0.0455972 0.998960i \(-0.514519\pi\)
−0.0455972 + 0.998960i \(0.514519\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 41752.9 1.66715
\(857\) 804.766 0.0320774 0.0160387 0.999871i \(-0.494895\pi\)
0.0160387 + 0.999871i \(0.494895\pi\)
\(858\) 0 0
\(859\) −36023.4 −1.43085 −0.715426 0.698689i \(-0.753767\pi\)
−0.715426 + 0.698689i \(0.753767\pi\)
\(860\) 76592.4 3.03695
\(861\) 0 0
\(862\) −26669.0 −1.05377
\(863\) 13880.5 0.547504 0.273752 0.961800i \(-0.411735\pi\)
0.273752 + 0.961800i \(0.411735\pi\)
\(864\) 0 0
\(865\) −15803.6 −0.621201
\(866\) 14474.6 0.567974
\(867\) 0 0
\(868\) 0 0
\(869\) −1496.75 −0.0584279
\(870\) 0 0
\(871\) −5104.47 −0.198574
\(872\) 48941.2 1.90064
\(873\) 0 0
\(874\) −18863.7 −0.730062
\(875\) 0 0
\(876\) 0 0
\(877\) −4779.13 −0.184013 −0.0920067 0.995758i \(-0.529328\pi\)
−0.0920067 + 0.995758i \(0.529328\pi\)
\(878\) 38136.3 1.46587
\(879\) 0 0
\(880\) 16524.9 0.633015
\(881\) −19785.5 −0.756628 −0.378314 0.925677i \(-0.623496\pi\)
−0.378314 + 0.925677i \(0.623496\pi\)
\(882\) 0 0
\(883\) −33555.9 −1.27887 −0.639437 0.768844i \(-0.720832\pi\)
−0.639437 + 0.768844i \(0.720832\pi\)
\(884\) −50389.8 −1.91718
\(885\) 0 0
\(886\) 47778.7 1.81169
\(887\) 47403.0 1.79440 0.897202 0.441620i \(-0.145596\pi\)
0.897202 + 0.441620i \(0.145596\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 62765.6 2.36394
\(891\) 0 0
\(892\) −16595.7 −0.622943
\(893\) 33310.1 1.24824
\(894\) 0 0
\(895\) −65773.5 −2.45650
\(896\) 0 0
\(897\) 0 0
\(898\) 11054.8 0.410807
\(899\) −24080.2 −0.893349
\(900\) 0 0
\(901\) −12629.8 −0.466992
\(902\) −14537.4 −0.536633
\(903\) 0 0
\(904\) 18476.3 0.679771
\(905\) 15579.1 0.572227
\(906\) 0 0
\(907\) −9765.54 −0.357508 −0.178754 0.983894i \(-0.557207\pi\)
−0.178754 + 0.983894i \(0.557207\pi\)
\(908\) 44410.7 1.62315
\(909\) 0 0
\(910\) 0 0
\(911\) −9244.54 −0.336208 −0.168104 0.985769i \(-0.553764\pi\)
−0.168104 + 0.985769i \(0.553764\pi\)
\(912\) 0 0
\(913\) 37592.9 1.36270
\(914\) −5479.17 −0.198288
\(915\) 0 0
\(916\) 12154.9 0.438439
\(917\) 0 0
\(918\) 0 0
\(919\) 40397.9 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(920\) −19886.8 −0.712661
\(921\) 0 0
\(922\) −11438.4 −0.408572
\(923\) −38995.5 −1.39063
\(924\) 0 0
\(925\) −47996.2 −1.70606
\(926\) 44203.7 1.56871
\(927\) 0 0
\(928\) 23752.1 0.840193
\(929\) 10318.3 0.364405 0.182202 0.983261i \(-0.441677\pi\)
0.182202 + 0.983261i \(0.441677\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −5529.38 −0.194336
\(933\) 0 0
\(934\) 16754.5 0.586963
\(935\) −67554.2 −2.36284
\(936\) 0 0
\(937\) 21399.9 0.746109 0.373055 0.927809i \(-0.378310\pi\)
0.373055 + 0.927809i \(0.378310\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 83254.3 2.88878
\(941\) −11405.5 −0.395121 −0.197561 0.980291i \(-0.563302\pi\)
−0.197561 + 0.980291i \(0.563302\pi\)
\(942\) 0 0
\(943\) 2299.22 0.0793987
\(944\) −10512.3 −0.362441
\(945\) 0 0
\(946\) −105679. −3.63206
\(947\) −830.840 −0.0285097 −0.0142548 0.999898i \(-0.504538\pi\)
−0.0142548 + 0.999898i \(0.504538\pi\)
\(948\) 0 0
\(949\) −39930.8 −1.36587
\(950\) 46841.8 1.59974
\(951\) 0 0
\(952\) 0 0
\(953\) 4680.16 0.159082 0.0795410 0.996832i \(-0.474655\pi\)
0.0795410 + 0.996832i \(0.474655\pi\)
\(954\) 0 0
\(955\) −11747.3 −0.398046
\(956\) −77824.4 −2.63287
\(957\) 0 0
\(958\) −19672.4 −0.663451
\(959\) 0 0
\(960\) 0 0
\(961\) −9671.76 −0.324654
\(962\) 102390. 3.43160
\(963\) 0 0
\(964\) 66422.3 2.21921
\(965\) −76748.7 −2.56024
\(966\) 0 0
\(967\) −43642.9 −1.45136 −0.725679 0.688034i \(-0.758474\pi\)
−0.725679 + 0.688034i \(0.758474\pi\)
\(968\) −73631.1 −2.44483
\(969\) 0 0
\(970\) 44608.7 1.47660
\(971\) 7552.17 0.249599 0.124800 0.992182i \(-0.460171\pi\)
0.124800 + 0.992182i \(0.460171\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −5818.96 −0.191429
\(975\) 0 0
\(976\) 13765.1 0.451446
\(977\) −42782.8 −1.40097 −0.700483 0.713669i \(-0.747032\pi\)
−0.700483 + 0.713669i \(0.747032\pi\)
\(978\) 0 0
\(979\) −54873.7 −1.79139
\(980\) 0 0
\(981\) 0 0
\(982\) 19171.4 0.622997
\(983\) −3491.65 −0.113292 −0.0566462 0.998394i \(-0.518041\pi\)
−0.0566462 + 0.998394i \(0.518041\pi\)
\(984\) 0 0
\(985\) 37374.4 1.20898
\(986\) 54314.6 1.75429
\(987\) 0 0
\(988\) −63317.4 −2.03886
\(989\) 16714.1 0.537390
\(990\) 0 0
\(991\) −43897.4 −1.40711 −0.703556 0.710640i \(-0.748406\pi\)
−0.703556 + 0.710640i \(0.748406\pi\)
\(992\) −19845.0 −0.635162
\(993\) 0 0
\(994\) 0 0
\(995\) 42388.4 1.35056
\(996\) 0 0
\(997\) −7995.39 −0.253979 −0.126989 0.991904i \(-0.540531\pi\)
−0.126989 + 0.991904i \(0.540531\pi\)
\(998\) −59403.4 −1.88415
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bm.1.2 yes 8
3.2 odd 2 inner 1323.4.a.bm.1.7 yes 8
7.6 odd 2 1323.4.a.bl.1.2 8
21.20 even 2 1323.4.a.bl.1.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bl.1.2 8 7.6 odd 2
1323.4.a.bl.1.7 yes 8 21.20 even 2
1323.4.a.bm.1.2 yes 8 1.1 even 1 trivial
1323.4.a.bm.1.7 yes 8 3.2 odd 2 inner