Properties

Label 1323.4.a.bj.1.4
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.541672\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.541672 q^{2} -7.70659 q^{4} -16.7289 q^{5} +8.50782 q^{8} +O(q^{10})\) \(q-0.541672 q^{2} -7.70659 q^{4} -16.7289 q^{5} +8.50782 q^{8} +9.06158 q^{10} +26.1733 q^{11} -34.4888 q^{13} +57.0443 q^{16} -81.5268 q^{17} -96.8698 q^{19} +128.923 q^{20} -14.1773 q^{22} -183.899 q^{23} +154.856 q^{25} +18.6816 q^{26} +42.2582 q^{29} -279.954 q^{31} -98.9619 q^{32} +44.1608 q^{34} -48.6600 q^{37} +52.4717 q^{38} -142.327 q^{40} -4.73071 q^{41} -419.874 q^{43} -201.707 q^{44} +99.6129 q^{46} +39.9962 q^{47} -83.8812 q^{50} +265.791 q^{52} +287.663 q^{53} -437.850 q^{55} -22.8901 q^{58} -465.137 q^{59} -242.752 q^{61} +151.643 q^{62} -402.749 q^{64} +576.960 q^{65} -634.773 q^{67} +628.293 q^{68} -1027.26 q^{71} -403.402 q^{73} +26.3578 q^{74} +746.536 q^{76} +308.406 q^{79} -954.288 q^{80} +2.56249 q^{82} -1419.65 q^{83} +1363.85 q^{85} +227.434 q^{86} +222.678 q^{88} +1202.20 q^{89} +1417.23 q^{92} -21.6648 q^{94} +1620.52 q^{95} -798.496 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8} + 12 q^{10} + 98 q^{11} - 124 q^{13} + 139 q^{16} + 30 q^{17} + 182 q^{19} - 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} - 245 q^{26} + 323 q^{29} + 26 q^{31} + 398 q^{32} + 114 q^{34} - 112 q^{37} + 1015 q^{38} - 147 q^{40} - 524 q^{41} + 8 q^{43} + 937 q^{44} - 339 q^{46} + 288 q^{47} + 2576 q^{50} - 1075 q^{52} + 1353 q^{53} + 156 q^{55} - 81 q^{58} + 165 q^{59} + 56 q^{61} - 1215 q^{62} - 1706 q^{64} + 1694 q^{65} - 988 q^{67} + 2625 q^{68} + 792 q^{71} + 1487 q^{73} + 2736 q^{74} + 1952 q^{76} - 1273 q^{79} - 2501 q^{80} - 2049 q^{82} - 1170 q^{83} + 216 q^{85} - 160 q^{86} + 9 q^{88} + 1058 q^{89} + 3834 q^{92} + 1653 q^{94} + 3260 q^{95} - 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.541672 −0.191510 −0.0957550 0.995405i \(-0.530527\pi\)
−0.0957550 + 0.995405i \(0.530527\pi\)
\(3\) 0 0
\(4\) −7.70659 −0.963324
\(5\) −16.7289 −1.49628 −0.748139 0.663542i \(-0.769052\pi\)
−0.748139 + 0.663542i \(0.769052\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 8.50782 0.375996
\(9\) 0 0
\(10\) 9.06158 0.286552
\(11\) 26.1733 0.717413 0.358706 0.933450i \(-0.383218\pi\)
0.358706 + 0.933450i \(0.383218\pi\)
\(12\) 0 0
\(13\) −34.4888 −0.735806 −0.367903 0.929864i \(-0.619924\pi\)
−0.367903 + 0.929864i \(0.619924\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 57.0443 0.891317
\(17\) −81.5268 −1.16313 −0.581563 0.813501i \(-0.697559\pi\)
−0.581563 + 0.813501i \(0.697559\pi\)
\(18\) 0 0
\(19\) −96.8698 −1.16966 −0.584828 0.811157i \(-0.698838\pi\)
−0.584828 + 0.811157i \(0.698838\pi\)
\(20\) 128.923 1.44140
\(21\) 0 0
\(22\) −14.1773 −0.137392
\(23\) −183.899 −1.66720 −0.833599 0.552370i \(-0.813723\pi\)
−0.833599 + 0.552370i \(0.813723\pi\)
\(24\) 0 0
\(25\) 154.856 1.23885
\(26\) 18.6816 0.140914
\(27\) 0 0
\(28\) 0 0
\(29\) 42.2582 0.270591 0.135296 0.990805i \(-0.456802\pi\)
0.135296 + 0.990805i \(0.456802\pi\)
\(30\) 0 0
\(31\) −279.954 −1.62197 −0.810987 0.585064i \(-0.801069\pi\)
−0.810987 + 0.585064i \(0.801069\pi\)
\(32\) −98.9619 −0.546692
\(33\) 0 0
\(34\) 44.1608 0.222750
\(35\) 0 0
\(36\) 0 0
\(37\) −48.6600 −0.216207 −0.108103 0.994140i \(-0.534478\pi\)
−0.108103 + 0.994140i \(0.534478\pi\)
\(38\) 52.4717 0.224001
\(39\) 0 0
\(40\) −142.327 −0.562595
\(41\) −4.73071 −0.0180198 −0.00900991 0.999959i \(-0.502868\pi\)
−0.00900991 + 0.999959i \(0.502868\pi\)
\(42\) 0 0
\(43\) −419.874 −1.48907 −0.744537 0.667581i \(-0.767330\pi\)
−0.744537 + 0.667581i \(0.767330\pi\)
\(44\) −201.707 −0.691101
\(45\) 0 0
\(46\) 99.6129 0.319285
\(47\) 39.9962 0.124129 0.0620643 0.998072i \(-0.480232\pi\)
0.0620643 + 0.998072i \(0.480232\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −83.8812 −0.237252
\(51\) 0 0
\(52\) 265.791 0.708820
\(53\) 287.663 0.745538 0.372769 0.927924i \(-0.378408\pi\)
0.372769 + 0.927924i \(0.378408\pi\)
\(54\) 0 0
\(55\) −437.850 −1.07345
\(56\) 0 0
\(57\) 0 0
\(58\) −22.8901 −0.0518210
\(59\) −465.137 −1.02637 −0.513184 0.858278i \(-0.671534\pi\)
−0.513184 + 0.858278i \(0.671534\pi\)
\(60\) 0 0
\(61\) −242.752 −0.509527 −0.254764 0.967003i \(-0.581998\pi\)
−0.254764 + 0.967003i \(0.581998\pi\)
\(62\) 151.643 0.310624
\(63\) 0 0
\(64\) −402.749 −0.786620
\(65\) 576.960 1.10097
\(66\) 0 0
\(67\) −634.773 −1.15746 −0.578730 0.815519i \(-0.696452\pi\)
−0.578730 + 0.815519i \(0.696452\pi\)
\(68\) 628.293 1.12047
\(69\) 0 0
\(70\) 0 0
\(71\) −1027.26 −1.71708 −0.858541 0.512745i \(-0.828628\pi\)
−0.858541 + 0.512745i \(0.828628\pi\)
\(72\) 0 0
\(73\) −403.402 −0.646775 −0.323388 0.946267i \(-0.604822\pi\)
−0.323388 + 0.946267i \(0.604822\pi\)
\(74\) 26.3578 0.0414058
\(75\) 0 0
\(76\) 746.536 1.12676
\(77\) 0 0
\(78\) 0 0
\(79\) 308.406 0.439221 0.219610 0.975588i \(-0.429521\pi\)
0.219610 + 0.975588i \(0.429521\pi\)
\(80\) −954.288 −1.33366
\(81\) 0 0
\(82\) 2.56249 0.00345098
\(83\) −1419.65 −1.87744 −0.938718 0.344686i \(-0.887986\pi\)
−0.938718 + 0.344686i \(0.887986\pi\)
\(84\) 0 0
\(85\) 1363.85 1.74036
\(86\) 227.434 0.285173
\(87\) 0 0
\(88\) 222.678 0.269745
\(89\) 1202.20 1.43183 0.715914 0.698188i \(-0.246010\pi\)
0.715914 + 0.698188i \(0.246010\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1417.23 1.60605
\(93\) 0 0
\(94\) −21.6648 −0.0237719
\(95\) 1620.52 1.75013
\(96\) 0 0
\(97\) −798.496 −0.835824 −0.417912 0.908487i \(-0.637238\pi\)
−0.417912 + 0.908487i \(0.637238\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1193.41 −1.19341
\(101\) 1298.42 1.27918 0.639590 0.768716i \(-0.279104\pi\)
0.639590 + 0.768716i \(0.279104\pi\)
\(102\) 0 0
\(103\) 1118.82 1.07029 0.535146 0.844759i \(-0.320256\pi\)
0.535146 + 0.844759i \(0.320256\pi\)
\(104\) −293.425 −0.276660
\(105\) 0 0
\(106\) −155.819 −0.142778
\(107\) −146.564 −0.132420 −0.0662099 0.997806i \(-0.521091\pi\)
−0.0662099 + 0.997806i \(0.521091\pi\)
\(108\) 0 0
\(109\) −195.984 −0.172219 −0.0861096 0.996286i \(-0.527444\pi\)
−0.0861096 + 0.996286i \(0.527444\pi\)
\(110\) 237.171 0.205576
\(111\) 0 0
\(112\) 0 0
\(113\) 846.025 0.704313 0.352156 0.935941i \(-0.385448\pi\)
0.352156 + 0.935941i \(0.385448\pi\)
\(114\) 0 0
\(115\) 3076.42 2.49459
\(116\) −325.667 −0.260667
\(117\) 0 0
\(118\) 251.952 0.196560
\(119\) 0 0
\(120\) 0 0
\(121\) −645.959 −0.485319
\(122\) 131.492 0.0975796
\(123\) 0 0
\(124\) 2157.49 1.56249
\(125\) −499.456 −0.357382
\(126\) 0 0
\(127\) 1259.98 0.880357 0.440178 0.897910i \(-0.354915\pi\)
0.440178 + 0.897910i \(0.354915\pi\)
\(128\) 1009.85 0.697338
\(129\) 0 0
\(130\) −312.523 −0.210847
\(131\) 1221.01 0.814352 0.407176 0.913350i \(-0.366514\pi\)
0.407176 + 0.913350i \(0.366514\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 343.839 0.221665
\(135\) 0 0
\(136\) −693.615 −0.437331
\(137\) 3164.23 1.97327 0.986637 0.162935i \(-0.0520960\pi\)
0.986637 + 0.162935i \(0.0520960\pi\)
\(138\) 0 0
\(139\) −69.3404 −0.0423120 −0.0211560 0.999776i \(-0.506735\pi\)
−0.0211560 + 0.999776i \(0.506735\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 556.436 0.328838
\(143\) −902.686 −0.527877
\(144\) 0 0
\(145\) −706.933 −0.404880
\(146\) 218.511 0.123864
\(147\) 0 0
\(148\) 375.003 0.208277
\(149\) 806.621 0.443496 0.221748 0.975104i \(-0.428824\pi\)
0.221748 + 0.975104i \(0.428824\pi\)
\(150\) 0 0
\(151\) −2174.31 −1.17181 −0.585904 0.810380i \(-0.699261\pi\)
−0.585904 + 0.810380i \(0.699261\pi\)
\(152\) −824.151 −0.439786
\(153\) 0 0
\(154\) 0 0
\(155\) 4683.32 2.42692
\(156\) 0 0
\(157\) −680.859 −0.346105 −0.173053 0.984913i \(-0.555363\pi\)
−0.173053 + 0.984913i \(0.555363\pi\)
\(158\) −167.055 −0.0841152
\(159\) 0 0
\(160\) 1655.52 0.818004
\(161\) 0 0
\(162\) 0 0
\(163\) 1181.61 0.567799 0.283899 0.958854i \(-0.408372\pi\)
0.283899 + 0.958854i \(0.408372\pi\)
\(164\) 36.4577 0.0173589
\(165\) 0 0
\(166\) 768.987 0.359548
\(167\) 228.073 0.105681 0.0528407 0.998603i \(-0.483172\pi\)
0.0528407 + 0.998603i \(0.483172\pi\)
\(168\) 0 0
\(169\) −1007.52 −0.458590
\(170\) −738.761 −0.333296
\(171\) 0 0
\(172\) 3235.80 1.43446
\(173\) −1244.81 −0.547058 −0.273529 0.961864i \(-0.588191\pi\)
−0.273529 + 0.961864i \(0.588191\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1493.04 0.639442
\(177\) 0 0
\(178\) −651.197 −0.274209
\(179\) 4096.33 1.71047 0.855234 0.518242i \(-0.173413\pi\)
0.855234 + 0.518242i \(0.173413\pi\)
\(180\) 0 0
\(181\) −3259.45 −1.33852 −0.669262 0.743026i \(-0.733390\pi\)
−0.669262 + 0.743026i \(0.733390\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1564.58 −0.626860
\(185\) 814.028 0.323506
\(186\) 0 0
\(187\) −2133.82 −0.834442
\(188\) −308.234 −0.119576
\(189\) 0 0
\(190\) −877.793 −0.335167
\(191\) 1268.88 0.480694 0.240347 0.970687i \(-0.422739\pi\)
0.240347 + 0.970687i \(0.422739\pi\)
\(192\) 0 0
\(193\) −178.171 −0.0664508 −0.0332254 0.999448i \(-0.510578\pi\)
−0.0332254 + 0.999448i \(0.510578\pi\)
\(194\) 432.523 0.160069
\(195\) 0 0
\(196\) 0 0
\(197\) 4790.39 1.73249 0.866246 0.499618i \(-0.166526\pi\)
0.866246 + 0.499618i \(0.166526\pi\)
\(198\) 0 0
\(199\) −4204.86 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(200\) 1317.49 0.465802
\(201\) 0 0
\(202\) −703.316 −0.244976
\(203\) 0 0
\(204\) 0 0
\(205\) 79.1396 0.0269627
\(206\) −606.031 −0.204972
\(207\) 0 0
\(208\) −1967.39 −0.655836
\(209\) −2535.40 −0.839126
\(210\) 0 0
\(211\) −1998.97 −0.652204 −0.326102 0.945335i \(-0.605735\pi\)
−0.326102 + 0.945335i \(0.605735\pi\)
\(212\) −2216.90 −0.718194
\(213\) 0 0
\(214\) 79.3899 0.0253597
\(215\) 7024.03 2.22807
\(216\) 0 0
\(217\) 0 0
\(218\) 106.159 0.0329817
\(219\) 0 0
\(220\) 3374.33 1.03408
\(221\) 2811.76 0.855835
\(222\) 0 0
\(223\) 3931.51 1.18060 0.590299 0.807185i \(-0.299010\pi\)
0.590299 + 0.807185i \(0.299010\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −458.268 −0.134883
\(227\) −3768.42 −1.10184 −0.550922 0.834557i \(-0.685724\pi\)
−0.550922 + 0.834557i \(0.685724\pi\)
\(228\) 0 0
\(229\) −2189.72 −0.631882 −0.315941 0.948779i \(-0.602320\pi\)
−0.315941 + 0.948779i \(0.602320\pi\)
\(230\) −1666.41 −0.477739
\(231\) 0 0
\(232\) 359.525 0.101741
\(233\) 1952.97 0.549114 0.274557 0.961571i \(-0.411469\pi\)
0.274557 + 0.961571i \(0.411469\pi\)
\(234\) 0 0
\(235\) −669.092 −0.185731
\(236\) 3584.62 0.988725
\(237\) 0 0
\(238\) 0 0
\(239\) −2497.90 −0.676048 −0.338024 0.941137i \(-0.609759\pi\)
−0.338024 + 0.941137i \(0.609759\pi\)
\(240\) 0 0
\(241\) −2258.24 −0.603593 −0.301796 0.953372i \(-0.597586\pi\)
−0.301796 + 0.953372i \(0.597586\pi\)
\(242\) 349.898 0.0929435
\(243\) 0 0
\(244\) 1870.79 0.490840
\(245\) 0 0
\(246\) 0 0
\(247\) 3340.93 0.860640
\(248\) −2381.80 −0.609856
\(249\) 0 0
\(250\) 270.542 0.0684422
\(251\) −2538.43 −0.638344 −0.319172 0.947697i \(-0.603405\pi\)
−0.319172 + 0.947697i \(0.603405\pi\)
\(252\) 0 0
\(253\) −4813.23 −1.19607
\(254\) −682.497 −0.168597
\(255\) 0 0
\(256\) 2674.98 0.653072
\(257\) 1790.83 0.434665 0.217333 0.976098i \(-0.430264\pi\)
0.217333 + 0.976098i \(0.430264\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4446.39 −1.06059
\(261\) 0 0
\(262\) −661.387 −0.155957
\(263\) −2597.17 −0.608929 −0.304465 0.952524i \(-0.598478\pi\)
−0.304465 + 0.952524i \(0.598478\pi\)
\(264\) 0 0
\(265\) −4812.28 −1.11553
\(266\) 0 0
\(267\) 0 0
\(268\) 4891.93 1.11501
\(269\) −1555.76 −0.352625 −0.176312 0.984334i \(-0.556417\pi\)
−0.176312 + 0.984334i \(0.556417\pi\)
\(270\) 0 0
\(271\) −7787.65 −1.74563 −0.872816 0.488049i \(-0.837709\pi\)
−0.872816 + 0.488049i \(0.837709\pi\)
\(272\) −4650.64 −1.03671
\(273\) 0 0
\(274\) −1713.98 −0.377902
\(275\) 4053.09 0.888765
\(276\) 0 0
\(277\) 2498.39 0.541927 0.270964 0.962590i \(-0.412658\pi\)
0.270964 + 0.962590i \(0.412658\pi\)
\(278\) 37.5598 0.00810318
\(279\) 0 0
\(280\) 0 0
\(281\) −8097.10 −1.71898 −0.859488 0.511156i \(-0.829217\pi\)
−0.859488 + 0.511156i \(0.829217\pi\)
\(282\) 0 0
\(283\) 5874.53 1.23394 0.616969 0.786987i \(-0.288360\pi\)
0.616969 + 0.786987i \(0.288360\pi\)
\(284\) 7916.64 1.65411
\(285\) 0 0
\(286\) 488.960 0.101094
\(287\) 0 0
\(288\) 0 0
\(289\) 1733.61 0.352862
\(290\) 382.926 0.0775385
\(291\) 0 0
\(292\) 3108.85 0.623054
\(293\) 3987.32 0.795023 0.397512 0.917597i \(-0.369874\pi\)
0.397512 + 0.917597i \(0.369874\pi\)
\(294\) 0 0
\(295\) 7781.24 1.53573
\(296\) −413.991 −0.0812930
\(297\) 0 0
\(298\) −436.924 −0.0849340
\(299\) 6342.45 1.22673
\(300\) 0 0
\(301\) 0 0
\(302\) 1177.77 0.224413
\(303\) 0 0
\(304\) −5525.87 −1.04253
\(305\) 4060.97 0.762394
\(306\) 0 0
\(307\) 716.337 0.133171 0.0665855 0.997781i \(-0.478789\pi\)
0.0665855 + 0.997781i \(0.478789\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2536.82 −0.464780
\(311\) −5505.88 −1.00389 −0.501945 0.864900i \(-0.667382\pi\)
−0.501945 + 0.864900i \(0.667382\pi\)
\(312\) 0 0
\(313\) 1845.46 0.333263 0.166632 0.986019i \(-0.446711\pi\)
0.166632 + 0.986019i \(0.446711\pi\)
\(314\) 368.803 0.0662826
\(315\) 0 0
\(316\) −2376.76 −0.423112
\(317\) −1294.20 −0.229305 −0.114652 0.993406i \(-0.536575\pi\)
−0.114652 + 0.993406i \(0.536575\pi\)
\(318\) 0 0
\(319\) 1106.04 0.194126
\(320\) 6737.55 1.17700
\(321\) 0 0
\(322\) 0 0
\(323\) 7897.48 1.36046
\(324\) 0 0
\(325\) −5340.80 −0.911551
\(326\) −640.048 −0.108739
\(327\) 0 0
\(328\) −40.2481 −0.00677539
\(329\) 0 0
\(330\) 0 0
\(331\) −5232.87 −0.868956 −0.434478 0.900682i \(-0.643067\pi\)
−0.434478 + 0.900682i \(0.643067\pi\)
\(332\) 10940.7 1.80858
\(333\) 0 0
\(334\) −123.541 −0.0202391
\(335\) 10619.0 1.73188
\(336\) 0 0
\(337\) 9347.94 1.51102 0.755511 0.655136i \(-0.227389\pi\)
0.755511 + 0.655136i \(0.227389\pi\)
\(338\) 545.746 0.0878245
\(339\) 0 0
\(340\) −10510.7 −1.67653
\(341\) −7327.31 −1.16362
\(342\) 0 0
\(343\) 0 0
\(344\) −3572.21 −0.559886
\(345\) 0 0
\(346\) 674.278 0.104767
\(347\) −4629.81 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(348\) 0 0
\(349\) −88.6438 −0.0135960 −0.00679798 0.999977i \(-0.502164\pi\)
−0.00679798 + 0.999977i \(0.502164\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2590.16 −0.392204
\(353\) −10143.0 −1.52935 −0.764673 0.644418i \(-0.777100\pi\)
−0.764673 + 0.644418i \(0.777100\pi\)
\(354\) 0 0
\(355\) 17184.8 2.56923
\(356\) −9264.85 −1.37931
\(357\) 0 0
\(358\) −2218.87 −0.327572
\(359\) 4607.94 0.677431 0.338716 0.940889i \(-0.390008\pi\)
0.338716 + 0.940889i \(0.390008\pi\)
\(360\) 0 0
\(361\) 2524.76 0.368094
\(362\) 1765.55 0.256341
\(363\) 0 0
\(364\) 0 0
\(365\) 6748.46 0.967755
\(366\) 0 0
\(367\) 7730.99 1.09960 0.549801 0.835295i \(-0.314703\pi\)
0.549801 + 0.835295i \(0.314703\pi\)
\(368\) −10490.4 −1.48600
\(369\) 0 0
\(370\) −440.936 −0.0619546
\(371\) 0 0
\(372\) 0 0
\(373\) −6793.44 −0.943032 −0.471516 0.881858i \(-0.656293\pi\)
−0.471516 + 0.881858i \(0.656293\pi\)
\(374\) 1155.83 0.159804
\(375\) 0 0
\(376\) 340.281 0.0466719
\(377\) −1457.43 −0.199103
\(378\) 0 0
\(379\) −6426.60 −0.871009 −0.435504 0.900187i \(-0.643430\pi\)
−0.435504 + 0.900187i \(0.643430\pi\)
\(380\) −12488.7 −1.68594
\(381\) 0 0
\(382\) −687.315 −0.0920578
\(383\) −7852.39 −1.04762 −0.523810 0.851835i \(-0.675490\pi\)
−0.523810 + 0.851835i \(0.675490\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 96.5101 0.0127260
\(387\) 0 0
\(388\) 6153.68 0.805169
\(389\) 4679.81 0.609963 0.304982 0.952358i \(-0.401350\pi\)
0.304982 + 0.952358i \(0.401350\pi\)
\(390\) 0 0
\(391\) 14992.7 1.93916
\(392\) 0 0
\(393\) 0 0
\(394\) −2594.82 −0.331790
\(395\) −5159.30 −0.657196
\(396\) 0 0
\(397\) 2491.34 0.314954 0.157477 0.987523i \(-0.449664\pi\)
0.157477 + 0.987523i \(0.449664\pi\)
\(398\) 2277.66 0.286856
\(399\) 0 0
\(400\) 8833.64 1.10421
\(401\) −13206.5 −1.64465 −0.822324 0.569020i \(-0.807323\pi\)
−0.822324 + 0.569020i \(0.807323\pi\)
\(402\) 0 0
\(403\) 9655.28 1.19346
\(404\) −10006.4 −1.23227
\(405\) 0 0
\(406\) 0 0
\(407\) −1273.59 −0.155110
\(408\) 0 0
\(409\) 6028.49 0.728825 0.364413 0.931238i \(-0.381270\pi\)
0.364413 + 0.931238i \(0.381270\pi\)
\(410\) −42.8677 −0.00516362
\(411\) 0 0
\(412\) −8622.25 −1.03104
\(413\) 0 0
\(414\) 0 0
\(415\) 23749.2 2.80917
\(416\) 3413.08 0.402260
\(417\) 0 0
\(418\) 1373.36 0.160701
\(419\) 10628.5 1.23923 0.619613 0.784908i \(-0.287290\pi\)
0.619613 + 0.784908i \(0.287290\pi\)
\(420\) 0 0
\(421\) 4608.37 0.533487 0.266744 0.963768i \(-0.414052\pi\)
0.266744 + 0.963768i \(0.414052\pi\)
\(422\) 1082.79 0.124904
\(423\) 0 0
\(424\) 2447.38 0.280319
\(425\) −12624.9 −1.44094
\(426\) 0 0
\(427\) 0 0
\(428\) 1129.51 0.127563
\(429\) 0 0
\(430\) −3804.72 −0.426697
\(431\) 6011.39 0.671829 0.335915 0.941892i \(-0.390955\pi\)
0.335915 + 0.941892i \(0.390955\pi\)
\(432\) 0 0
\(433\) 6450.48 0.715912 0.357956 0.933738i \(-0.383474\pi\)
0.357956 + 0.933738i \(0.383474\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1510.37 0.165903
\(437\) 17814.2 1.95005
\(438\) 0 0
\(439\) 5769.03 0.627200 0.313600 0.949555i \(-0.398465\pi\)
0.313600 + 0.949555i \(0.398465\pi\)
\(440\) −3725.15 −0.403613
\(441\) 0 0
\(442\) −1523.05 −0.163901
\(443\) 8997.63 0.964989 0.482495 0.875899i \(-0.339731\pi\)
0.482495 + 0.875899i \(0.339731\pi\)
\(444\) 0 0
\(445\) −20111.4 −2.14241
\(446\) −2129.59 −0.226096
\(447\) 0 0
\(448\) 0 0
\(449\) 12051.5 1.26670 0.633348 0.773867i \(-0.281680\pi\)
0.633348 + 0.773867i \(0.281680\pi\)
\(450\) 0 0
\(451\) −123.818 −0.0129277
\(452\) −6519.97 −0.678481
\(453\) 0 0
\(454\) 2041.25 0.211014
\(455\) 0 0
\(456\) 0 0
\(457\) −19121.1 −1.95721 −0.978605 0.205748i \(-0.934037\pi\)
−0.978605 + 0.205748i \(0.934037\pi\)
\(458\) 1186.11 0.121012
\(459\) 0 0
\(460\) −23708.7 −2.40310
\(461\) 467.211 0.0472021 0.0236011 0.999721i \(-0.492487\pi\)
0.0236011 + 0.999721i \(0.492487\pi\)
\(462\) 0 0
\(463\) 5728.76 0.575028 0.287514 0.957776i \(-0.407171\pi\)
0.287514 + 0.957776i \(0.407171\pi\)
\(464\) 2410.59 0.241183
\(465\) 0 0
\(466\) −1057.87 −0.105161
\(467\) 4662.02 0.461954 0.230977 0.972959i \(-0.425808\pi\)
0.230977 + 0.972959i \(0.425808\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 362.429 0.0355693
\(471\) 0 0
\(472\) −3957.31 −0.385911
\(473\) −10989.5 −1.06828
\(474\) 0 0
\(475\) −15000.9 −1.44902
\(476\) 0 0
\(477\) 0 0
\(478\) 1353.04 0.129470
\(479\) 2215.78 0.211360 0.105680 0.994400i \(-0.466298\pi\)
0.105680 + 0.994400i \(0.466298\pi\)
\(480\) 0 0
\(481\) 1678.23 0.159086
\(482\) 1223.22 0.115594
\(483\) 0 0
\(484\) 4978.15 0.467519
\(485\) 13357.9 1.25063
\(486\) 0 0
\(487\) 8704.06 0.809894 0.404947 0.914340i \(-0.367290\pi\)
0.404947 + 0.914340i \(0.367290\pi\)
\(488\) −2065.29 −0.191580
\(489\) 0 0
\(490\) 0 0
\(491\) −12210.2 −1.12228 −0.561139 0.827721i \(-0.689637\pi\)
−0.561139 + 0.827721i \(0.689637\pi\)
\(492\) 0 0
\(493\) −3445.17 −0.314732
\(494\) −1809.69 −0.164821
\(495\) 0 0
\(496\) −15969.8 −1.44569
\(497\) 0 0
\(498\) 0 0
\(499\) 70.1600 0.00629417 0.00314709 0.999995i \(-0.498998\pi\)
0.00314709 + 0.999995i \(0.498998\pi\)
\(500\) 3849.11 0.344275
\(501\) 0 0
\(502\) 1375.00 0.122249
\(503\) 9773.52 0.866361 0.433181 0.901307i \(-0.357391\pi\)
0.433181 + 0.901307i \(0.357391\pi\)
\(504\) 0 0
\(505\) −21721.1 −1.91401
\(506\) 2607.20 0.229059
\(507\) 0 0
\(508\) −9710.17 −0.848069
\(509\) −6752.01 −0.587972 −0.293986 0.955810i \(-0.594982\pi\)
−0.293986 + 0.955810i \(0.594982\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −9527.79 −0.822408
\(513\) 0 0
\(514\) −970.043 −0.0832427
\(515\) −18716.5 −1.60146
\(516\) 0 0
\(517\) 1046.83 0.0890514
\(518\) 0 0
\(519\) 0 0
\(520\) 4908.67 0.413961
\(521\) 12360.2 1.03936 0.519682 0.854360i \(-0.326050\pi\)
0.519682 + 0.854360i \(0.326050\pi\)
\(522\) 0 0
\(523\) −13905.3 −1.16259 −0.581296 0.813692i \(-0.697454\pi\)
−0.581296 + 0.813692i \(0.697454\pi\)
\(524\) −9409.82 −0.784485
\(525\) 0 0
\(526\) 1406.82 0.116616
\(527\) 22823.7 1.88656
\(528\) 0 0
\(529\) 21651.8 1.77955
\(530\) 2606.68 0.213636
\(531\) 0 0
\(532\) 0 0
\(533\) 163.157 0.0132591
\(534\) 0 0
\(535\) 2451.86 0.198137
\(536\) −5400.53 −0.435201
\(537\) 0 0
\(538\) 842.709 0.0675312
\(539\) 0 0
\(540\) 0 0
\(541\) −9392.89 −0.746455 −0.373227 0.927740i \(-0.621749\pi\)
−0.373227 + 0.927740i \(0.621749\pi\)
\(542\) 4218.36 0.334306
\(543\) 0 0
\(544\) 8068.04 0.635872
\(545\) 3278.60 0.257688
\(546\) 0 0
\(547\) −25372.6 −1.98328 −0.991639 0.129041i \(-0.958810\pi\)
−0.991639 + 0.129041i \(0.958810\pi\)
\(548\) −24385.4 −1.90090
\(549\) 0 0
\(550\) −2195.44 −0.170207
\(551\) −4093.54 −0.316499
\(552\) 0 0
\(553\) 0 0
\(554\) −1353.31 −0.103784
\(555\) 0 0
\(556\) 534.378 0.0407602
\(557\) 8764.14 0.666694 0.333347 0.942804i \(-0.391822\pi\)
0.333347 + 0.942804i \(0.391822\pi\)
\(558\) 0 0
\(559\) 14481.0 1.09567
\(560\) 0 0
\(561\) 0 0
\(562\) 4385.97 0.329201
\(563\) −7057.73 −0.528327 −0.264163 0.964478i \(-0.585096\pi\)
−0.264163 + 0.964478i \(0.585096\pi\)
\(564\) 0 0
\(565\) −14153.1 −1.05385
\(566\) −3182.07 −0.236312
\(567\) 0 0
\(568\) −8739.71 −0.645616
\(569\) −4913.68 −0.362025 −0.181012 0.983481i \(-0.557937\pi\)
−0.181012 + 0.983481i \(0.557937\pi\)
\(570\) 0 0
\(571\) −3626.97 −0.265822 −0.132911 0.991128i \(-0.542432\pi\)
−0.132911 + 0.991128i \(0.542432\pi\)
\(572\) 6956.63 0.508516
\(573\) 0 0
\(574\) 0 0
\(575\) −28477.8 −2.06540
\(576\) 0 0
\(577\) −20573.4 −1.48437 −0.742186 0.670194i \(-0.766211\pi\)
−0.742186 + 0.670194i \(0.766211\pi\)
\(578\) −939.050 −0.0675767
\(579\) 0 0
\(580\) 5448.04 0.390030
\(581\) 0 0
\(582\) 0 0
\(583\) 7529.07 0.534858
\(584\) −3432.07 −0.243185
\(585\) 0 0
\(586\) −2159.82 −0.152255
\(587\) −8483.89 −0.596538 −0.298269 0.954482i \(-0.596409\pi\)
−0.298269 + 0.954482i \(0.596409\pi\)
\(588\) 0 0
\(589\) 27119.1 1.89715
\(590\) −4214.88 −0.294108
\(591\) 0 0
\(592\) −2775.78 −0.192709
\(593\) −14571.4 −1.00907 −0.504534 0.863392i \(-0.668336\pi\)
−0.504534 + 0.863392i \(0.668336\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6216.30 −0.427231
\(597\) 0 0
\(598\) −3435.53 −0.234932
\(599\) −10164.8 −0.693362 −0.346681 0.937983i \(-0.612691\pi\)
−0.346681 + 0.937983i \(0.612691\pi\)
\(600\) 0 0
\(601\) 11347.7 0.770190 0.385095 0.922877i \(-0.374169\pi\)
0.385095 + 0.922877i \(0.374169\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16756.5 1.12883
\(605\) 10806.2 0.726172
\(606\) 0 0
\(607\) 10938.9 0.731459 0.365730 0.930721i \(-0.380819\pi\)
0.365730 + 0.930721i \(0.380819\pi\)
\(608\) 9586.42 0.639442
\(609\) 0 0
\(610\) −2199.71 −0.146006
\(611\) −1379.42 −0.0913346
\(612\) 0 0
\(613\) 17550.8 1.15639 0.578196 0.815898i \(-0.303757\pi\)
0.578196 + 0.815898i \(0.303757\pi\)
\(614\) −388.020 −0.0255036
\(615\) 0 0
\(616\) 0 0
\(617\) −20140.9 −1.31417 −0.657084 0.753818i \(-0.728210\pi\)
−0.657084 + 0.753818i \(0.728210\pi\)
\(618\) 0 0
\(619\) 9924.85 0.644448 0.322224 0.946663i \(-0.395570\pi\)
0.322224 + 0.946663i \(0.395570\pi\)
\(620\) −36092.4 −2.33791
\(621\) 0 0
\(622\) 2982.38 0.192255
\(623\) 0 0
\(624\) 0 0
\(625\) −11001.6 −0.704105
\(626\) −999.632 −0.0638232
\(627\) 0 0
\(628\) 5247.11 0.333411
\(629\) 3967.09 0.251476
\(630\) 0 0
\(631\) −24226.7 −1.52844 −0.764222 0.644954i \(-0.776877\pi\)
−0.764222 + 0.644954i \(0.776877\pi\)
\(632\) 2623.87 0.165145
\(633\) 0 0
\(634\) 701.032 0.0439141
\(635\) −21078.1 −1.31726
\(636\) 0 0
\(637\) 0 0
\(638\) −599.109 −0.0371770
\(639\) 0 0
\(640\) −16893.7 −1.04341
\(641\) 6585.11 0.405766 0.202883 0.979203i \(-0.434969\pi\)
0.202883 + 0.979203i \(0.434969\pi\)
\(642\) 0 0
\(643\) −12810.5 −0.785690 −0.392845 0.919605i \(-0.628509\pi\)
−0.392845 + 0.919605i \(0.628509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −4277.85 −0.260541
\(647\) −16846.0 −1.02363 −0.511813 0.859097i \(-0.671026\pi\)
−0.511813 + 0.859097i \(0.671026\pi\)
\(648\) 0 0
\(649\) −12174.2 −0.736330
\(650\) 2892.96 0.174571
\(651\) 0 0
\(652\) −9106.22 −0.546974
\(653\) −10585.1 −0.634347 −0.317173 0.948368i \(-0.602734\pi\)
−0.317173 + 0.948368i \(0.602734\pi\)
\(654\) 0 0
\(655\) −20426.1 −1.21850
\(656\) −269.860 −0.0160614
\(657\) 0 0
\(658\) 0 0
\(659\) 11682.7 0.690584 0.345292 0.938495i \(-0.387780\pi\)
0.345292 + 0.938495i \(0.387780\pi\)
\(660\) 0 0
\(661\) 13385.5 0.787651 0.393826 0.919185i \(-0.371151\pi\)
0.393826 + 0.919185i \(0.371151\pi\)
\(662\) 2834.50 0.166414
\(663\) 0 0
\(664\) −12078.2 −0.705909
\(665\) 0 0
\(666\) 0 0
\(667\) −7771.23 −0.451129
\(668\) −1757.66 −0.101805
\(669\) 0 0
\(670\) −5752.04 −0.331673
\(671\) −6353.61 −0.365541
\(672\) 0 0
\(673\) 29896.4 1.71236 0.856181 0.516676i \(-0.172831\pi\)
0.856181 + 0.516676i \(0.172831\pi\)
\(674\) −5063.52 −0.289376
\(675\) 0 0
\(676\) 7764.55 0.441770
\(677\) −17322.5 −0.983395 −0.491698 0.870766i \(-0.663623\pi\)
−0.491698 + 0.870766i \(0.663623\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 11603.4 0.654369
\(681\) 0 0
\(682\) 3969.00 0.222846
\(683\) −30767.3 −1.72369 −0.861844 0.507173i \(-0.830691\pi\)
−0.861844 + 0.507173i \(0.830691\pi\)
\(684\) 0 0
\(685\) −52934.1 −2.95257
\(686\) 0 0
\(687\) 0 0
\(688\) −23951.4 −1.32724
\(689\) −9921.14 −0.548571
\(690\) 0 0
\(691\) 9805.50 0.539824 0.269912 0.962885i \(-0.413005\pi\)
0.269912 + 0.962885i \(0.413005\pi\)
\(692\) 9593.22 0.526994
\(693\) 0 0
\(694\) 2507.84 0.137171
\(695\) 1159.99 0.0633106
\(696\) 0 0
\(697\) 385.680 0.0209593
\(698\) 48.0159 0.00260376
\(699\) 0 0
\(700\) 0 0
\(701\) −19855.5 −1.06980 −0.534902 0.844914i \(-0.679652\pi\)
−0.534902 + 0.844914i \(0.679652\pi\)
\(702\) 0 0
\(703\) 4713.69 0.252888
\(704\) −10541.3 −0.564331
\(705\) 0 0
\(706\) 5494.20 0.292885
\(707\) 0 0
\(708\) 0 0
\(709\) 12272.8 0.650092 0.325046 0.945698i \(-0.394620\pi\)
0.325046 + 0.945698i \(0.394620\pi\)
\(710\) −9308.55 −0.492034
\(711\) 0 0
\(712\) 10228.1 0.538362
\(713\) 51483.2 2.70415
\(714\) 0 0
\(715\) 15100.9 0.789850
\(716\) −31568.7 −1.64774
\(717\) 0 0
\(718\) −2495.99 −0.129735
\(719\) 7995.30 0.414707 0.207353 0.978266i \(-0.433515\pi\)
0.207353 + 0.978266i \(0.433515\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1367.59 −0.0704938
\(723\) 0 0
\(724\) 25119.2 1.28943
\(725\) 6543.93 0.335221
\(726\) 0 0
\(727\) 30320.9 1.54682 0.773411 0.633905i \(-0.218549\pi\)
0.773411 + 0.633905i \(0.218549\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −3655.46 −0.185335
\(731\) 34231.0 1.73198
\(732\) 0 0
\(733\) 33090.1 1.66741 0.833705 0.552211i \(-0.186216\pi\)
0.833705 + 0.552211i \(0.186216\pi\)
\(734\) −4187.66 −0.210585
\(735\) 0 0
\(736\) 18199.0 0.911444
\(737\) −16614.1 −0.830377
\(738\) 0 0
\(739\) −21953.9 −1.09281 −0.546406 0.837520i \(-0.684004\pi\)
−0.546406 + 0.837520i \(0.684004\pi\)
\(740\) −6273.38 −0.311641
\(741\) 0 0
\(742\) 0 0
\(743\) −10911.2 −0.538752 −0.269376 0.963035i \(-0.586817\pi\)
−0.269376 + 0.963035i \(0.586817\pi\)
\(744\) 0 0
\(745\) −13493.9 −0.663594
\(746\) 3679.82 0.180600
\(747\) 0 0
\(748\) 16444.5 0.803837
\(749\) 0 0
\(750\) 0 0
\(751\) 10527.6 0.511530 0.255765 0.966739i \(-0.417673\pi\)
0.255765 + 0.966739i \(0.417673\pi\)
\(752\) 2281.55 0.110638
\(753\) 0 0
\(754\) 789.452 0.0381302
\(755\) 36373.9 1.75335
\(756\) 0 0
\(757\) 15270.8 0.733194 0.366597 0.930380i \(-0.380523\pi\)
0.366597 + 0.930380i \(0.380523\pi\)
\(758\) 3481.11 0.166807
\(759\) 0 0
\(760\) 13787.1 0.658042
\(761\) −6708.22 −0.319544 −0.159772 0.987154i \(-0.551076\pi\)
−0.159772 + 0.987154i \(0.551076\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −9778.70 −0.463064
\(765\) 0 0
\(766\) 4253.42 0.200630
\(767\) 16042.0 0.755208
\(768\) 0 0
\(769\) 7067.41 0.331414 0.165707 0.986175i \(-0.447009\pi\)
0.165707 + 0.986175i \(0.447009\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1373.09 0.0640136
\(773\) −2381.32 −0.110802 −0.0554012 0.998464i \(-0.517644\pi\)
−0.0554012 + 0.998464i \(0.517644\pi\)
\(774\) 0 0
\(775\) −43352.5 −2.00938
\(776\) −6793.46 −0.314267
\(777\) 0 0
\(778\) −2534.92 −0.116814
\(779\) 458.263 0.0210770
\(780\) 0 0
\(781\) −26886.6 −1.23186
\(782\) −8121.11 −0.371369
\(783\) 0 0
\(784\) 0 0
\(785\) 11390.0 0.517869
\(786\) 0 0
\(787\) 33540.7 1.51918 0.759592 0.650400i \(-0.225399\pi\)
0.759592 + 0.650400i \(0.225399\pi\)
\(788\) −36917.5 −1.66895
\(789\) 0 0
\(790\) 2794.65 0.125860
\(791\) 0 0
\(792\) 0 0
\(793\) 8372.22 0.374913
\(794\) −1349.49 −0.0603168
\(795\) 0 0
\(796\) 32405.1 1.44293
\(797\) 16332.6 0.725886 0.362943 0.931811i \(-0.381772\pi\)
0.362943 + 0.931811i \(0.381772\pi\)
\(798\) 0 0
\(799\) −3260.76 −0.144377
\(800\) −15324.8 −0.677268
\(801\) 0 0
\(802\) 7153.62 0.314967
\(803\) −10558.3 −0.464005
\(804\) 0 0
\(805\) 0 0
\(806\) −5230.00 −0.228559
\(807\) 0 0
\(808\) 11046.7 0.480967
\(809\) 32769.7 1.42413 0.712064 0.702114i \(-0.247761\pi\)
0.712064 + 0.702114i \(0.247761\pi\)
\(810\) 0 0
\(811\) 30212.2 1.30813 0.654066 0.756437i \(-0.273062\pi\)
0.654066 + 0.756437i \(0.273062\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 689.869 0.0297051
\(815\) −19767.1 −0.849585
\(816\) 0 0
\(817\) 40673.1 1.74170
\(818\) −3265.47 −0.139577
\(819\) 0 0
\(820\) −609.896 −0.0259738
\(821\) 44113.0 1.87522 0.937609 0.347691i \(-0.113034\pi\)
0.937609 + 0.347691i \(0.113034\pi\)
\(822\) 0 0
\(823\) −1817.29 −0.0769706 −0.0384853 0.999259i \(-0.512253\pi\)
−0.0384853 + 0.999259i \(0.512253\pi\)
\(824\) 9518.69 0.402426
\(825\) 0 0
\(826\) 0 0
\(827\) −1390.30 −0.0584589 −0.0292294 0.999573i \(-0.509305\pi\)
−0.0292294 + 0.999573i \(0.509305\pi\)
\(828\) 0 0
\(829\) −29072.1 −1.21799 −0.608995 0.793174i \(-0.708427\pi\)
−0.608995 + 0.793174i \(0.708427\pi\)
\(830\) −12864.3 −0.537984
\(831\) 0 0
\(832\) 13890.3 0.578800
\(833\) 0 0
\(834\) 0 0
\(835\) −3815.41 −0.158129
\(836\) 19539.3 0.808350
\(837\) 0 0
\(838\) −5757.15 −0.237324
\(839\) −45756.4 −1.88282 −0.941410 0.337264i \(-0.890499\pi\)
−0.941410 + 0.337264i \(0.890499\pi\)
\(840\) 0 0
\(841\) −22603.2 −0.926780
\(842\) −2496.22 −0.102168
\(843\) 0 0
\(844\) 15405.3 0.628284
\(845\) 16854.7 0.686177
\(846\) 0 0
\(847\) 0 0
\(848\) 16409.5 0.664510
\(849\) 0 0
\(850\) 6838.56 0.275954
\(851\) 8948.52 0.360460
\(852\) 0 0
\(853\) 6646.22 0.266779 0.133389 0.991064i \(-0.457414\pi\)
0.133389 + 0.991064i \(0.457414\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1246.94 −0.0497893
\(857\) −14576.1 −0.580993 −0.290497 0.956876i \(-0.593821\pi\)
−0.290497 + 0.956876i \(0.593821\pi\)
\(858\) 0 0
\(859\) 5100.35 0.202586 0.101293 0.994857i \(-0.467702\pi\)
0.101293 + 0.994857i \(0.467702\pi\)
\(860\) −54131.3 −2.14635
\(861\) 0 0
\(862\) −3256.20 −0.128662
\(863\) 16493.9 0.650590 0.325295 0.945613i \(-0.394536\pi\)
0.325295 + 0.945613i \(0.394536\pi\)
\(864\) 0 0
\(865\) 20824.3 0.818550
\(866\) −3494.04 −0.137104
\(867\) 0 0
\(868\) 0 0
\(869\) 8072.01 0.315103
\(870\) 0 0
\(871\) 21892.6 0.851666
\(872\) −1667.40 −0.0647538
\(873\) 0 0
\(874\) −9649.48 −0.373454
\(875\) 0 0
\(876\) 0 0
\(877\) −19853.4 −0.764425 −0.382213 0.924074i \(-0.624838\pi\)
−0.382213 + 0.924074i \(0.624838\pi\)
\(878\) −3124.93 −0.120115
\(879\) 0 0
\(880\) −24976.8 −0.956783
\(881\) −24792.8 −0.948117 −0.474059 0.880493i \(-0.657211\pi\)
−0.474059 + 0.880493i \(0.657211\pi\)
\(882\) 0 0
\(883\) 2770.17 0.105576 0.0527880 0.998606i \(-0.483189\pi\)
0.0527880 + 0.998606i \(0.483189\pi\)
\(884\) −21669.1 −0.824446
\(885\) 0 0
\(886\) −4873.76 −0.184805
\(887\) −5502.04 −0.208275 −0.104138 0.994563i \(-0.533208\pi\)
−0.104138 + 0.994563i \(0.533208\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 10893.8 0.410294
\(891\) 0 0
\(892\) −30298.5 −1.13730
\(893\) −3874.42 −0.145188
\(894\) 0 0
\(895\) −68527.0 −2.55934
\(896\) 0 0
\(897\) 0 0
\(898\) −6527.98 −0.242585
\(899\) −11830.3 −0.438892
\(900\) 0 0
\(901\) −23452.2 −0.867154
\(902\) 67.0689 0.00247578
\(903\) 0 0
\(904\) 7197.83 0.264819
\(905\) 54527.0 2.00280
\(906\) 0 0
\(907\) −43667.1 −1.59861 −0.799306 0.600924i \(-0.794799\pi\)
−0.799306 + 0.600924i \(0.794799\pi\)
\(908\) 29041.7 1.06143
\(909\) 0 0
\(910\) 0 0
\(911\) −22419.5 −0.815358 −0.407679 0.913125i \(-0.633662\pi\)
−0.407679 + 0.913125i \(0.633662\pi\)
\(912\) 0 0
\(913\) −37157.0 −1.34690
\(914\) 10357.3 0.374825
\(915\) 0 0
\(916\) 16875.3 0.608707
\(917\) 0 0
\(918\) 0 0
\(919\) −19524.5 −0.700822 −0.350411 0.936596i \(-0.613958\pi\)
−0.350411 + 0.936596i \(0.613958\pi\)
\(920\) 26173.7 0.937957
\(921\) 0 0
\(922\) −253.075 −0.00903969
\(923\) 35428.8 1.26344
\(924\) 0 0
\(925\) −7535.29 −0.267847
\(926\) −3103.11 −0.110124
\(927\) 0 0
\(928\) −4181.95 −0.147930
\(929\) 30706.0 1.08442 0.542212 0.840242i \(-0.317587\pi\)
0.542212 + 0.840242i \(0.317587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −15050.8 −0.528974
\(933\) 0 0
\(934\) −2525.29 −0.0884689
\(935\) 35696.5 1.24856
\(936\) 0 0
\(937\) −20313.5 −0.708233 −0.354117 0.935201i \(-0.615218\pi\)
−0.354117 + 0.935201i \(0.615218\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 5156.42 0.178919
\(941\) 37068.3 1.28416 0.642079 0.766638i \(-0.278072\pi\)
0.642079 + 0.766638i \(0.278072\pi\)
\(942\) 0 0
\(943\) 869.972 0.0300426
\(944\) −26533.4 −0.914819
\(945\) 0 0
\(946\) 5952.69 0.204586
\(947\) −35369.2 −1.21367 −0.606835 0.794828i \(-0.707561\pi\)
−0.606835 + 0.794828i \(0.707561\pi\)
\(948\) 0 0
\(949\) 13912.8 0.475901
\(950\) 8125.55 0.277503
\(951\) 0 0
\(952\) 0 0
\(953\) 33615.0 1.14260 0.571300 0.820741i \(-0.306439\pi\)
0.571300 + 0.820741i \(0.306439\pi\)
\(954\) 0 0
\(955\) −21226.9 −0.719252
\(956\) 19250.3 0.651254
\(957\) 0 0
\(958\) −1200.23 −0.0404776
\(959\) 0 0
\(960\) 0 0
\(961\) 48583.2 1.63080
\(962\) −909.049 −0.0304666
\(963\) 0 0
\(964\) 17403.3 0.581455
\(965\) 2980.60 0.0994289
\(966\) 0 0
\(967\) 14905.5 0.495685 0.247842 0.968800i \(-0.420279\pi\)
0.247842 + 0.968800i \(0.420279\pi\)
\(968\) −5495.71 −0.182478
\(969\) 0 0
\(970\) −7235.63 −0.239507
\(971\) −9213.04 −0.304491 −0.152245 0.988343i \(-0.548650\pi\)
−0.152245 + 0.988343i \(0.548650\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −4714.75 −0.155103
\(975\) 0 0
\(976\) −13847.6 −0.454150
\(977\) 11453.4 0.375054 0.187527 0.982259i \(-0.439953\pi\)
0.187527 + 0.982259i \(0.439953\pi\)
\(978\) 0 0
\(979\) 31465.5 1.02721
\(980\) 0 0
\(981\) 0 0
\(982\) 6613.93 0.214928
\(983\) −42889.2 −1.39161 −0.695805 0.718231i \(-0.744952\pi\)
−0.695805 + 0.718231i \(0.744952\pi\)
\(984\) 0 0
\(985\) −80137.9 −2.59229
\(986\) 1866.15 0.0602743
\(987\) 0 0
\(988\) −25747.1 −0.829075
\(989\) 77214.3 2.48258
\(990\) 0 0
\(991\) 50991.9 1.63452 0.817261 0.576267i \(-0.195491\pi\)
0.817261 + 0.576267i \(0.195491\pi\)
\(992\) 27704.8 0.886721
\(993\) 0 0
\(994\) 0 0
\(995\) 70342.7 2.24122
\(996\) 0 0
\(997\) 5789.17 0.183896 0.0919482 0.995764i \(-0.470691\pi\)
0.0919482 + 0.995764i \(0.470691\pi\)
\(998\) −38.0037 −0.00120540
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bj.1.4 7
3.2 odd 2 1323.4.a.bi.1.4 7
7.2 even 3 189.4.e.f.109.4 14
7.4 even 3 189.4.e.f.163.4 yes 14
7.6 odd 2 1323.4.a.bk.1.4 7
21.2 odd 6 189.4.e.g.109.4 yes 14
21.11 odd 6 189.4.e.g.163.4 yes 14
21.20 even 2 1323.4.a.bh.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.4 14 7.2 even 3
189.4.e.f.163.4 yes 14 7.4 even 3
189.4.e.g.109.4 yes 14 21.2 odd 6
189.4.e.g.163.4 yes 14 21.11 odd 6
1323.4.a.bh.1.4 7 21.20 even 2
1323.4.a.bi.1.4 7 3.2 odd 2
1323.4.a.bj.1.4 7 1.1 even 1 trivial
1323.4.a.bk.1.4 7 7.6 odd 2