Properties

Label 1323.4.a.bj.1.5
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.44197\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.44197 q^{2} -5.92074 q^{4} +6.60364 q^{5} -20.0732 q^{8} +O(q^{10})\) \(q+1.44197 q^{2} -5.92074 q^{4} +6.60364 q^{5} -20.0732 q^{8} +9.52221 q^{10} +29.1645 q^{11} +16.7957 q^{13} +18.4210 q^{16} +47.1072 q^{17} +3.43125 q^{19} -39.0984 q^{20} +42.0542 q^{22} -29.5426 q^{23} -81.3920 q^{25} +24.2188 q^{26} -223.924 q^{29} +120.781 q^{31} +187.148 q^{32} +67.9269 q^{34} +34.9788 q^{37} +4.94775 q^{38} -132.556 q^{40} -192.991 q^{41} -5.61007 q^{43} -172.675 q^{44} -42.5994 q^{46} +359.246 q^{47} -117.364 q^{50} -99.4428 q^{52} -33.2997 q^{53} +192.592 q^{55} -322.890 q^{58} -742.285 q^{59} +658.795 q^{61} +174.162 q^{62} +122.493 q^{64} +110.913 q^{65} +941.546 q^{67} -278.909 q^{68} +871.189 q^{71} -732.553 q^{73} +50.4382 q^{74} -20.3156 q^{76} +1342.65 q^{79} +121.646 q^{80} -278.287 q^{82} +588.404 q^{83} +311.079 q^{85} -8.08952 q^{86} -585.426 q^{88} +1247.78 q^{89} +174.914 q^{92} +518.020 q^{94} +22.6588 q^{95} +691.412 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8} + 12 q^{10} + 98 q^{11} - 124 q^{13} + 139 q^{16} + 30 q^{17} + 182 q^{19} - 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} - 245 q^{26} + 323 q^{29} + 26 q^{31} + 398 q^{32} + 114 q^{34} - 112 q^{37} + 1015 q^{38} - 147 q^{40} - 524 q^{41} + 8 q^{43} + 937 q^{44} - 339 q^{46} + 288 q^{47} + 2576 q^{50} - 1075 q^{52} + 1353 q^{53} + 156 q^{55} - 81 q^{58} + 165 q^{59} + 56 q^{61} - 1215 q^{62} - 1706 q^{64} + 1694 q^{65} - 988 q^{67} + 2625 q^{68} + 792 q^{71} + 1487 q^{73} + 2736 q^{74} + 1952 q^{76} - 1273 q^{79} - 2501 q^{80} - 2049 q^{82} - 1170 q^{83} + 216 q^{85} - 160 q^{86} + 9 q^{88} + 1058 q^{89} + 3834 q^{92} + 1653 q^{94} + 3260 q^{95} - 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.44197 0.509812 0.254906 0.966966i \(-0.417956\pi\)
0.254906 + 0.966966i \(0.417956\pi\)
\(3\) 0 0
\(4\) −5.92074 −0.740092
\(5\) 6.60364 0.590647 0.295324 0.955397i \(-0.404573\pi\)
0.295324 + 0.955397i \(0.404573\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −20.0732 −0.887119
\(9\) 0 0
\(10\) 9.52221 0.301119
\(11\) 29.1645 0.799403 0.399701 0.916645i \(-0.369114\pi\)
0.399701 + 0.916645i \(0.369114\pi\)
\(12\) 0 0
\(13\) 16.7957 0.358330 0.179165 0.983819i \(-0.442660\pi\)
0.179165 + 0.983819i \(0.442660\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 18.4210 0.287828
\(17\) 47.1072 0.672069 0.336034 0.941850i \(-0.390914\pi\)
0.336034 + 0.941850i \(0.390914\pi\)
\(18\) 0 0
\(19\) 3.43125 0.0414307 0.0207154 0.999785i \(-0.493406\pi\)
0.0207154 + 0.999785i \(0.493406\pi\)
\(20\) −39.0984 −0.437133
\(21\) 0 0
\(22\) 42.0542 0.407545
\(23\) −29.5426 −0.267828 −0.133914 0.990993i \(-0.542755\pi\)
−0.133914 + 0.990993i \(0.542755\pi\)
\(24\) 0 0
\(25\) −81.3920 −0.651136
\(26\) 24.2188 0.182681
\(27\) 0 0
\(28\) 0 0
\(29\) −223.924 −1.43385 −0.716924 0.697152i \(-0.754450\pi\)
−0.716924 + 0.697152i \(0.754450\pi\)
\(30\) 0 0
\(31\) 120.781 0.699770 0.349885 0.936793i \(-0.386221\pi\)
0.349885 + 0.936793i \(0.386221\pi\)
\(32\) 187.148 1.03386
\(33\) 0 0
\(34\) 67.9269 0.342628
\(35\) 0 0
\(36\) 0 0
\(37\) 34.9788 0.155418 0.0777092 0.996976i \(-0.475239\pi\)
0.0777092 + 0.996976i \(0.475239\pi\)
\(38\) 4.94775 0.0211219
\(39\) 0 0
\(40\) −132.556 −0.523974
\(41\) −192.991 −0.735127 −0.367563 0.929998i \(-0.619808\pi\)
−0.367563 + 0.929998i \(0.619808\pi\)
\(42\) 0 0
\(43\) −5.61007 −0.0198960 −0.00994799 0.999951i \(-0.503167\pi\)
−0.00994799 + 0.999951i \(0.503167\pi\)
\(44\) −172.675 −0.591632
\(45\) 0 0
\(46\) −42.5994 −0.136542
\(47\) 359.246 1.11492 0.557462 0.830202i \(-0.311775\pi\)
0.557462 + 0.830202i \(0.311775\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −117.364 −0.331957
\(51\) 0 0
\(52\) −99.4428 −0.265197
\(53\) −33.2997 −0.0863030 −0.0431515 0.999069i \(-0.513740\pi\)
−0.0431515 + 0.999069i \(0.513740\pi\)
\(54\) 0 0
\(55\) 192.592 0.472165
\(56\) 0 0
\(57\) 0 0
\(58\) −322.890 −0.730992
\(59\) −742.285 −1.63792 −0.818960 0.573851i \(-0.805449\pi\)
−0.818960 + 0.573851i \(0.805449\pi\)
\(60\) 0 0
\(61\) 658.795 1.38279 0.691394 0.722478i \(-0.256997\pi\)
0.691394 + 0.722478i \(0.256997\pi\)
\(62\) 174.162 0.356751
\(63\) 0 0
\(64\) 122.493 0.239244
\(65\) 110.913 0.211646
\(66\) 0 0
\(67\) 941.546 1.71684 0.858419 0.512949i \(-0.171447\pi\)
0.858419 + 0.512949i \(0.171447\pi\)
\(68\) −278.909 −0.497393
\(69\) 0 0
\(70\) 0 0
\(71\) 871.189 1.45621 0.728107 0.685464i \(-0.240400\pi\)
0.728107 + 0.685464i \(0.240400\pi\)
\(72\) 0 0
\(73\) −732.553 −1.17451 −0.587253 0.809404i \(-0.699790\pi\)
−0.587253 + 0.809404i \(0.699790\pi\)
\(74\) 50.4382 0.0792341
\(75\) 0 0
\(76\) −20.3156 −0.0306626
\(77\) 0 0
\(78\) 0 0
\(79\) 1342.65 1.91216 0.956078 0.293112i \(-0.0946910\pi\)
0.956078 + 0.293112i \(0.0946910\pi\)
\(80\) 121.646 0.170005
\(81\) 0 0
\(82\) −278.287 −0.374776
\(83\) 588.404 0.778142 0.389071 0.921208i \(-0.372796\pi\)
0.389071 + 0.921208i \(0.372796\pi\)
\(84\) 0 0
\(85\) 311.079 0.396956
\(86\) −8.08952 −0.0101432
\(87\) 0 0
\(88\) −585.426 −0.709166
\(89\) 1247.78 1.48612 0.743061 0.669224i \(-0.233373\pi\)
0.743061 + 0.669224i \(0.233373\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 174.914 0.198218
\(93\) 0 0
\(94\) 518.020 0.568401
\(95\) 22.6588 0.0244709
\(96\) 0 0
\(97\) 691.412 0.723735 0.361867 0.932230i \(-0.382139\pi\)
0.361867 + 0.932230i \(0.382139\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 481.901 0.481901
\(101\) −1352.30 −1.33227 −0.666134 0.745832i \(-0.732052\pi\)
−0.666134 + 0.745832i \(0.732052\pi\)
\(102\) 0 0
\(103\) −922.650 −0.882635 −0.441318 0.897351i \(-0.645489\pi\)
−0.441318 + 0.897351i \(0.645489\pi\)
\(104\) −337.143 −0.317881
\(105\) 0 0
\(106\) −48.0169 −0.0439983
\(107\) 1005.99 0.908908 0.454454 0.890770i \(-0.349834\pi\)
0.454454 + 0.890770i \(0.349834\pi\)
\(108\) 0 0
\(109\) 912.295 0.801670 0.400835 0.916150i \(-0.368720\pi\)
0.400835 + 0.916150i \(0.368720\pi\)
\(110\) 277.711 0.240715
\(111\) 0 0
\(112\) 0 0
\(113\) 1287.35 1.07172 0.535858 0.844308i \(-0.319988\pi\)
0.535858 + 0.844308i \(0.319988\pi\)
\(114\) 0 0
\(115\) −195.088 −0.158192
\(116\) 1325.79 1.06118
\(117\) 0 0
\(118\) −1070.35 −0.835031
\(119\) 0 0
\(120\) 0 0
\(121\) −480.431 −0.360955
\(122\) 949.959 0.704961
\(123\) 0 0
\(124\) −715.111 −0.517894
\(125\) −1362.94 −0.975239
\(126\) 0 0
\(127\) −521.970 −0.364704 −0.182352 0.983233i \(-0.558371\pi\)
−0.182352 + 0.983233i \(0.558371\pi\)
\(128\) −1320.55 −0.911888
\(129\) 0 0
\(130\) 159.932 0.107900
\(131\) 952.092 0.634998 0.317499 0.948259i \(-0.397157\pi\)
0.317499 + 0.948259i \(0.397157\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1357.68 0.875264
\(135\) 0 0
\(136\) −945.593 −0.596205
\(137\) 2917.18 1.81921 0.909604 0.415476i \(-0.136385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(138\) 0 0
\(139\) 1223.71 0.746717 0.373358 0.927687i \(-0.378206\pi\)
0.373358 + 0.927687i \(0.378206\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1256.22 0.742395
\(143\) 489.838 0.286450
\(144\) 0 0
\(145\) −1478.71 −0.846898
\(146\) −1056.32 −0.598776
\(147\) 0 0
\(148\) −207.100 −0.115024
\(149\) 2502.62 1.37599 0.687997 0.725714i \(-0.258490\pi\)
0.687997 + 0.725714i \(0.258490\pi\)
\(150\) 0 0
\(151\) −264.177 −0.142374 −0.0711868 0.997463i \(-0.522679\pi\)
−0.0711868 + 0.997463i \(0.522679\pi\)
\(152\) −68.8763 −0.0367540
\(153\) 0 0
\(154\) 0 0
\(155\) 797.592 0.413317
\(156\) 0 0
\(157\) 191.509 0.0973511 0.0486755 0.998815i \(-0.484500\pi\)
0.0486755 + 0.998815i \(0.484500\pi\)
\(158\) 1936.06 0.974839
\(159\) 0 0
\(160\) 1235.86 0.610645
\(161\) 0 0
\(162\) 0 0
\(163\) −1716.96 −0.825048 −0.412524 0.910947i \(-0.635353\pi\)
−0.412524 + 0.910947i \(0.635353\pi\)
\(164\) 1142.65 0.544062
\(165\) 0 0
\(166\) 848.458 0.396706
\(167\) −2927.93 −1.35671 −0.678354 0.734735i \(-0.737306\pi\)
−0.678354 + 0.734735i \(0.737306\pi\)
\(168\) 0 0
\(169\) −1914.90 −0.871600
\(170\) 448.565 0.202373
\(171\) 0 0
\(172\) 33.2157 0.0147249
\(173\) 2768.31 1.21660 0.608298 0.793709i \(-0.291853\pi\)
0.608298 + 0.793709i \(0.291853\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 537.240 0.230091
\(177\) 0 0
\(178\) 1799.26 0.757642
\(179\) 3579.36 1.49460 0.747302 0.664485i \(-0.231349\pi\)
0.747302 + 0.664485i \(0.231349\pi\)
\(180\) 0 0
\(181\) 721.949 0.296475 0.148238 0.988952i \(-0.452640\pi\)
0.148238 + 0.988952i \(0.452640\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 593.015 0.237596
\(185\) 230.987 0.0917975
\(186\) 0 0
\(187\) 1373.86 0.537254
\(188\) −2127.00 −0.825147
\(189\) 0 0
\(190\) 32.6731 0.0124756
\(191\) 815.525 0.308949 0.154475 0.987997i \(-0.450632\pi\)
0.154475 + 0.987997i \(0.450632\pi\)
\(192\) 0 0
\(193\) −2864.97 −1.06852 −0.534261 0.845319i \(-0.679410\pi\)
−0.534261 + 0.845319i \(0.679410\pi\)
\(194\) 996.992 0.368968
\(195\) 0 0
\(196\) 0 0
\(197\) 25.5763 0.00924992 0.00462496 0.999989i \(-0.498528\pi\)
0.00462496 + 0.999989i \(0.498528\pi\)
\(198\) 0 0
\(199\) −2847.18 −1.01423 −0.507114 0.861879i \(-0.669288\pi\)
−0.507114 + 0.861879i \(0.669288\pi\)
\(200\) 1633.80 0.577635
\(201\) 0 0
\(202\) −1949.97 −0.679206
\(203\) 0 0
\(204\) 0 0
\(205\) −1274.45 −0.434201
\(206\) −1330.43 −0.449978
\(207\) 0 0
\(208\) 309.394 0.103137
\(209\) 100.071 0.0331198
\(210\) 0 0
\(211\) 2059.84 0.672063 0.336031 0.941851i \(-0.390915\pi\)
0.336031 + 0.941851i \(0.390915\pi\)
\(212\) 197.158 0.0638722
\(213\) 0 0
\(214\) 1450.61 0.463372
\(215\) −37.0468 −0.0117515
\(216\) 0 0
\(217\) 0 0
\(218\) 1315.50 0.408701
\(219\) 0 0
\(220\) −1140.29 −0.349446
\(221\) 791.197 0.240822
\(222\) 0 0
\(223\) −826.484 −0.248186 −0.124093 0.992271i \(-0.539602\pi\)
−0.124093 + 0.992271i \(0.539602\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1856.32 0.546373
\(227\) −2311.44 −0.675840 −0.337920 0.941175i \(-0.609723\pi\)
−0.337920 + 0.941175i \(0.609723\pi\)
\(228\) 0 0
\(229\) 6638.39 1.91562 0.957811 0.287399i \(-0.0927906\pi\)
0.957811 + 0.287399i \(0.0927906\pi\)
\(230\) −281.311 −0.0806482
\(231\) 0 0
\(232\) 4494.87 1.27199
\(233\) −66.4886 −0.0186945 −0.00934724 0.999956i \(-0.502975\pi\)
−0.00934724 + 0.999956i \(0.502975\pi\)
\(234\) 0 0
\(235\) 2372.33 0.658527
\(236\) 4394.87 1.21221
\(237\) 0 0
\(238\) 0 0
\(239\) 6136.26 1.66076 0.830380 0.557198i \(-0.188124\pi\)
0.830380 + 0.557198i \(0.188124\pi\)
\(240\) 0 0
\(241\) 6054.14 1.61818 0.809091 0.587684i \(-0.199960\pi\)
0.809091 + 0.587684i \(0.199960\pi\)
\(242\) −692.765 −0.184019
\(243\) 0 0
\(244\) −3900.55 −1.02339
\(245\) 0 0
\(246\) 0 0
\(247\) 57.6303 0.0148459
\(248\) −2424.46 −0.620779
\(249\) 0 0
\(250\) −1965.31 −0.497188
\(251\) 4244.07 1.06727 0.533633 0.845716i \(-0.320827\pi\)
0.533633 + 0.845716i \(0.320827\pi\)
\(252\) 0 0
\(253\) −861.595 −0.214103
\(254\) −752.663 −0.185930
\(255\) 0 0
\(256\) −2884.14 −0.704135
\(257\) 3223.76 0.782462 0.391231 0.920293i \(-0.372049\pi\)
0.391231 + 0.920293i \(0.372049\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −656.684 −0.156638
\(261\) 0 0
\(262\) 1372.88 0.323729
\(263\) 4249.87 0.996418 0.498209 0.867057i \(-0.333991\pi\)
0.498209 + 0.867057i \(0.333991\pi\)
\(264\) 0 0
\(265\) −219.899 −0.0509746
\(266\) 0 0
\(267\) 0 0
\(268\) −5574.64 −1.27062
\(269\) −4435.75 −1.00540 −0.502700 0.864461i \(-0.667660\pi\)
−0.502700 + 0.864461i \(0.667660\pi\)
\(270\) 0 0
\(271\) −5819.59 −1.30448 −0.652242 0.758011i \(-0.726171\pi\)
−0.652242 + 0.758011i \(0.726171\pi\)
\(272\) 867.762 0.193441
\(273\) 0 0
\(274\) 4206.47 0.927454
\(275\) −2373.76 −0.520520
\(276\) 0 0
\(277\) 154.892 0.0335976 0.0167988 0.999859i \(-0.494653\pi\)
0.0167988 + 0.999859i \(0.494653\pi\)
\(278\) 1764.55 0.380685
\(279\) 0 0
\(280\) 0 0
\(281\) −376.133 −0.0798514 −0.0399257 0.999203i \(-0.512712\pi\)
−0.0399257 + 0.999203i \(0.512712\pi\)
\(282\) 0 0
\(283\) −23.8430 −0.00500820 −0.00250410 0.999997i \(-0.500797\pi\)
−0.00250410 + 0.999997i \(0.500797\pi\)
\(284\) −5158.08 −1.07773
\(285\) 0 0
\(286\) 706.329 0.146035
\(287\) 0 0
\(288\) 0 0
\(289\) −2693.91 −0.548324
\(290\) −2132.25 −0.431758
\(291\) 0 0
\(292\) 4337.26 0.869242
\(293\) −1801.80 −0.359256 −0.179628 0.983735i \(-0.557489\pi\)
−0.179628 + 0.983735i \(0.557489\pi\)
\(294\) 0 0
\(295\) −4901.78 −0.967433
\(296\) −702.137 −0.137875
\(297\) 0 0
\(298\) 3608.70 0.701497
\(299\) −496.188 −0.0959708
\(300\) 0 0
\(301\) 0 0
\(302\) −380.934 −0.0725837
\(303\) 0 0
\(304\) 63.2072 0.0119249
\(305\) 4350.44 0.816739
\(306\) 0 0
\(307\) 1120.29 0.208269 0.104134 0.994563i \(-0.466793\pi\)
0.104134 + 0.994563i \(0.466793\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1150.10 0.210714
\(311\) −5287.18 −0.964014 −0.482007 0.876167i \(-0.660092\pi\)
−0.482007 + 0.876167i \(0.660092\pi\)
\(312\) 0 0
\(313\) 2453.40 0.443050 0.221525 0.975155i \(-0.428897\pi\)
0.221525 + 0.975155i \(0.428897\pi\)
\(314\) 276.150 0.0496307
\(315\) 0 0
\(316\) −7949.50 −1.41517
\(317\) 3808.40 0.674767 0.337384 0.941367i \(-0.390458\pi\)
0.337384 + 0.941367i \(0.390458\pi\)
\(318\) 0 0
\(319\) −6530.62 −1.14622
\(320\) 808.899 0.141309
\(321\) 0 0
\(322\) 0 0
\(323\) 161.637 0.0278443
\(324\) 0 0
\(325\) −1367.03 −0.233321
\(326\) −2475.80 −0.420619
\(327\) 0 0
\(328\) 3873.96 0.652145
\(329\) 0 0
\(330\) 0 0
\(331\) −3389.02 −0.562771 −0.281386 0.959595i \(-0.590794\pi\)
−0.281386 + 0.959595i \(0.590794\pi\)
\(332\) −3483.79 −0.575896
\(333\) 0 0
\(334\) −4221.98 −0.691665
\(335\) 6217.63 1.01405
\(336\) 0 0
\(337\) 75.8509 0.0122607 0.00613036 0.999981i \(-0.498049\pi\)
0.00613036 + 0.999981i \(0.498049\pi\)
\(338\) −2761.23 −0.444352
\(339\) 0 0
\(340\) −1841.82 −0.293784
\(341\) 3522.51 0.559398
\(342\) 0 0
\(343\) 0 0
\(344\) 112.612 0.0176501
\(345\) 0 0
\(346\) 3991.81 0.620234
\(347\) 3320.56 0.513709 0.256854 0.966450i \(-0.417314\pi\)
0.256854 + 0.966450i \(0.417314\pi\)
\(348\) 0 0
\(349\) −8840.82 −1.35598 −0.677991 0.735070i \(-0.737149\pi\)
−0.677991 + 0.735070i \(0.737149\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5458.09 0.826469
\(353\) 10966.0 1.65343 0.826717 0.562618i \(-0.190206\pi\)
0.826717 + 0.562618i \(0.190206\pi\)
\(354\) 0 0
\(355\) 5753.02 0.860108
\(356\) −7387.80 −1.09987
\(357\) 0 0
\(358\) 5161.31 0.761966
\(359\) −4597.22 −0.675854 −0.337927 0.941172i \(-0.609726\pi\)
−0.337927 + 0.941172i \(0.609726\pi\)
\(360\) 0 0
\(361\) −6847.23 −0.998283
\(362\) 1041.03 0.151147
\(363\) 0 0
\(364\) 0 0
\(365\) −4837.52 −0.693718
\(366\) 0 0
\(367\) −9073.27 −1.29052 −0.645260 0.763963i \(-0.723251\pi\)
−0.645260 + 0.763963i \(0.723251\pi\)
\(368\) −544.204 −0.0770886
\(369\) 0 0
\(370\) 333.076 0.0467994
\(371\) 0 0
\(372\) 0 0
\(373\) −5313.30 −0.737566 −0.368783 0.929516i \(-0.620225\pi\)
−0.368783 + 0.929516i \(0.620225\pi\)
\(374\) 1981.06 0.273898
\(375\) 0 0
\(376\) −7211.23 −0.989071
\(377\) −3760.95 −0.513790
\(378\) 0 0
\(379\) −10987.4 −1.48914 −0.744571 0.667543i \(-0.767346\pi\)
−0.744571 + 0.667543i \(0.767346\pi\)
\(380\) −134.157 −0.0181108
\(381\) 0 0
\(382\) 1175.96 0.157506
\(383\) −14557.0 −1.94211 −0.971053 0.238864i \(-0.923225\pi\)
−0.971053 + 0.238864i \(0.923225\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4131.18 −0.544745
\(387\) 0 0
\(388\) −4093.67 −0.535631
\(389\) 8451.48 1.10156 0.550780 0.834650i \(-0.314330\pi\)
0.550780 + 0.834650i \(0.314330\pi\)
\(390\) 0 0
\(391\) −1391.67 −0.179999
\(392\) 0 0
\(393\) 0 0
\(394\) 36.8801 0.00471572
\(395\) 8866.40 1.12941
\(396\) 0 0
\(397\) −11550.7 −1.46023 −0.730117 0.683322i \(-0.760535\pi\)
−0.730117 + 0.683322i \(0.760535\pi\)
\(398\) −4105.54 −0.517065
\(399\) 0 0
\(400\) −1499.32 −0.187415
\(401\) 11935.6 1.48638 0.743188 0.669083i \(-0.233313\pi\)
0.743188 + 0.669083i \(0.233313\pi\)
\(402\) 0 0
\(403\) 2028.59 0.250748
\(404\) 8006.63 0.986001
\(405\) 0 0
\(406\) 0 0
\(407\) 1020.14 0.124242
\(408\) 0 0
\(409\) 7300.90 0.882656 0.441328 0.897346i \(-0.354508\pi\)
0.441328 + 0.897346i \(0.354508\pi\)
\(410\) −1837.71 −0.221361
\(411\) 0 0
\(412\) 5462.77 0.653232
\(413\) 0 0
\(414\) 0 0
\(415\) 3885.61 0.459607
\(416\) 3143.28 0.370462
\(417\) 0 0
\(418\) 144.299 0.0168849
\(419\) −1840.07 −0.214542 −0.107271 0.994230i \(-0.534211\pi\)
−0.107271 + 0.994230i \(0.534211\pi\)
\(420\) 0 0
\(421\) 1332.32 0.154236 0.0771181 0.997022i \(-0.475428\pi\)
0.0771181 + 0.997022i \(0.475428\pi\)
\(422\) 2970.22 0.342625
\(423\) 0 0
\(424\) 668.431 0.0765610
\(425\) −3834.15 −0.437608
\(426\) 0 0
\(427\) 0 0
\(428\) −5956.23 −0.672675
\(429\) 0 0
\(430\) −53.4203 −0.00599105
\(431\) −9329.41 −1.04265 −0.521325 0.853358i \(-0.674562\pi\)
−0.521325 + 0.853358i \(0.674562\pi\)
\(432\) 0 0
\(433\) −1295.25 −0.143755 −0.0718775 0.997413i \(-0.522899\pi\)
−0.0718775 + 0.997413i \(0.522899\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5401.46 −0.593310
\(437\) −101.368 −0.0110963
\(438\) 0 0
\(439\) 11862.2 1.28964 0.644821 0.764334i \(-0.276932\pi\)
0.644821 + 0.764334i \(0.276932\pi\)
\(440\) −3865.94 −0.418867
\(441\) 0 0
\(442\) 1140.88 0.122774
\(443\) −8321.32 −0.892455 −0.446228 0.894920i \(-0.647233\pi\)
−0.446228 + 0.894920i \(0.647233\pi\)
\(444\) 0 0
\(445\) 8239.91 0.877774
\(446\) −1191.76 −0.126528
\(447\) 0 0
\(448\) 0 0
\(449\) −2710.45 −0.284886 −0.142443 0.989803i \(-0.545496\pi\)
−0.142443 + 0.989803i \(0.545496\pi\)
\(450\) 0 0
\(451\) −5628.50 −0.587663
\(452\) −7622.07 −0.793168
\(453\) 0 0
\(454\) −3333.02 −0.344551
\(455\) 0 0
\(456\) 0 0
\(457\) 8893.10 0.910288 0.455144 0.890418i \(-0.349588\pi\)
0.455144 + 0.890418i \(0.349588\pi\)
\(458\) 9572.33 0.976606
\(459\) 0 0
\(460\) 1155.07 0.117077
\(461\) 3569.04 0.360578 0.180289 0.983614i \(-0.442297\pi\)
0.180289 + 0.983614i \(0.442297\pi\)
\(462\) 0 0
\(463\) 18634.5 1.87045 0.935227 0.354048i \(-0.115195\pi\)
0.935227 + 0.354048i \(0.115195\pi\)
\(464\) −4124.90 −0.412702
\(465\) 0 0
\(466\) −95.8743 −0.00953067
\(467\) −11292.2 −1.11893 −0.559467 0.828853i \(-0.688994\pi\)
−0.559467 + 0.828853i \(0.688994\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3420.82 0.335725
\(471\) 0 0
\(472\) 14900.0 1.45303
\(473\) −163.615 −0.0159049
\(474\) 0 0
\(475\) −279.277 −0.0269770
\(476\) 0 0
\(477\) 0 0
\(478\) 8848.27 0.846674
\(479\) −3271.94 −0.312106 −0.156053 0.987749i \(-0.549877\pi\)
−0.156053 + 0.987749i \(0.549877\pi\)
\(480\) 0 0
\(481\) 587.493 0.0556910
\(482\) 8729.86 0.824968
\(483\) 0 0
\(484\) 2844.51 0.267140
\(485\) 4565.84 0.427472
\(486\) 0 0
\(487\) 19777.7 1.84028 0.920139 0.391592i \(-0.128076\pi\)
0.920139 + 0.391592i \(0.128076\pi\)
\(488\) −13224.1 −1.22670
\(489\) 0 0
\(490\) 0 0
\(491\) 4477.06 0.411501 0.205751 0.978604i \(-0.434036\pi\)
0.205751 + 0.978604i \(0.434036\pi\)
\(492\) 0 0
\(493\) −10548.4 −0.963644
\(494\) 83.1008 0.00756859
\(495\) 0 0
\(496\) 2224.90 0.201414
\(497\) 0 0
\(498\) 0 0
\(499\) −9095.77 −0.815997 −0.407999 0.912983i \(-0.633773\pi\)
−0.407999 + 0.912983i \(0.633773\pi\)
\(500\) 8069.60 0.721767
\(501\) 0 0
\(502\) 6119.81 0.544104
\(503\) 20102.5 1.78196 0.890981 0.454041i \(-0.150018\pi\)
0.890981 + 0.454041i \(0.150018\pi\)
\(504\) 0 0
\(505\) −8930.11 −0.786901
\(506\) −1242.39 −0.109152
\(507\) 0 0
\(508\) 3090.45 0.269914
\(509\) −1431.90 −0.124692 −0.0623458 0.998055i \(-0.519858\pi\)
−0.0623458 + 0.998055i \(0.519858\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 6405.61 0.552912
\(513\) 0 0
\(514\) 4648.55 0.398908
\(515\) −6092.85 −0.521326
\(516\) 0 0
\(517\) 10477.2 0.891274
\(518\) 0 0
\(519\) 0 0
\(520\) −2226.37 −0.187756
\(521\) −11682.9 −0.982415 −0.491207 0.871043i \(-0.663444\pi\)
−0.491207 + 0.871043i \(0.663444\pi\)
\(522\) 0 0
\(523\) −14402.3 −1.20414 −0.602071 0.798442i \(-0.705658\pi\)
−0.602071 + 0.798442i \(0.705658\pi\)
\(524\) −5637.09 −0.469957
\(525\) 0 0
\(526\) 6128.16 0.507986
\(527\) 5689.64 0.470293
\(528\) 0 0
\(529\) −11294.2 −0.928268
\(530\) −317.086 −0.0259875
\(531\) 0 0
\(532\) 0 0
\(533\) −3241.42 −0.263418
\(534\) 0 0
\(535\) 6643.22 0.536844
\(536\) −18899.9 −1.52304
\(537\) 0 0
\(538\) −6396.20 −0.512565
\(539\) 0 0
\(540\) 0 0
\(541\) 13866.3 1.10196 0.550978 0.834519i \(-0.314255\pi\)
0.550978 + 0.834519i \(0.314255\pi\)
\(542\) −8391.65 −0.665041
\(543\) 0 0
\(544\) 8816.02 0.694823
\(545\) 6024.46 0.473504
\(546\) 0 0
\(547\) 8793.92 0.687387 0.343694 0.939082i \(-0.388322\pi\)
0.343694 + 0.939082i \(0.388322\pi\)
\(548\) −17271.9 −1.34638
\(549\) 0 0
\(550\) −3422.88 −0.265367
\(551\) −768.339 −0.0594053
\(552\) 0 0
\(553\) 0 0
\(554\) 223.348 0.0171284
\(555\) 0 0
\(556\) −7245.26 −0.552639
\(557\) −20085.0 −1.52788 −0.763941 0.645286i \(-0.776738\pi\)
−0.763941 + 0.645286i \(0.776738\pi\)
\(558\) 0 0
\(559\) −94.2249 −0.00712932
\(560\) 0 0
\(561\) 0 0
\(562\) −542.371 −0.0407092
\(563\) 3172.18 0.237463 0.118731 0.992926i \(-0.462117\pi\)
0.118731 + 0.992926i \(0.462117\pi\)
\(564\) 0 0
\(565\) 8501.20 0.633006
\(566\) −34.3808 −0.00255324
\(567\) 0 0
\(568\) −17487.6 −1.29183
\(569\) 18767.7 1.38274 0.691372 0.722499i \(-0.257007\pi\)
0.691372 + 0.722499i \(0.257007\pi\)
\(570\) 0 0
\(571\) −18650.3 −1.36688 −0.683442 0.730005i \(-0.739518\pi\)
−0.683442 + 0.730005i \(0.739518\pi\)
\(572\) −2900.20 −0.211999
\(573\) 0 0
\(574\) 0 0
\(575\) 2404.53 0.174393
\(576\) 0 0
\(577\) −21527.6 −1.55322 −0.776610 0.629982i \(-0.783062\pi\)
−0.776610 + 0.629982i \(0.783062\pi\)
\(578\) −3884.53 −0.279542
\(579\) 0 0
\(580\) 8755.05 0.626782
\(581\) 0 0
\(582\) 0 0
\(583\) −971.168 −0.0689909
\(584\) 14704.7 1.04193
\(585\) 0 0
\(586\) −2598.13 −0.183153
\(587\) 17142.7 1.20537 0.602686 0.797978i \(-0.294097\pi\)
0.602686 + 0.797978i \(0.294097\pi\)
\(588\) 0 0
\(589\) 414.429 0.0289920
\(590\) −7068.20 −0.493209
\(591\) 0 0
\(592\) 644.346 0.0447338
\(593\) −23471.7 −1.62541 −0.812704 0.582677i \(-0.802005\pi\)
−0.812704 + 0.582677i \(0.802005\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14817.4 −1.01836
\(597\) 0 0
\(598\) −715.485 −0.0489270
\(599\) −9698.12 −0.661527 −0.330763 0.943714i \(-0.607306\pi\)
−0.330763 + 0.943714i \(0.607306\pi\)
\(600\) 0 0
\(601\) 18513.2 1.25652 0.628261 0.778002i \(-0.283767\pi\)
0.628261 + 0.778002i \(0.283767\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1564.12 0.105370
\(605\) −3172.59 −0.213197
\(606\) 0 0
\(607\) 5168.65 0.345616 0.172808 0.984956i \(-0.444716\pi\)
0.172808 + 0.984956i \(0.444716\pi\)
\(608\) 642.153 0.0428335
\(609\) 0 0
\(610\) 6273.18 0.416383
\(611\) 6033.79 0.399510
\(612\) 0 0
\(613\) 3359.81 0.221372 0.110686 0.993855i \(-0.464695\pi\)
0.110686 + 0.993855i \(0.464695\pi\)
\(614\) 1615.42 0.106178
\(615\) 0 0
\(616\) 0 0
\(617\) −10966.7 −0.715561 −0.357780 0.933806i \(-0.616466\pi\)
−0.357780 + 0.933806i \(0.616466\pi\)
\(618\) 0 0
\(619\) 8466.21 0.549734 0.274867 0.961482i \(-0.411366\pi\)
0.274867 + 0.961482i \(0.411366\pi\)
\(620\) −4722.33 −0.305893
\(621\) 0 0
\(622\) −7623.93 −0.491466
\(623\) 0 0
\(624\) 0 0
\(625\) 1173.65 0.0751139
\(626\) 3537.72 0.225872
\(627\) 0 0
\(628\) −1133.88 −0.0720488
\(629\) 1647.75 0.104452
\(630\) 0 0
\(631\) −6200.95 −0.391214 −0.195607 0.980682i \(-0.562668\pi\)
−0.195607 + 0.980682i \(0.562668\pi\)
\(632\) −26951.4 −1.69631
\(633\) 0 0
\(634\) 5491.58 0.344004
\(635\) −3446.90 −0.215411
\(636\) 0 0
\(637\) 0 0
\(638\) −9416.93 −0.584357
\(639\) 0 0
\(640\) −8720.46 −0.538604
\(641\) −27467.7 −1.69252 −0.846262 0.532766i \(-0.821153\pi\)
−0.846262 + 0.532766i \(0.821153\pi\)
\(642\) 0 0
\(643\) −927.437 −0.0568811 −0.0284405 0.999595i \(-0.509054\pi\)
−0.0284405 + 0.999595i \(0.509054\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 233.075 0.0141953
\(647\) −16172.3 −0.982689 −0.491344 0.870965i \(-0.663494\pi\)
−0.491344 + 0.870965i \(0.663494\pi\)
\(648\) 0 0
\(649\) −21648.4 −1.30936
\(650\) −1971.22 −0.118950
\(651\) 0 0
\(652\) 10165.7 0.610611
\(653\) −4251.10 −0.254760 −0.127380 0.991854i \(-0.540657\pi\)
−0.127380 + 0.991854i \(0.540657\pi\)
\(654\) 0 0
\(655\) 6287.27 0.375060
\(656\) −3555.10 −0.211590
\(657\) 0 0
\(658\) 0 0
\(659\) −16537.0 −0.977524 −0.488762 0.872417i \(-0.662551\pi\)
−0.488762 + 0.872417i \(0.662551\pi\)
\(660\) 0 0
\(661\) 22520.3 1.32517 0.662585 0.748987i \(-0.269459\pi\)
0.662585 + 0.748987i \(0.269459\pi\)
\(662\) −4886.84 −0.286907
\(663\) 0 0
\(664\) −11811.2 −0.690304
\(665\) 0 0
\(666\) 0 0
\(667\) 6615.28 0.384025
\(668\) 17335.5 1.00409
\(669\) 0 0
\(670\) 8965.60 0.516972
\(671\) 19213.4 1.10540
\(672\) 0 0
\(673\) −14730.1 −0.843690 −0.421845 0.906668i \(-0.638617\pi\)
−0.421845 + 0.906668i \(0.638617\pi\)
\(674\) 109.374 0.00625066
\(675\) 0 0
\(676\) 11337.6 0.645064
\(677\) 2930.78 0.166380 0.0831898 0.996534i \(-0.473489\pi\)
0.0831898 + 0.996534i \(0.473489\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6244.35 −0.352147
\(681\) 0 0
\(682\) 5079.34 0.285188
\(683\) 17706.6 0.991983 0.495992 0.868327i \(-0.334805\pi\)
0.495992 + 0.868327i \(0.334805\pi\)
\(684\) 0 0
\(685\) 19264.0 1.07451
\(686\) 0 0
\(687\) 0 0
\(688\) −103.343 −0.00572663
\(689\) −559.290 −0.0309249
\(690\) 0 0
\(691\) −14313.6 −0.788010 −0.394005 0.919108i \(-0.628911\pi\)
−0.394005 + 0.919108i \(0.628911\pi\)
\(692\) −16390.5 −0.900393
\(693\) 0 0
\(694\) 4788.13 0.261895
\(695\) 8080.93 0.441046
\(696\) 0 0
\(697\) −9091.28 −0.494056
\(698\) −12748.1 −0.691296
\(699\) 0 0
\(700\) 0 0
\(701\) −18506.7 −0.997131 −0.498565 0.866852i \(-0.666140\pi\)
−0.498565 + 0.866852i \(0.666140\pi\)
\(702\) 0 0
\(703\) 120.021 0.00643910
\(704\) 3572.45 0.191252
\(705\) 0 0
\(706\) 15812.6 0.842940
\(707\) 0 0
\(708\) 0 0
\(709\) −6306.66 −0.334064 −0.167032 0.985951i \(-0.553418\pi\)
−0.167032 + 0.985951i \(0.553418\pi\)
\(710\) 8295.65 0.438493
\(711\) 0 0
\(712\) −25047.0 −1.31837
\(713\) −3568.17 −0.187418
\(714\) 0 0
\(715\) 3234.71 0.169191
\(716\) −21192.5 −1.10614
\(717\) 0 0
\(718\) −6629.02 −0.344558
\(719\) −4391.44 −0.227779 −0.113889 0.993493i \(-0.536331\pi\)
−0.113889 + 0.993493i \(0.536331\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −9873.46 −0.508937
\(723\) 0 0
\(724\) −4274.47 −0.219419
\(725\) 18225.6 0.933630
\(726\) 0 0
\(727\) −3740.47 −0.190820 −0.0954102 0.995438i \(-0.530416\pi\)
−0.0954102 + 0.995438i \(0.530416\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6975.53 −0.353666
\(731\) −264.274 −0.0133715
\(732\) 0 0
\(733\) 26104.4 1.31540 0.657699 0.753281i \(-0.271530\pi\)
0.657699 + 0.753281i \(0.271530\pi\)
\(734\) −13083.3 −0.657922
\(735\) 0 0
\(736\) −5528.84 −0.276896
\(737\) 27459.7 1.37245
\(738\) 0 0
\(739\) 4656.46 0.231787 0.115894 0.993262i \(-0.463027\pi\)
0.115894 + 0.993262i \(0.463027\pi\)
\(740\) −1367.62 −0.0679386
\(741\) 0 0
\(742\) 0 0
\(743\) −14101.5 −0.696276 −0.348138 0.937443i \(-0.613186\pi\)
−0.348138 + 0.937443i \(0.613186\pi\)
\(744\) 0 0
\(745\) 16526.4 0.812727
\(746\) −7661.59 −0.376020
\(747\) 0 0
\(748\) −8134.25 −0.397617
\(749\) 0 0
\(750\) 0 0
\(751\) 5235.30 0.254379 0.127190 0.991878i \(-0.459404\pi\)
0.127190 + 0.991878i \(0.459404\pi\)
\(752\) 6617.68 0.320907
\(753\) 0 0
\(754\) −5423.16 −0.261936
\(755\) −1744.53 −0.0840925
\(756\) 0 0
\(757\) −17983.1 −0.863417 −0.431709 0.902013i \(-0.642089\pi\)
−0.431709 + 0.902013i \(0.642089\pi\)
\(758\) −15843.5 −0.759182
\(759\) 0 0
\(760\) −454.834 −0.0217086
\(761\) 19710.8 0.938919 0.469459 0.882954i \(-0.344449\pi\)
0.469459 + 0.882954i \(0.344449\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4828.51 −0.228651
\(765\) 0 0
\(766\) −20990.6 −0.990108
\(767\) −12467.2 −0.586915
\(768\) 0 0
\(769\) −32441.6 −1.52129 −0.760647 0.649165i \(-0.775118\pi\)
−0.760647 + 0.649165i \(0.775118\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16962.7 0.790805
\(773\) 16807.1 0.782029 0.391014 0.920385i \(-0.372124\pi\)
0.391014 + 0.920385i \(0.372124\pi\)
\(774\) 0 0
\(775\) −9830.58 −0.455645
\(776\) −13878.9 −0.642039
\(777\) 0 0
\(778\) 12186.7 0.561588
\(779\) −662.203 −0.0304568
\(780\) 0 0
\(781\) 25407.8 1.16410
\(782\) −2006.74 −0.0917656
\(783\) 0 0
\(784\) 0 0
\(785\) 1264.66 0.0575001
\(786\) 0 0
\(787\) −38870.7 −1.76060 −0.880299 0.474420i \(-0.842658\pi\)
−0.880299 + 0.474420i \(0.842658\pi\)
\(788\) −151.430 −0.00684580
\(789\) 0 0
\(790\) 12785.0 0.575786
\(791\) 0 0
\(792\) 0 0
\(793\) 11064.9 0.495494
\(794\) −16655.7 −0.744445
\(795\) 0 0
\(796\) 16857.4 0.750622
\(797\) 15248.8 0.677717 0.338858 0.940837i \(-0.389959\pi\)
0.338858 + 0.940837i \(0.389959\pi\)
\(798\) 0 0
\(799\) 16923.1 0.749306
\(800\) −15232.4 −0.673182
\(801\) 0 0
\(802\) 17210.8 0.757772
\(803\) −21364.6 −0.938903
\(804\) 0 0
\(805\) 0 0
\(806\) 2925.16 0.127834
\(807\) 0 0
\(808\) 27145.1 1.18188
\(809\) 3463.54 0.150521 0.0752605 0.997164i \(-0.476021\pi\)
0.0752605 + 0.997164i \(0.476021\pi\)
\(810\) 0 0
\(811\) −45402.7 −1.96585 −0.982925 0.184006i \(-0.941093\pi\)
−0.982925 + 0.184006i \(0.941093\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1471.01 0.0633400
\(815\) −11338.2 −0.487312
\(816\) 0 0
\(817\) −19.2496 −0.000824305 0
\(818\) 10527.6 0.449988
\(819\) 0 0
\(820\) 7545.66 0.321349
\(821\) 12650.8 0.537778 0.268889 0.963171i \(-0.413344\pi\)
0.268889 + 0.963171i \(0.413344\pi\)
\(822\) 0 0
\(823\) −26294.4 −1.11369 −0.556845 0.830617i \(-0.687988\pi\)
−0.556845 + 0.830617i \(0.687988\pi\)
\(824\) 18520.6 0.783003
\(825\) 0 0
\(826\) 0 0
\(827\) −3948.55 −0.166027 −0.0830136 0.996548i \(-0.526454\pi\)
−0.0830136 + 0.996548i \(0.526454\pi\)
\(828\) 0 0
\(829\) −18967.4 −0.794652 −0.397326 0.917678i \(-0.630062\pi\)
−0.397326 + 0.917678i \(0.630062\pi\)
\(830\) 5602.91 0.234313
\(831\) 0 0
\(832\) 2057.35 0.0857282
\(833\) 0 0
\(834\) 0 0
\(835\) −19335.0 −0.801336
\(836\) −592.493 −0.0245117
\(837\) 0 0
\(838\) −2653.32 −0.109376
\(839\) 21494.7 0.884481 0.442241 0.896896i \(-0.354184\pi\)
0.442241 + 0.896896i \(0.354184\pi\)
\(840\) 0 0
\(841\) 25752.8 1.05592
\(842\) 1921.16 0.0786314
\(843\) 0 0
\(844\) −12195.8 −0.497388
\(845\) −12645.3 −0.514808
\(846\) 0 0
\(847\) 0 0
\(848\) −613.414 −0.0248405
\(849\) 0 0
\(850\) −5528.71 −0.223098
\(851\) −1033.36 −0.0416255
\(852\) 0 0
\(853\) 25163.6 1.01006 0.505032 0.863100i \(-0.331481\pi\)
0.505032 + 0.863100i \(0.331481\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −20193.5 −0.806309
\(857\) 2324.30 0.0926449 0.0463224 0.998927i \(-0.485250\pi\)
0.0463224 + 0.998927i \(0.485250\pi\)
\(858\) 0 0
\(859\) 28144.9 1.11792 0.558959 0.829195i \(-0.311201\pi\)
0.558959 + 0.829195i \(0.311201\pi\)
\(860\) 219.345 0.00869720
\(861\) 0 0
\(862\) −13452.7 −0.531555
\(863\) −11512.8 −0.454115 −0.227058 0.973881i \(-0.572911\pi\)
−0.227058 + 0.973881i \(0.572911\pi\)
\(864\) 0 0
\(865\) 18280.9 0.718579
\(866\) −1867.71 −0.0732880
\(867\) 0 0
\(868\) 0 0
\(869\) 39157.8 1.52858
\(870\) 0 0
\(871\) 15813.9 0.615194
\(872\) −18312.7 −0.711177
\(873\) 0 0
\(874\) −146.169 −0.00565704
\(875\) 0 0
\(876\) 0 0
\(877\) 14143.0 0.544557 0.272278 0.962219i \(-0.412223\pi\)
0.272278 + 0.962219i \(0.412223\pi\)
\(878\) 17104.9 0.657474
\(879\) 0 0
\(880\) 3547.74 0.135903
\(881\) −1038.97 −0.0397318 −0.0198659 0.999803i \(-0.506324\pi\)
−0.0198659 + 0.999803i \(0.506324\pi\)
\(882\) 0 0
\(883\) −48786.6 −1.85934 −0.929671 0.368391i \(-0.879909\pi\)
−0.929671 + 0.368391i \(0.879909\pi\)
\(884\) −4684.47 −0.178231
\(885\) 0 0
\(886\) −11999.0 −0.454984
\(887\) 13831.7 0.523589 0.261794 0.965124i \(-0.415686\pi\)
0.261794 + 0.965124i \(0.415686\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 11881.7 0.447499
\(891\) 0 0
\(892\) 4893.40 0.183681
\(893\) 1232.67 0.0461921
\(894\) 0 0
\(895\) 23636.8 0.882783
\(896\) 0 0
\(897\) 0 0
\(898\) −3908.37 −0.145238
\(899\) −27045.7 −1.00336
\(900\) 0 0
\(901\) −1568.65 −0.0580016
\(902\) −8116.11 −0.299597
\(903\) 0 0
\(904\) −25841.3 −0.950739
\(905\) 4767.49 0.175112
\(906\) 0 0
\(907\) −2677.25 −0.0980118 −0.0490059 0.998798i \(-0.515605\pi\)
−0.0490059 + 0.998798i \(0.515605\pi\)
\(908\) 13685.4 0.500184
\(909\) 0 0
\(910\) 0 0
\(911\) 35842.4 1.30352 0.651762 0.758424i \(-0.274030\pi\)
0.651762 + 0.758424i \(0.274030\pi\)
\(912\) 0 0
\(913\) 17160.5 0.622049
\(914\) 12823.5 0.464075
\(915\) 0 0
\(916\) −39304.2 −1.41774
\(917\) 0 0
\(918\) 0 0
\(919\) −33473.5 −1.20151 −0.600756 0.799433i \(-0.705133\pi\)
−0.600756 + 0.799433i \(0.705133\pi\)
\(920\) 3916.05 0.140335
\(921\) 0 0
\(922\) 5146.43 0.183827
\(923\) 14632.2 0.521804
\(924\) 0 0
\(925\) −2847.00 −0.101199
\(926\) 26870.4 0.953579
\(927\) 0 0
\(928\) −41906.9 −1.48239
\(929\) −8801.66 −0.310843 −0.155421 0.987848i \(-0.549674\pi\)
−0.155421 + 0.987848i \(0.549674\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 393.662 0.0138356
\(933\) 0 0
\(934\) −16283.0 −0.570446
\(935\) 9072.46 0.317327
\(936\) 0 0
\(937\) 1144.38 0.0398991 0.0199495 0.999801i \(-0.493649\pi\)
0.0199495 + 0.999801i \(0.493649\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −14045.9 −0.487371
\(941\) −11014.1 −0.381563 −0.190782 0.981633i \(-0.561102\pi\)
−0.190782 + 0.981633i \(0.561102\pi\)
\(942\) 0 0
\(943\) 5701.47 0.196888
\(944\) −13673.6 −0.471440
\(945\) 0 0
\(946\) −235.927 −0.00810851
\(947\) 47646.5 1.63496 0.817478 0.575960i \(-0.195371\pi\)
0.817478 + 0.575960i \(0.195371\pi\)
\(948\) 0 0
\(949\) −12303.7 −0.420860
\(950\) −402.707 −0.0137532
\(951\) 0 0
\(952\) 0 0
\(953\) 46771.5 1.58980 0.794898 0.606743i \(-0.207524\pi\)
0.794898 + 0.606743i \(0.207524\pi\)
\(954\) 0 0
\(955\) 5385.43 0.182480
\(956\) −36331.2 −1.22911
\(957\) 0 0
\(958\) −4718.02 −0.159115
\(959\) 0 0
\(960\) 0 0
\(961\) −15203.0 −0.510323
\(962\) 847.145 0.0283919
\(963\) 0 0
\(964\) −35845.0 −1.19760
\(965\) −18919.2 −0.631120
\(966\) 0 0
\(967\) 22111.6 0.735326 0.367663 0.929959i \(-0.380158\pi\)
0.367663 + 0.929959i \(0.380158\pi\)
\(968\) 9643.79 0.320210
\(969\) 0 0
\(970\) 6583.78 0.217930
\(971\) 24420.8 0.807108 0.403554 0.914956i \(-0.367775\pi\)
0.403554 + 0.914956i \(0.367775\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 28518.8 0.938195
\(975\) 0 0
\(976\) 12135.7 0.398005
\(977\) 41638.6 1.36350 0.681748 0.731587i \(-0.261220\pi\)
0.681748 + 0.731587i \(0.261220\pi\)
\(978\) 0 0
\(979\) 36391.0 1.18801
\(980\) 0 0
\(981\) 0 0
\(982\) 6455.77 0.209788
\(983\) −2225.94 −0.0722243 −0.0361122 0.999348i \(-0.511497\pi\)
−0.0361122 + 0.999348i \(0.511497\pi\)
\(984\) 0 0
\(985\) 168.896 0.00546344
\(986\) −15210.4 −0.491277
\(987\) 0 0
\(988\) −341.214 −0.0109873
\(989\) 165.736 0.00532871
\(990\) 0 0
\(991\) 10975.3 0.351808 0.175904 0.984407i \(-0.443715\pi\)
0.175904 + 0.984407i \(0.443715\pi\)
\(992\) 22603.9 0.723462
\(993\) 0 0
\(994\) 0 0
\(995\) −18801.7 −0.599051
\(996\) 0 0
\(997\) 38123.0 1.21100 0.605500 0.795846i \(-0.292973\pi\)
0.605500 + 0.795846i \(0.292973\pi\)
\(998\) −13115.8 −0.416005
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bj.1.5 7
3.2 odd 2 1323.4.a.bi.1.3 7
7.2 even 3 189.4.e.f.109.3 14
7.4 even 3 189.4.e.f.163.3 yes 14
7.6 odd 2 1323.4.a.bk.1.5 7
21.2 odd 6 189.4.e.g.109.5 yes 14
21.11 odd 6 189.4.e.g.163.5 yes 14
21.20 even 2 1323.4.a.bh.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.3 14 7.2 even 3
189.4.e.f.163.3 yes 14 7.4 even 3
189.4.e.g.109.5 yes 14 21.2 odd 6
189.4.e.g.163.5 yes 14 21.11 odd 6
1323.4.a.bh.1.3 7 21.20 even 2
1323.4.a.bi.1.3 7 3.2 odd 2
1323.4.a.bj.1.5 7 1.1 even 1 trivial
1323.4.a.bk.1.5 7 7.6 odd 2