Properties

Label 1323.4.a.bj.1.7
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.09184\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.09184 q^{2} +17.9269 q^{4} -18.5985 q^{5} +50.5460 q^{8} +O(q^{10})\) \(q+5.09184 q^{2} +17.9269 q^{4} -18.5985 q^{5} +50.5460 q^{8} -94.7009 q^{10} -1.05631 q^{11} -58.7684 q^{13} +113.957 q^{16} +43.7810 q^{17} +131.880 q^{19} -333.413 q^{20} -5.37857 q^{22} +161.410 q^{23} +220.906 q^{25} -299.239 q^{26} +64.0250 q^{29} +55.9772 q^{31} +175.885 q^{32} +222.926 q^{34} +296.995 q^{37} +671.513 q^{38} -940.082 q^{40} +80.6724 q^{41} -134.280 q^{43} -18.9363 q^{44} +821.874 q^{46} +233.366 q^{47} +1124.82 q^{50} -1053.53 q^{52} +387.066 q^{53} +19.6458 q^{55} +326.005 q^{58} +722.871 q^{59} -388.144 q^{61} +285.027 q^{62} -16.0817 q^{64} +1093.01 q^{65} -730.041 q^{67} +784.856 q^{68} -685.470 q^{71} +275.371 q^{73} +1512.25 q^{74} +2364.20 q^{76} +854.544 q^{79} -2119.44 q^{80} +410.771 q^{82} +922.479 q^{83} -814.263 q^{85} -683.734 q^{86} -53.3922 q^{88} -301.729 q^{89} +2893.57 q^{92} +1188.27 q^{94} -2452.78 q^{95} -913.706 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8} + 12 q^{10} + 98 q^{11} - 124 q^{13} + 139 q^{16} + 30 q^{17} + 182 q^{19} - 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} - 245 q^{26} + 323 q^{29} + 26 q^{31} + 398 q^{32} + 114 q^{34} - 112 q^{37} + 1015 q^{38} - 147 q^{40} - 524 q^{41} + 8 q^{43} + 937 q^{44} - 339 q^{46} + 288 q^{47} + 2576 q^{50} - 1075 q^{52} + 1353 q^{53} + 156 q^{55} - 81 q^{58} + 165 q^{59} + 56 q^{61} - 1215 q^{62} - 1706 q^{64} + 1694 q^{65} - 988 q^{67} + 2625 q^{68} + 792 q^{71} + 1487 q^{73} + 2736 q^{74} + 1952 q^{76} - 1273 q^{79} - 2501 q^{80} - 2049 q^{82} - 1170 q^{83} + 216 q^{85} - 160 q^{86} + 9 q^{88} + 1058 q^{89} + 3834 q^{92} + 1653 q^{94} + 3260 q^{95} - 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.09184 1.80024 0.900119 0.435644i \(-0.143479\pi\)
0.900119 + 0.435644i \(0.143479\pi\)
\(3\) 0 0
\(4\) 17.9269 2.24086
\(5\) −18.5985 −1.66350 −0.831752 0.555147i \(-0.812662\pi\)
−0.831752 + 0.555147i \(0.812662\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 50.5460 2.23384
\(9\) 0 0
\(10\) −94.7009 −2.99470
\(11\) −1.05631 −0.0289536 −0.0144768 0.999895i \(-0.504608\pi\)
−0.0144768 + 0.999895i \(0.504608\pi\)
\(12\) 0 0
\(13\) −58.7684 −1.25380 −0.626900 0.779099i \(-0.715677\pi\)
−0.626900 + 0.779099i \(0.715677\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 113.957 1.78058
\(17\) 43.7810 0.624615 0.312308 0.949981i \(-0.398898\pi\)
0.312308 + 0.949981i \(0.398898\pi\)
\(18\) 0 0
\(19\) 131.880 1.59239 0.796194 0.605041i \(-0.206843\pi\)
0.796194 + 0.605041i \(0.206843\pi\)
\(20\) −333.413 −3.72768
\(21\) 0 0
\(22\) −5.37857 −0.0521234
\(23\) 161.410 1.46332 0.731659 0.681671i \(-0.238747\pi\)
0.731659 + 0.681671i \(0.238747\pi\)
\(24\) 0 0
\(25\) 220.906 1.76725
\(26\) −299.239 −2.25714
\(27\) 0 0
\(28\) 0 0
\(29\) 64.0250 0.409970 0.204985 0.978765i \(-0.434285\pi\)
0.204985 + 0.978765i \(0.434285\pi\)
\(30\) 0 0
\(31\) 55.9772 0.324316 0.162158 0.986765i \(-0.448155\pi\)
0.162158 + 0.986765i \(0.448155\pi\)
\(32\) 175.885 0.971634
\(33\) 0 0
\(34\) 222.926 1.12446
\(35\) 0 0
\(36\) 0 0
\(37\) 296.995 1.31961 0.659807 0.751435i \(-0.270638\pi\)
0.659807 + 0.751435i \(0.270638\pi\)
\(38\) 671.513 2.86668
\(39\) 0 0
\(40\) −940.082 −3.71600
\(41\) 80.6724 0.307290 0.153645 0.988126i \(-0.450899\pi\)
0.153645 + 0.988126i \(0.450899\pi\)
\(42\) 0 0
\(43\) −134.280 −0.476222 −0.238111 0.971238i \(-0.576528\pi\)
−0.238111 + 0.971238i \(0.576528\pi\)
\(44\) −18.9363 −0.0648809
\(45\) 0 0
\(46\) 821.874 2.63432
\(47\) 233.366 0.724255 0.362128 0.932129i \(-0.382050\pi\)
0.362128 + 0.932129i \(0.382050\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1124.82 3.18147
\(51\) 0 0
\(52\) −1053.53 −2.80959
\(53\) 387.066 1.00316 0.501581 0.865111i \(-0.332752\pi\)
0.501581 + 0.865111i \(0.332752\pi\)
\(54\) 0 0
\(55\) 19.6458 0.0481645
\(56\) 0 0
\(57\) 0 0
\(58\) 326.005 0.738044
\(59\) 722.871 1.59508 0.797541 0.603265i \(-0.206134\pi\)
0.797541 + 0.603265i \(0.206134\pi\)
\(60\) 0 0
\(61\) −388.144 −0.814701 −0.407351 0.913272i \(-0.633547\pi\)
−0.407351 + 0.913272i \(0.633547\pi\)
\(62\) 285.027 0.583846
\(63\) 0 0
\(64\) −16.0817 −0.0314095
\(65\) 1093.01 2.08570
\(66\) 0 0
\(67\) −730.041 −1.33117 −0.665587 0.746320i \(-0.731819\pi\)
−0.665587 + 0.746320i \(0.731819\pi\)
\(68\) 784.856 1.39967
\(69\) 0 0
\(70\) 0 0
\(71\) −685.470 −1.14578 −0.572890 0.819632i \(-0.694178\pi\)
−0.572890 + 0.819632i \(0.694178\pi\)
\(72\) 0 0
\(73\) 275.371 0.441503 0.220751 0.975330i \(-0.429149\pi\)
0.220751 + 0.975330i \(0.429149\pi\)
\(74\) 1512.25 2.37562
\(75\) 0 0
\(76\) 2364.20 3.56831
\(77\) 0 0
\(78\) 0 0
\(79\) 854.544 1.21701 0.608504 0.793551i \(-0.291770\pi\)
0.608504 + 0.793551i \(0.291770\pi\)
\(80\) −2119.44 −2.96201
\(81\) 0 0
\(82\) 410.771 0.553196
\(83\) 922.479 1.21994 0.609971 0.792424i \(-0.291181\pi\)
0.609971 + 0.792424i \(0.291181\pi\)
\(84\) 0 0
\(85\) −814.263 −1.03905
\(86\) −683.734 −0.857313
\(87\) 0 0
\(88\) −53.3922 −0.0646776
\(89\) −301.729 −0.359362 −0.179681 0.983725i \(-0.557507\pi\)
−0.179681 + 0.983725i \(0.557507\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2893.57 3.27908
\(93\) 0 0
\(94\) 1188.27 1.30383
\(95\) −2452.78 −2.64895
\(96\) 0 0
\(97\) −913.706 −0.956421 −0.478210 0.878245i \(-0.658714\pi\)
−0.478210 + 0.878245i \(0.658714\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 3960.15 3.96015
\(101\) −354.715 −0.349460 −0.174730 0.984616i \(-0.555905\pi\)
−0.174730 + 0.984616i \(0.555905\pi\)
\(102\) 0 0
\(103\) −142.105 −0.135942 −0.0679708 0.997687i \(-0.521652\pi\)
−0.0679708 + 0.997687i \(0.521652\pi\)
\(104\) −2970.50 −2.80079
\(105\) 0 0
\(106\) 1970.88 1.80593
\(107\) 559.789 0.505765 0.252882 0.967497i \(-0.418621\pi\)
0.252882 + 0.967497i \(0.418621\pi\)
\(108\) 0 0
\(109\) −457.761 −0.402252 −0.201126 0.979565i \(-0.564460\pi\)
−0.201126 + 0.979565i \(0.564460\pi\)
\(110\) 100.034 0.0867075
\(111\) 0 0
\(112\) 0 0
\(113\) −647.946 −0.539412 −0.269706 0.962943i \(-0.586927\pi\)
−0.269706 + 0.962943i \(0.586927\pi\)
\(114\) 0 0
\(115\) −3001.99 −2.43424
\(116\) 1147.77 0.918685
\(117\) 0 0
\(118\) 3680.75 2.87153
\(119\) 0 0
\(120\) 0 0
\(121\) −1329.88 −0.999162
\(122\) −1976.37 −1.46666
\(123\) 0 0
\(124\) 1003.50 0.726746
\(125\) −1783.71 −1.27632
\(126\) 0 0
\(127\) 1108.02 0.774180 0.387090 0.922042i \(-0.373480\pi\)
0.387090 + 0.922042i \(0.373480\pi\)
\(128\) −1488.96 −1.02818
\(129\) 0 0
\(130\) 5565.42 3.75476
\(131\) 706.818 0.471412 0.235706 0.971824i \(-0.424260\pi\)
0.235706 + 0.971824i \(0.424260\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3717.25 −2.39643
\(135\) 0 0
\(136\) 2212.95 1.39529
\(137\) −319.732 −0.199391 −0.0996955 0.995018i \(-0.531787\pi\)
−0.0996955 + 0.995018i \(0.531787\pi\)
\(138\) 0 0
\(139\) −439.298 −0.268063 −0.134032 0.990977i \(-0.542792\pi\)
−0.134032 + 0.990977i \(0.542792\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3490.31 −2.06268
\(143\) 62.0777 0.0363021
\(144\) 0 0
\(145\) −1190.77 −0.681987
\(146\) 1402.14 0.794810
\(147\) 0 0
\(148\) 5324.19 2.95706
\(149\) 1362.30 0.749017 0.374509 0.927223i \(-0.377811\pi\)
0.374509 + 0.927223i \(0.377811\pi\)
\(150\) 0 0
\(151\) 2209.41 1.19072 0.595362 0.803458i \(-0.297009\pi\)
0.595362 + 0.803458i \(0.297009\pi\)
\(152\) 6666.01 3.55714
\(153\) 0 0
\(154\) 0 0
\(155\) −1041.09 −0.539502
\(156\) 0 0
\(157\) −1109.10 −0.563795 −0.281898 0.959444i \(-0.590964\pi\)
−0.281898 + 0.959444i \(0.590964\pi\)
\(158\) 4351.20 2.19091
\(159\) 0 0
\(160\) −3271.20 −1.61632
\(161\) 0 0
\(162\) 0 0
\(163\) 1477.44 0.709953 0.354977 0.934875i \(-0.384489\pi\)
0.354977 + 0.934875i \(0.384489\pi\)
\(164\) 1446.20 0.688594
\(165\) 0 0
\(166\) 4697.12 2.19619
\(167\) 1848.67 0.856615 0.428307 0.903633i \(-0.359110\pi\)
0.428307 + 0.903633i \(0.359110\pi\)
\(168\) 0 0
\(169\) 1256.72 0.572017
\(170\) −4146.10 −1.87054
\(171\) 0 0
\(172\) −2407.22 −1.06715
\(173\) 2269.80 0.997513 0.498757 0.866742i \(-0.333790\pi\)
0.498757 + 0.866742i \(0.333790\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −120.374 −0.0515543
\(177\) 0 0
\(178\) −1536.36 −0.646937
\(179\) 3666.49 1.53098 0.765492 0.643445i \(-0.222495\pi\)
0.765492 + 0.643445i \(0.222495\pi\)
\(180\) 0 0
\(181\) 3237.15 1.32937 0.664685 0.747124i \(-0.268566\pi\)
0.664685 + 0.747124i \(0.268566\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8158.62 3.26881
\(185\) −5523.68 −2.19518
\(186\) 0 0
\(187\) −46.2464 −0.0180849
\(188\) 4183.53 1.62295
\(189\) 0 0
\(190\) −12489.2 −4.76873
\(191\) −3353.99 −1.27061 −0.635304 0.772262i \(-0.719125\pi\)
−0.635304 + 0.772262i \(0.719125\pi\)
\(192\) 0 0
\(193\) −5321.04 −1.98454 −0.992271 0.124086i \(-0.960400\pi\)
−0.992271 + 0.124086i \(0.960400\pi\)
\(194\) −4652.45 −1.72178
\(195\) 0 0
\(196\) 0 0
\(197\) 1750.53 0.633098 0.316549 0.948576i \(-0.397476\pi\)
0.316549 + 0.948576i \(0.397476\pi\)
\(198\) 0 0
\(199\) 1572.10 0.560017 0.280009 0.959997i \(-0.409663\pi\)
0.280009 + 0.959997i \(0.409663\pi\)
\(200\) 11165.9 3.94774
\(201\) 0 0
\(202\) −1806.15 −0.629110
\(203\) 0 0
\(204\) 0 0
\(205\) −1500.39 −0.511179
\(206\) −723.574 −0.244727
\(207\) 0 0
\(208\) −6697.08 −2.23250
\(209\) −139.306 −0.0461054
\(210\) 0 0
\(211\) −2884.12 −0.941000 −0.470500 0.882400i \(-0.655926\pi\)
−0.470500 + 0.882400i \(0.655926\pi\)
\(212\) 6938.87 2.24794
\(213\) 0 0
\(214\) 2850.36 0.910497
\(215\) 2497.42 0.792198
\(216\) 0 0
\(217\) 0 0
\(218\) −2330.84 −0.724150
\(219\) 0 0
\(220\) 352.188 0.107930
\(221\) −2572.94 −0.783143
\(222\) 0 0
\(223\) 1267.27 0.380551 0.190276 0.981731i \(-0.439062\pi\)
0.190276 + 0.981731i \(0.439062\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3299.24 −0.971071
\(227\) 910.785 0.266304 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(228\) 0 0
\(229\) 677.564 0.195523 0.0977613 0.995210i \(-0.468832\pi\)
0.0977613 + 0.995210i \(0.468832\pi\)
\(230\) −15285.7 −4.38220
\(231\) 0 0
\(232\) 3236.20 0.915807
\(233\) −3312.78 −0.931449 −0.465724 0.884930i \(-0.654206\pi\)
−0.465724 + 0.884930i \(0.654206\pi\)
\(234\) 0 0
\(235\) −4340.28 −1.20480
\(236\) 12958.8 3.57435
\(237\) 0 0
\(238\) 0 0
\(239\) 4933.62 1.33527 0.667634 0.744490i \(-0.267307\pi\)
0.667634 + 0.744490i \(0.267307\pi\)
\(240\) 0 0
\(241\) −3931.98 −1.05096 −0.525479 0.850807i \(-0.676114\pi\)
−0.525479 + 0.850807i \(0.676114\pi\)
\(242\) −6771.56 −1.79873
\(243\) 0 0
\(244\) −6958.20 −1.82563
\(245\) 0 0
\(246\) 0 0
\(247\) −7750.38 −1.99654
\(248\) 2829.42 0.724470
\(249\) 0 0
\(250\) −9082.38 −2.29768
\(251\) 1637.68 0.411831 0.205915 0.978570i \(-0.433983\pi\)
0.205915 + 0.978570i \(0.433983\pi\)
\(252\) 0 0
\(253\) −170.499 −0.0423683
\(254\) 5641.86 1.39371
\(255\) 0 0
\(256\) −7452.90 −1.81956
\(257\) −7868.11 −1.90973 −0.954863 0.297047i \(-0.903998\pi\)
−0.954863 + 0.297047i \(0.903998\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 19594.2 4.67376
\(261\) 0 0
\(262\) 3599.01 0.848654
\(263\) 3047.36 0.714480 0.357240 0.934013i \(-0.383718\pi\)
0.357240 + 0.934013i \(0.383718\pi\)
\(264\) 0 0
\(265\) −7198.86 −1.66876
\(266\) 0 0
\(267\) 0 0
\(268\) −13087.3 −2.98297
\(269\) 2891.25 0.655326 0.327663 0.944795i \(-0.393739\pi\)
0.327663 + 0.944795i \(0.393739\pi\)
\(270\) 0 0
\(271\) −1804.39 −0.404461 −0.202230 0.979338i \(-0.564819\pi\)
−0.202230 + 0.979338i \(0.564819\pi\)
\(272\) 4989.17 1.11218
\(273\) 0 0
\(274\) −1628.03 −0.358951
\(275\) −233.345 −0.0511682
\(276\) 0 0
\(277\) −309.700 −0.0671772 −0.0335886 0.999436i \(-0.510694\pi\)
−0.0335886 + 0.999436i \(0.510694\pi\)
\(278\) −2236.84 −0.482577
\(279\) 0 0
\(280\) 0 0
\(281\) −1192.16 −0.253090 −0.126545 0.991961i \(-0.540389\pi\)
−0.126545 + 0.991961i \(0.540389\pi\)
\(282\) 0 0
\(283\) 2248.09 0.472210 0.236105 0.971728i \(-0.424129\pi\)
0.236105 + 0.971728i \(0.424129\pi\)
\(284\) −12288.3 −2.56753
\(285\) 0 0
\(286\) 316.090 0.0653523
\(287\) 0 0
\(288\) 0 0
\(289\) −2996.22 −0.609856
\(290\) −6063.22 −1.22774
\(291\) 0 0
\(292\) 4936.53 0.989344
\(293\) −9472.83 −1.88877 −0.944383 0.328847i \(-0.893340\pi\)
−0.944383 + 0.328847i \(0.893340\pi\)
\(294\) 0 0
\(295\) −13444.4 −2.65343
\(296\) 15011.9 2.94780
\(297\) 0 0
\(298\) 6936.59 1.34841
\(299\) −9485.80 −1.83471
\(300\) 0 0
\(301\) 0 0
\(302\) 11250.0 2.14359
\(303\) 0 0
\(304\) 15028.7 2.83538
\(305\) 7218.92 1.35526
\(306\) 0 0
\(307\) −2379.45 −0.442352 −0.221176 0.975234i \(-0.570990\pi\)
−0.221176 + 0.975234i \(0.570990\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5301.09 −0.971231
\(311\) −1756.21 −0.320210 −0.160105 0.987100i \(-0.551183\pi\)
−0.160105 + 0.987100i \(0.551183\pi\)
\(312\) 0 0
\(313\) 8379.01 1.51313 0.756565 0.653918i \(-0.226876\pi\)
0.756565 + 0.653918i \(0.226876\pi\)
\(314\) −5647.37 −1.01497
\(315\) 0 0
\(316\) 15319.3 2.72714
\(317\) 6933.28 1.22843 0.614214 0.789139i \(-0.289473\pi\)
0.614214 + 0.789139i \(0.289473\pi\)
\(318\) 0 0
\(319\) −67.6303 −0.0118701
\(320\) 299.095 0.0522498
\(321\) 0 0
\(322\) 0 0
\(323\) 5773.85 0.994630
\(324\) 0 0
\(325\) −12982.3 −2.21578
\(326\) 7522.91 1.27808
\(327\) 0 0
\(328\) 4077.66 0.686437
\(329\) 0 0
\(330\) 0 0
\(331\) 11171.1 1.85504 0.927520 0.373773i \(-0.121936\pi\)
0.927520 + 0.373773i \(0.121936\pi\)
\(332\) 16537.1 2.73372
\(333\) 0 0
\(334\) 9413.16 1.54211
\(335\) 13577.7 2.21442
\(336\) 0 0
\(337\) −6360.51 −1.02813 −0.514064 0.857752i \(-0.671861\pi\)
−0.514064 + 0.857752i \(0.671861\pi\)
\(338\) 6399.03 1.02977
\(339\) 0 0
\(340\) −14597.2 −2.32836
\(341\) −59.1293 −0.00939012
\(342\) 0 0
\(343\) 0 0
\(344\) −6787.33 −1.06380
\(345\) 0 0
\(346\) 11557.5 1.79576
\(347\) 1727.97 0.267326 0.133663 0.991027i \(-0.457326\pi\)
0.133663 + 0.991027i \(0.457326\pi\)
\(348\) 0 0
\(349\) −2514.58 −0.385680 −0.192840 0.981230i \(-0.561770\pi\)
−0.192840 + 0.981230i \(0.561770\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −185.789 −0.0281323
\(353\) 5642.22 0.850722 0.425361 0.905024i \(-0.360147\pi\)
0.425361 + 0.905024i \(0.360147\pi\)
\(354\) 0 0
\(355\) 12748.7 1.90601
\(356\) −5409.05 −0.805278
\(357\) 0 0
\(358\) 18669.2 2.75614
\(359\) 1725.87 0.253727 0.126863 0.991920i \(-0.459509\pi\)
0.126863 + 0.991920i \(0.459509\pi\)
\(360\) 0 0
\(361\) 10533.4 1.53570
\(362\) 16483.1 2.39318
\(363\) 0 0
\(364\) 0 0
\(365\) −5121.50 −0.734442
\(366\) 0 0
\(367\) 8800.56 1.25173 0.625866 0.779931i \(-0.284746\pi\)
0.625866 + 0.779931i \(0.284746\pi\)
\(368\) 18393.8 2.60556
\(369\) 0 0
\(370\) −28125.7 −3.95185
\(371\) 0 0
\(372\) 0 0
\(373\) −10805.8 −1.50001 −0.750005 0.661432i \(-0.769949\pi\)
−0.750005 + 0.661432i \(0.769949\pi\)
\(374\) −235.479 −0.0325570
\(375\) 0 0
\(376\) 11795.7 1.61787
\(377\) −3762.64 −0.514021
\(378\) 0 0
\(379\) −7808.27 −1.05827 −0.529134 0.848538i \(-0.677483\pi\)
−0.529134 + 0.848538i \(0.677483\pi\)
\(380\) −43970.6 −5.93591
\(381\) 0 0
\(382\) −17078.0 −2.28740
\(383\) −6071.57 −0.810033 −0.405016 0.914309i \(-0.632734\pi\)
−0.405016 + 0.914309i \(0.632734\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −27093.9 −3.57265
\(387\) 0 0
\(388\) −16379.9 −2.14320
\(389\) −2769.36 −0.360956 −0.180478 0.983579i \(-0.557764\pi\)
−0.180478 + 0.983579i \(0.557764\pi\)
\(390\) 0 0
\(391\) 7066.69 0.914010
\(392\) 0 0
\(393\) 0 0
\(394\) 8913.44 1.13973
\(395\) −15893.3 −2.02450
\(396\) 0 0
\(397\) 8064.82 1.01955 0.509775 0.860308i \(-0.329729\pi\)
0.509775 + 0.860308i \(0.329729\pi\)
\(398\) 8004.90 1.00816
\(399\) 0 0
\(400\) 25173.8 3.14673
\(401\) −4.73201 −0.000589290 0 −0.000294645 1.00000i \(-0.500094\pi\)
−0.000294645 1.00000i \(0.500094\pi\)
\(402\) 0 0
\(403\) −3289.69 −0.406628
\(404\) −6358.92 −0.783089
\(405\) 0 0
\(406\) 0 0
\(407\) −313.719 −0.0382076
\(408\) 0 0
\(409\) −12101.6 −1.46304 −0.731522 0.681818i \(-0.761190\pi\)
−0.731522 + 0.681818i \(0.761190\pi\)
\(410\) −7639.74 −0.920244
\(411\) 0 0
\(412\) −2547.49 −0.304626
\(413\) 0 0
\(414\) 0 0
\(415\) −17156.8 −2.02938
\(416\) −10336.4 −1.21824
\(417\) 0 0
\(418\) −709.326 −0.0830007
\(419\) 13439.5 1.56698 0.783488 0.621407i \(-0.213438\pi\)
0.783488 + 0.621407i \(0.213438\pi\)
\(420\) 0 0
\(421\) −9748.84 −1.12857 −0.564287 0.825579i \(-0.690849\pi\)
−0.564287 + 0.825579i \(0.690849\pi\)
\(422\) −14685.5 −1.69402
\(423\) 0 0
\(424\) 19564.6 2.24090
\(425\) 9671.49 1.10385
\(426\) 0 0
\(427\) 0 0
\(428\) 10035.3 1.13335
\(429\) 0 0
\(430\) 12716.5 1.42614
\(431\) −90.9615 −0.0101658 −0.00508290 0.999987i \(-0.501618\pi\)
−0.00508290 + 0.999987i \(0.501618\pi\)
\(432\) 0 0
\(433\) 13636.5 1.51346 0.756728 0.653730i \(-0.226797\pi\)
0.756728 + 0.653730i \(0.226797\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8206.21 −0.901390
\(437\) 21286.8 2.33017
\(438\) 0 0
\(439\) −2295.45 −0.249558 −0.124779 0.992185i \(-0.539822\pi\)
−0.124779 + 0.992185i \(0.539822\pi\)
\(440\) 993.018 0.107592
\(441\) 0 0
\(442\) −13101.0 −1.40984
\(443\) 2112.15 0.226526 0.113263 0.993565i \(-0.463870\pi\)
0.113263 + 0.993565i \(0.463870\pi\)
\(444\) 0 0
\(445\) 5611.72 0.597800
\(446\) 6452.76 0.685083
\(447\) 0 0
\(448\) 0 0
\(449\) −6924.57 −0.727818 −0.363909 0.931434i \(-0.618558\pi\)
−0.363909 + 0.931434i \(0.618558\pi\)
\(450\) 0 0
\(451\) −85.2151 −0.00889716
\(452\) −11615.6 −1.20875
\(453\) 0 0
\(454\) 4637.57 0.479410
\(455\) 0 0
\(456\) 0 0
\(457\) −11733.6 −1.20104 −0.600519 0.799610i \(-0.705039\pi\)
−0.600519 + 0.799610i \(0.705039\pi\)
\(458\) 3450.05 0.351987
\(459\) 0 0
\(460\) −53816.2 −5.45477
\(461\) 4623.07 0.467067 0.233533 0.972349i \(-0.424971\pi\)
0.233533 + 0.972349i \(0.424971\pi\)
\(462\) 0 0
\(463\) 932.150 0.0935652 0.0467826 0.998905i \(-0.485103\pi\)
0.0467826 + 0.998905i \(0.485103\pi\)
\(464\) 7296.11 0.729986
\(465\) 0 0
\(466\) −16868.2 −1.67683
\(467\) −2223.55 −0.220329 −0.110164 0.993913i \(-0.535138\pi\)
−0.110164 + 0.993913i \(0.535138\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −22100.0 −2.16893
\(471\) 0 0
\(472\) 36538.2 3.56315
\(473\) 141.842 0.0137883
\(474\) 0 0
\(475\) 29133.1 2.81414
\(476\) 0 0
\(477\) 0 0
\(478\) 25121.2 2.40380
\(479\) 1738.85 0.165867 0.0829333 0.996555i \(-0.473571\pi\)
0.0829333 + 0.996555i \(0.473571\pi\)
\(480\) 0 0
\(481\) −17453.9 −1.65453
\(482\) −20021.0 −1.89197
\(483\) 0 0
\(484\) −23840.6 −2.23898
\(485\) 16993.6 1.59101
\(486\) 0 0
\(487\) −13284.4 −1.23608 −0.618041 0.786146i \(-0.712074\pi\)
−0.618041 + 0.786146i \(0.712074\pi\)
\(488\) −19619.1 −1.81991
\(489\) 0 0
\(490\) 0 0
\(491\) −7762.78 −0.713501 −0.356751 0.934200i \(-0.616115\pi\)
−0.356751 + 0.934200i \(0.616115\pi\)
\(492\) 0 0
\(493\) 2803.08 0.256074
\(494\) −39463.7 −3.59424
\(495\) 0 0
\(496\) 6379.01 0.577472
\(497\) 0 0
\(498\) 0 0
\(499\) 18195.4 1.63234 0.816170 0.577811i \(-0.196093\pi\)
0.816170 + 0.577811i \(0.196093\pi\)
\(500\) −31976.3 −2.86005
\(501\) 0 0
\(502\) 8338.81 0.741393
\(503\) 3509.89 0.311130 0.155565 0.987826i \(-0.450280\pi\)
0.155565 + 0.987826i \(0.450280\pi\)
\(504\) 0 0
\(505\) 6597.17 0.581328
\(506\) −868.154 −0.0762730
\(507\) 0 0
\(508\) 19863.3 1.73483
\(509\) 618.568 0.0538655 0.0269328 0.999637i \(-0.491426\pi\)
0.0269328 + 0.999637i \(0.491426\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −26037.3 −2.24746
\(513\) 0 0
\(514\) −40063.2 −3.43796
\(515\) 2642.94 0.226139
\(516\) 0 0
\(517\) −246.507 −0.0209698
\(518\) 0 0
\(519\) 0 0
\(520\) 55247.1 4.65912
\(521\) −19934.5 −1.67629 −0.838143 0.545450i \(-0.816359\pi\)
−0.838143 + 0.545450i \(0.816359\pi\)
\(522\) 0 0
\(523\) 4547.48 0.380206 0.190103 0.981764i \(-0.439118\pi\)
0.190103 + 0.981764i \(0.439118\pi\)
\(524\) 12671.0 1.05637
\(525\) 0 0
\(526\) 15516.7 1.28623
\(527\) 2450.74 0.202573
\(528\) 0 0
\(529\) 13886.2 1.14130
\(530\) −36655.5 −3.00417
\(531\) 0 0
\(532\) 0 0
\(533\) −4740.98 −0.385281
\(534\) 0 0
\(535\) −10411.3 −0.841342
\(536\) −36900.6 −2.97363
\(537\) 0 0
\(538\) 14721.8 1.17974
\(539\) 0 0
\(540\) 0 0
\(541\) −15500.0 −1.23179 −0.615895 0.787828i \(-0.711206\pi\)
−0.615895 + 0.787828i \(0.711206\pi\)
\(542\) −9187.66 −0.728125
\(543\) 0 0
\(544\) 7700.41 0.606897
\(545\) 8513.68 0.669149
\(546\) 0 0
\(547\) −4515.69 −0.352974 −0.176487 0.984303i \(-0.556473\pi\)
−0.176487 + 0.984303i \(0.556473\pi\)
\(548\) −5731.79 −0.446807
\(549\) 0 0
\(550\) −1188.16 −0.0921149
\(551\) 8443.62 0.652832
\(552\) 0 0
\(553\) 0 0
\(554\) −1576.95 −0.120935
\(555\) 0 0
\(556\) −7875.23 −0.600691
\(557\) 11635.4 0.885112 0.442556 0.896741i \(-0.354072\pi\)
0.442556 + 0.896741i \(0.354072\pi\)
\(558\) 0 0
\(559\) 7891.43 0.597088
\(560\) 0 0
\(561\) 0 0
\(562\) −6070.29 −0.455623
\(563\) −2088.05 −0.156307 −0.0781536 0.996941i \(-0.524902\pi\)
−0.0781536 + 0.996941i \(0.524902\pi\)
\(564\) 0 0
\(565\) 12050.8 0.897315
\(566\) 11446.9 0.850090
\(567\) 0 0
\(568\) −34647.8 −2.55948
\(569\) 22610.1 1.66585 0.832923 0.553388i \(-0.186665\pi\)
0.832923 + 0.553388i \(0.186665\pi\)
\(570\) 0 0
\(571\) 7300.32 0.535042 0.267521 0.963552i \(-0.413796\pi\)
0.267521 + 0.963552i \(0.413796\pi\)
\(572\) 1112.86 0.0813477
\(573\) 0 0
\(574\) 0 0
\(575\) 35656.4 2.58604
\(576\) 0 0
\(577\) −23134.9 −1.66918 −0.834592 0.550869i \(-0.814296\pi\)
−0.834592 + 0.550869i \(0.814296\pi\)
\(578\) −15256.3 −1.09789
\(579\) 0 0
\(580\) −21346.8 −1.52824
\(581\) 0 0
\(582\) 0 0
\(583\) −408.862 −0.0290452
\(584\) 13918.9 0.986245
\(585\) 0 0
\(586\) −48234.1 −3.40023
\(587\) 263.501 0.0185278 0.00926392 0.999957i \(-0.497051\pi\)
0.00926392 + 0.999957i \(0.497051\pi\)
\(588\) 0 0
\(589\) 7382.28 0.516437
\(590\) −68456.5 −4.77680
\(591\) 0 0
\(592\) 33844.7 2.34968
\(593\) 26652.2 1.84566 0.922829 0.385211i \(-0.125871\pi\)
0.922829 + 0.385211i \(0.125871\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24421.7 1.67844
\(597\) 0 0
\(598\) −48300.2 −3.30291
\(599\) −14447.5 −0.985491 −0.492746 0.870173i \(-0.664007\pi\)
−0.492746 + 0.870173i \(0.664007\pi\)
\(600\) 0 0
\(601\) −26357.9 −1.78896 −0.894478 0.447112i \(-0.852452\pi\)
−0.894478 + 0.447112i \(0.852452\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 39607.8 2.66824
\(605\) 24733.9 1.66211
\(606\) 0 0
\(607\) 7693.50 0.514447 0.257224 0.966352i \(-0.417192\pi\)
0.257224 + 0.966352i \(0.417192\pi\)
\(608\) 23195.7 1.54722
\(609\) 0 0
\(610\) 36757.6 2.43979
\(611\) −13714.6 −0.908072
\(612\) 0 0
\(613\) 766.271 0.0504884 0.0252442 0.999681i \(-0.491964\pi\)
0.0252442 + 0.999681i \(0.491964\pi\)
\(614\) −12115.8 −0.796340
\(615\) 0 0
\(616\) 0 0
\(617\) −17976.0 −1.17291 −0.586455 0.809982i \(-0.699477\pi\)
−0.586455 + 0.809982i \(0.699477\pi\)
\(618\) 0 0
\(619\) −7552.67 −0.490416 −0.245208 0.969471i \(-0.578856\pi\)
−0.245208 + 0.969471i \(0.578856\pi\)
\(620\) −18663.6 −1.20895
\(621\) 0 0
\(622\) −8942.32 −0.576454
\(623\) 0 0
\(624\) 0 0
\(625\) 5561.19 0.355916
\(626\) 42664.6 2.72399
\(627\) 0 0
\(628\) −19882.7 −1.26338
\(629\) 13002.8 0.824251
\(630\) 0 0
\(631\) −13073.2 −0.824779 −0.412390 0.911008i \(-0.635306\pi\)
−0.412390 + 0.911008i \(0.635306\pi\)
\(632\) 43193.7 2.71860
\(633\) 0 0
\(634\) 35303.2 2.21146
\(635\) −20607.6 −1.28785
\(636\) 0 0
\(637\) 0 0
\(638\) −344.363 −0.0213690
\(639\) 0 0
\(640\) 27692.5 1.71038
\(641\) 11900.9 0.733318 0.366659 0.930355i \(-0.380502\pi\)
0.366659 + 0.930355i \(0.380502\pi\)
\(642\) 0 0
\(643\) 27777.9 1.70366 0.851829 0.523820i \(-0.175494\pi\)
0.851829 + 0.523820i \(0.175494\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 29399.5 1.79057
\(647\) −14688.0 −0.892496 −0.446248 0.894909i \(-0.647240\pi\)
−0.446248 + 0.894909i \(0.647240\pi\)
\(648\) 0 0
\(649\) −763.577 −0.0461834
\(650\) −66103.7 −3.98893
\(651\) 0 0
\(652\) 26485.9 1.59090
\(653\) 17485.7 1.04788 0.523941 0.851754i \(-0.324461\pi\)
0.523941 + 0.851754i \(0.324461\pi\)
\(654\) 0 0
\(655\) −13145.8 −0.784196
\(656\) 9193.20 0.547156
\(657\) 0 0
\(658\) 0 0
\(659\) −18436.4 −1.08980 −0.544902 0.838500i \(-0.683433\pi\)
−0.544902 + 0.838500i \(0.683433\pi\)
\(660\) 0 0
\(661\) 9836.24 0.578798 0.289399 0.957209i \(-0.406545\pi\)
0.289399 + 0.957209i \(0.406545\pi\)
\(662\) 56881.4 3.33951
\(663\) 0 0
\(664\) 46627.6 2.72515
\(665\) 0 0
\(666\) 0 0
\(667\) 10334.3 0.599917
\(668\) 33140.9 1.91955
\(669\) 0 0
\(670\) 69135.5 3.98647
\(671\) 410.001 0.0235885
\(672\) 0 0
\(673\) −9955.62 −0.570224 −0.285112 0.958494i \(-0.592031\pi\)
−0.285112 + 0.958494i \(0.592031\pi\)
\(674\) −32386.7 −1.85088
\(675\) 0 0
\(676\) 22529.1 1.28181
\(677\) −12851.6 −0.729581 −0.364791 0.931090i \(-0.618859\pi\)
−0.364791 + 0.931090i \(0.618859\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −41157.7 −2.32107
\(681\) 0 0
\(682\) −301.077 −0.0169045
\(683\) 17472.2 0.978853 0.489426 0.872045i \(-0.337206\pi\)
0.489426 + 0.872045i \(0.337206\pi\)
\(684\) 0 0
\(685\) 5946.56 0.331688
\(686\) 0 0
\(687\) 0 0
\(688\) −15302.2 −0.847952
\(689\) −22747.2 −1.25777
\(690\) 0 0
\(691\) 8275.06 0.455569 0.227784 0.973712i \(-0.426852\pi\)
0.227784 + 0.973712i \(0.426852\pi\)
\(692\) 40690.4 2.23528
\(693\) 0 0
\(694\) 8798.55 0.481251
\(695\) 8170.31 0.445924
\(696\) 0 0
\(697\) 3531.92 0.191938
\(698\) −12803.8 −0.694315
\(699\) 0 0
\(700\) 0 0
\(701\) 30709.9 1.65463 0.827315 0.561738i \(-0.189867\pi\)
0.827315 + 0.561738i \(0.189867\pi\)
\(702\) 0 0
\(703\) 39167.8 2.10134
\(704\) 16.9872 0.000909418 0
\(705\) 0 0
\(706\) 28729.3 1.53150
\(707\) 0 0
\(708\) 0 0
\(709\) −18261.0 −0.967287 −0.483643 0.875265i \(-0.660687\pi\)
−0.483643 + 0.875265i \(0.660687\pi\)
\(710\) 64914.6 3.43127
\(711\) 0 0
\(712\) −15251.2 −0.802756
\(713\) 9035.28 0.474578
\(714\) 0 0
\(715\) −1154.55 −0.0603886
\(716\) 65728.6 3.43072
\(717\) 0 0
\(718\) 8787.86 0.456769
\(719\) 77.4789 0.00401874 0.00200937 0.999998i \(-0.499360\pi\)
0.00200937 + 0.999998i \(0.499360\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 53634.3 2.76463
\(723\) 0 0
\(724\) 58032.0 2.97893
\(725\) 14143.5 0.724519
\(726\) 0 0
\(727\) −7339.56 −0.374428 −0.187214 0.982319i \(-0.559946\pi\)
−0.187214 + 0.982319i \(0.559946\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −26077.8 −1.32217
\(731\) −5878.93 −0.297455
\(732\) 0 0
\(733\) −21479.9 −1.08237 −0.541185 0.840903i \(-0.682024\pi\)
−0.541185 + 0.840903i \(0.682024\pi\)
\(734\) 44811.0 2.25341
\(735\) 0 0
\(736\) 28389.5 1.42181
\(737\) 771.150 0.0385423
\(738\) 0 0
\(739\) 19042.0 0.947863 0.473932 0.880562i \(-0.342834\pi\)
0.473932 + 0.880562i \(0.342834\pi\)
\(740\) −99022.2 −4.91909
\(741\) 0 0
\(742\) 0 0
\(743\) 31563.4 1.55848 0.779238 0.626728i \(-0.215606\pi\)
0.779238 + 0.626728i \(0.215606\pi\)
\(744\) 0 0
\(745\) −25336.7 −1.24599
\(746\) −55021.5 −2.70038
\(747\) 0 0
\(748\) −829.052 −0.0405256
\(749\) 0 0
\(750\) 0 0
\(751\) 30254.1 1.47003 0.735013 0.678053i \(-0.237176\pi\)
0.735013 + 0.678053i \(0.237176\pi\)
\(752\) 26593.8 1.28960
\(753\) 0 0
\(754\) −19158.8 −0.925360
\(755\) −41091.8 −1.98077
\(756\) 0 0
\(757\) 3384.65 0.162506 0.0812531 0.996693i \(-0.474108\pi\)
0.0812531 + 0.996693i \(0.474108\pi\)
\(758\) −39758.5 −1.90514
\(759\) 0 0
\(760\) −123978. −5.91731
\(761\) −552.737 −0.0263294 −0.0131647 0.999913i \(-0.504191\pi\)
−0.0131647 + 0.999913i \(0.504191\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −60126.4 −2.84725
\(765\) 0 0
\(766\) −30915.5 −1.45825
\(767\) −42482.0 −1.99992
\(768\) 0 0
\(769\) 6199.24 0.290703 0.145351 0.989380i \(-0.453569\pi\)
0.145351 + 0.989380i \(0.453569\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −95389.5 −4.44708
\(773\) −30857.1 −1.43577 −0.717887 0.696160i \(-0.754891\pi\)
−0.717887 + 0.696160i \(0.754891\pi\)
\(774\) 0 0
\(775\) 12365.7 0.573147
\(776\) −46184.2 −2.13649
\(777\) 0 0
\(778\) −14101.1 −0.649807
\(779\) 10639.1 0.489326
\(780\) 0 0
\(781\) 724.069 0.0331744
\(782\) 35982.5 1.64544
\(783\) 0 0
\(784\) 0 0
\(785\) 20627.7 0.937876
\(786\) 0 0
\(787\) 3181.28 0.144092 0.0720459 0.997401i \(-0.477047\pi\)
0.0720459 + 0.997401i \(0.477047\pi\)
\(788\) 31381.6 1.41868
\(789\) 0 0
\(790\) −80926.0 −3.64458
\(791\) 0 0
\(792\) 0 0
\(793\) 22810.6 1.02147
\(794\) 41064.8 1.83543
\(795\) 0 0
\(796\) 28182.9 1.25492
\(797\) −10742.3 −0.477429 −0.238714 0.971090i \(-0.576726\pi\)
−0.238714 + 0.971090i \(0.576726\pi\)
\(798\) 0 0
\(799\) 10217.0 0.452381
\(800\) 38853.9 1.71712
\(801\) 0 0
\(802\) −24.0947 −0.00106086
\(803\) −290.877 −0.0127831
\(804\) 0 0
\(805\) 0 0
\(806\) −16750.6 −0.732027
\(807\) 0 0
\(808\) −17929.4 −0.780636
\(809\) 17671.9 0.767998 0.383999 0.923334i \(-0.374547\pi\)
0.383999 + 0.923334i \(0.374547\pi\)
\(810\) 0 0
\(811\) −34620.2 −1.49899 −0.749494 0.662012i \(-0.769703\pi\)
−0.749494 + 0.662012i \(0.769703\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1597.41 −0.0687827
\(815\) −27478.3 −1.18101
\(816\) 0 0
\(817\) −17708.9 −0.758330
\(818\) −61619.4 −2.63383
\(819\) 0 0
\(820\) −26897.2 −1.14548
\(821\) 38889.0 1.65315 0.826574 0.562829i \(-0.190287\pi\)
0.826574 + 0.562829i \(0.190287\pi\)
\(822\) 0 0
\(823\) −18404.8 −0.779529 −0.389764 0.920915i \(-0.627444\pi\)
−0.389764 + 0.920915i \(0.627444\pi\)
\(824\) −7182.81 −0.303671
\(825\) 0 0
\(826\) 0 0
\(827\) −20341.4 −0.855307 −0.427654 0.903943i \(-0.640660\pi\)
−0.427654 + 0.903943i \(0.640660\pi\)
\(828\) 0 0
\(829\) −19988.8 −0.837442 −0.418721 0.908115i \(-0.637522\pi\)
−0.418721 + 0.908115i \(0.637522\pi\)
\(830\) −87359.6 −3.65337
\(831\) 0 0
\(832\) 945.093 0.0393812
\(833\) 0 0
\(834\) 0 0
\(835\) −34382.7 −1.42498
\(836\) −2497.33 −0.103316
\(837\) 0 0
\(838\) 68431.9 2.82093
\(839\) 556.650 0.0229055 0.0114527 0.999934i \(-0.496354\pi\)
0.0114527 + 0.999934i \(0.496354\pi\)
\(840\) 0 0
\(841\) −20289.8 −0.831924
\(842\) −49639.5 −2.03170
\(843\) 0 0
\(844\) −51703.2 −2.10865
\(845\) −23373.2 −0.951553
\(846\) 0 0
\(847\) 0 0
\(848\) 44109.0 1.78621
\(849\) 0 0
\(850\) 49245.7 1.98719
\(851\) 47938.0 1.93101
\(852\) 0 0
\(853\) −16702.9 −0.670455 −0.335227 0.942137i \(-0.608813\pi\)
−0.335227 + 0.942137i \(0.608813\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 28295.1 1.12980
\(857\) −8216.56 −0.327506 −0.163753 0.986501i \(-0.552360\pi\)
−0.163753 + 0.986501i \(0.552360\pi\)
\(858\) 0 0
\(859\) −19311.8 −0.767068 −0.383534 0.923527i \(-0.625293\pi\)
−0.383534 + 0.923527i \(0.625293\pi\)
\(860\) 44770.8 1.77520
\(861\) 0 0
\(862\) −463.161 −0.0183009
\(863\) −4145.65 −0.163522 −0.0817611 0.996652i \(-0.526054\pi\)
−0.0817611 + 0.996652i \(0.526054\pi\)
\(864\) 0 0
\(865\) −42215.0 −1.65937
\(866\) 69434.7 2.72458
\(867\) 0 0
\(868\) 0 0
\(869\) −902.664 −0.0352368
\(870\) 0 0
\(871\) 42903.3 1.66903
\(872\) −23137.9 −0.898566
\(873\) 0 0
\(874\) 108389. 4.19486
\(875\) 0 0
\(876\) 0 0
\(877\) 6801.41 0.261878 0.130939 0.991390i \(-0.458201\pi\)
0.130939 + 0.991390i \(0.458201\pi\)
\(878\) −11688.1 −0.449263
\(879\) 0 0
\(880\) 2238.79 0.0857608
\(881\) −36057.6 −1.37890 −0.689451 0.724333i \(-0.742148\pi\)
−0.689451 + 0.724333i \(0.742148\pi\)
\(882\) 0 0
\(883\) −23743.3 −0.904898 −0.452449 0.891790i \(-0.649450\pi\)
−0.452449 + 0.891790i \(0.649450\pi\)
\(884\) −46124.7 −1.75491
\(885\) 0 0
\(886\) 10754.7 0.407801
\(887\) 34610.0 1.31014 0.655068 0.755570i \(-0.272640\pi\)
0.655068 + 0.755570i \(0.272640\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 28574.0 1.07618
\(891\) 0 0
\(892\) 22718.2 0.852761
\(893\) 30776.4 1.15330
\(894\) 0 0
\(895\) −68191.4 −2.54680
\(896\) 0 0
\(897\) 0 0
\(898\) −35258.8 −1.31025
\(899\) 3583.94 0.132960
\(900\) 0 0
\(901\) 16946.1 0.626590
\(902\) −433.902 −0.0160170
\(903\) 0 0
\(904\) −32751.0 −1.20496
\(905\) −60206.4 −2.21141
\(906\) 0 0
\(907\) 6863.70 0.251274 0.125637 0.992076i \(-0.459903\pi\)
0.125637 + 0.992076i \(0.459903\pi\)
\(908\) 16327.5 0.596748
\(909\) 0 0
\(910\) 0 0
\(911\) −13817.7 −0.502524 −0.251262 0.967919i \(-0.580846\pi\)
−0.251262 + 0.967919i \(0.580846\pi\)
\(912\) 0 0
\(913\) −974.424 −0.0353217
\(914\) −59745.6 −2.16216
\(915\) 0 0
\(916\) 12146.6 0.438138
\(917\) 0 0
\(918\) 0 0
\(919\) 30221.0 1.08476 0.542382 0.840132i \(-0.317523\pi\)
0.542382 + 0.840132i \(0.317523\pi\)
\(920\) −151739. −5.43769
\(921\) 0 0
\(922\) 23539.9 0.840831
\(923\) 40284.0 1.43658
\(924\) 0 0
\(925\) 65608.0 2.33208
\(926\) 4746.36 0.168440
\(927\) 0 0
\(928\) 11261.0 0.398341
\(929\) −52669.0 −1.86008 −0.930040 0.367459i \(-0.880228\pi\)
−0.930040 + 0.367459i \(0.880228\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −59387.8 −2.08724
\(933\) 0 0
\(934\) −11322.0 −0.396644
\(935\) 860.115 0.0300842
\(936\) 0 0
\(937\) −54528.9 −1.90116 −0.950578 0.310486i \(-0.899508\pi\)
−0.950578 + 0.310486i \(0.899508\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −77807.5 −2.69979
\(941\) 1414.91 0.0490169 0.0245085 0.999700i \(-0.492198\pi\)
0.0245085 + 0.999700i \(0.492198\pi\)
\(942\) 0 0
\(943\) 13021.3 0.449663
\(944\) 82376.4 2.84017
\(945\) 0 0
\(946\) 722.235 0.0248223
\(947\) 45287.6 1.55401 0.777005 0.629494i \(-0.216738\pi\)
0.777005 + 0.629494i \(0.216738\pi\)
\(948\) 0 0
\(949\) −16183.1 −0.553557
\(950\) 148341. 5.06613
\(951\) 0 0
\(952\) 0 0
\(953\) −21718.7 −0.738235 −0.369117 0.929383i \(-0.620340\pi\)
−0.369117 + 0.929383i \(0.620340\pi\)
\(954\) 0 0
\(955\) 62379.3 2.11366
\(956\) 88444.2 2.99214
\(957\) 0 0
\(958\) 8853.96 0.298599
\(959\) 0 0
\(960\) 0 0
\(961\) −26657.6 −0.894819
\(962\) −88872.6 −2.97855
\(963\) 0 0
\(964\) −70487.9 −2.35505
\(965\) 98963.6 3.30130
\(966\) 0 0
\(967\) 38754.4 1.28879 0.644393 0.764694i \(-0.277110\pi\)
0.644393 + 0.764694i \(0.277110\pi\)
\(968\) −67220.3 −2.23196
\(969\) 0 0
\(970\) 86528.8 2.86420
\(971\) −53591.6 −1.77120 −0.885601 0.464446i \(-0.846253\pi\)
−0.885601 + 0.464446i \(0.846253\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −67641.9 −2.22524
\(975\) 0 0
\(976\) −44231.8 −1.45064
\(977\) −18556.3 −0.607645 −0.303822 0.952729i \(-0.598263\pi\)
−0.303822 + 0.952729i \(0.598263\pi\)
\(978\) 0 0
\(979\) 318.719 0.0104048
\(980\) 0 0
\(981\) 0 0
\(982\) −39526.8 −1.28447
\(983\) 3557.17 0.115418 0.0577091 0.998333i \(-0.481620\pi\)
0.0577091 + 0.998333i \(0.481620\pi\)
\(984\) 0 0
\(985\) −32557.4 −1.05316
\(986\) 14272.8 0.460994
\(987\) 0 0
\(988\) −138940. −4.47396
\(989\) −21674.2 −0.696864
\(990\) 0 0
\(991\) 44666.7 1.43177 0.715886 0.698218i \(-0.246023\pi\)
0.715886 + 0.698218i \(0.246023\pi\)
\(992\) 9845.53 0.315117
\(993\) 0 0
\(994\) 0 0
\(995\) −29238.8 −0.931592
\(996\) 0 0
\(997\) −1142.64 −0.0362967 −0.0181484 0.999835i \(-0.505777\pi\)
−0.0181484 + 0.999835i \(0.505777\pi\)
\(998\) 92648.1 2.93860
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bj.1.7 7
3.2 odd 2 1323.4.a.bi.1.1 7
7.2 even 3 189.4.e.f.109.1 14
7.4 even 3 189.4.e.f.163.1 yes 14
7.6 odd 2 1323.4.a.bk.1.7 7
21.2 odd 6 189.4.e.g.109.7 yes 14
21.11 odd 6 189.4.e.g.163.7 yes 14
21.20 even 2 1323.4.a.bh.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.1 14 7.2 even 3
189.4.e.f.163.1 yes 14 7.4 even 3
189.4.e.g.109.7 yes 14 21.2 odd 6
189.4.e.g.163.7 yes 14 21.11 odd 6
1323.4.a.bh.1.1 7 21.20 even 2
1323.4.a.bi.1.1 7 3.2 odd 2
1323.4.a.bj.1.7 7 1.1 even 1 trivial
1323.4.a.bk.1.7 7 7.6 odd 2