Properties

Label 1323.4.a.bj.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.62964\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.62964 q^{2} +5.17430 q^{4} +4.84163 q^{5} +10.2563 q^{8} +O(q^{10})\) \(q-3.62964 q^{2} +5.17430 q^{4} +4.84163 q^{5} +10.2563 q^{8} -17.5734 q^{10} -20.1323 q^{11} +72.2571 q^{13} -78.6210 q^{16} +132.363 q^{17} +76.9369 q^{19} +25.0520 q^{20} +73.0732 q^{22} -22.4717 q^{23} -101.559 q^{25} -262.268 q^{26} +193.429 q^{29} +89.7705 q^{31} +203.316 q^{32} -480.430 q^{34} +47.9286 q^{37} -279.254 q^{38} +49.6571 q^{40} +3.41948 q^{41} -168.358 q^{43} -104.171 q^{44} +81.5644 q^{46} +163.178 q^{47} +368.622 q^{50} +373.880 q^{52} +337.375 q^{53} -97.4733 q^{55} -702.077 q^{58} +517.788 q^{59} +424.828 q^{61} -325.835 q^{62} -108.996 q^{64} +349.842 q^{65} -978.338 q^{67} +684.885 q^{68} -40.4250 q^{71} +482.240 q^{73} -173.964 q^{74} +398.095 q^{76} -1074.97 q^{79} -380.654 q^{80} -12.4115 q^{82} -811.700 q^{83} +640.851 q^{85} +611.078 q^{86} -206.483 q^{88} +997.039 q^{89} -116.276 q^{92} -592.279 q^{94} +372.500 q^{95} -1452.82 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8} + 12 q^{10} + 98 q^{11} - 124 q^{13} + 139 q^{16} + 30 q^{17} + 182 q^{19} - 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} - 245 q^{26} + 323 q^{29} + 26 q^{31} + 398 q^{32} + 114 q^{34} - 112 q^{37} + 1015 q^{38} - 147 q^{40} - 524 q^{41} + 8 q^{43} + 937 q^{44} - 339 q^{46} + 288 q^{47} + 2576 q^{50} - 1075 q^{52} + 1353 q^{53} + 156 q^{55} - 81 q^{58} + 165 q^{59} + 56 q^{61} - 1215 q^{62} - 1706 q^{64} + 1694 q^{65} - 988 q^{67} + 2625 q^{68} + 792 q^{71} + 1487 q^{73} + 2736 q^{74} + 1952 q^{76} - 1273 q^{79} - 2501 q^{80} - 2049 q^{82} - 1170 q^{83} + 216 q^{85} - 160 q^{86} + 9 q^{88} + 1058 q^{89} + 3834 q^{92} + 1653 q^{94} + 3260 q^{95} - 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.62964 −1.28327 −0.641636 0.767009i \(-0.721744\pi\)
−0.641636 + 0.767009i \(0.721744\pi\)
\(3\) 0 0
\(4\) 5.17430 0.646788
\(5\) 4.84163 0.433048 0.216524 0.976277i \(-0.430528\pi\)
0.216524 + 0.976277i \(0.430528\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 10.2563 0.453268
\(9\) 0 0
\(10\) −17.5734 −0.555719
\(11\) −20.1323 −0.551830 −0.275915 0.961182i \(-0.588981\pi\)
−0.275915 + 0.961182i \(0.588981\pi\)
\(12\) 0 0
\(13\) 72.2571 1.54158 0.770789 0.637090i \(-0.219862\pi\)
0.770789 + 0.637090i \(0.219862\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −78.6210 −1.22845
\(17\) 132.363 1.88839 0.944197 0.329382i \(-0.106840\pi\)
0.944197 + 0.329382i \(0.106840\pi\)
\(18\) 0 0
\(19\) 76.9369 0.928976 0.464488 0.885579i \(-0.346238\pi\)
0.464488 + 0.885579i \(0.346238\pi\)
\(20\) 25.0520 0.280090
\(21\) 0 0
\(22\) 73.0732 0.708148
\(23\) −22.4717 −0.203725 −0.101863 0.994798i \(-0.532480\pi\)
−0.101863 + 0.994798i \(0.532480\pi\)
\(24\) 0 0
\(25\) −101.559 −0.812469
\(26\) −262.268 −1.97827
\(27\) 0 0
\(28\) 0 0
\(29\) 193.429 1.23858 0.619290 0.785163i \(-0.287421\pi\)
0.619290 + 0.785163i \(0.287421\pi\)
\(30\) 0 0
\(31\) 89.7705 0.520105 0.260053 0.965594i \(-0.416260\pi\)
0.260053 + 0.965594i \(0.416260\pi\)
\(32\) 203.316 1.12317
\(33\) 0 0
\(34\) −480.430 −2.42332
\(35\) 0 0
\(36\) 0 0
\(37\) 47.9286 0.212957 0.106479 0.994315i \(-0.466042\pi\)
0.106479 + 0.994315i \(0.466042\pi\)
\(38\) −279.254 −1.19213
\(39\) 0 0
\(40\) 49.6571 0.196287
\(41\) 3.41948 0.0130252 0.00651260 0.999979i \(-0.497927\pi\)
0.00651260 + 0.999979i \(0.497927\pi\)
\(42\) 0 0
\(43\) −168.358 −0.597076 −0.298538 0.954398i \(-0.596499\pi\)
−0.298538 + 0.954398i \(0.596499\pi\)
\(44\) −104.171 −0.356917
\(45\) 0 0
\(46\) 81.5644 0.261435
\(47\) 163.178 0.506426 0.253213 0.967411i \(-0.418513\pi\)
0.253213 + 0.967411i \(0.418513\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 368.622 1.04262
\(51\) 0 0
\(52\) 373.880 0.997074
\(53\) 337.375 0.874377 0.437188 0.899370i \(-0.355974\pi\)
0.437188 + 0.899370i \(0.355974\pi\)
\(54\) 0 0
\(55\) −97.4733 −0.238969
\(56\) 0 0
\(57\) 0 0
\(58\) −702.077 −1.58943
\(59\) 517.788 1.14255 0.571274 0.820760i \(-0.306449\pi\)
0.571274 + 0.820760i \(0.306449\pi\)
\(60\) 0 0
\(61\) 424.828 0.891698 0.445849 0.895108i \(-0.352902\pi\)
0.445849 + 0.895108i \(0.352902\pi\)
\(62\) −325.835 −0.667436
\(63\) 0 0
\(64\) −108.996 −0.212883
\(65\) 349.842 0.667578
\(66\) 0 0
\(67\) −978.338 −1.78393 −0.891963 0.452109i \(-0.850672\pi\)
−0.891963 + 0.452109i \(0.850672\pi\)
\(68\) 684.885 1.22139
\(69\) 0 0
\(70\) 0 0
\(71\) −40.4250 −0.0675713 −0.0337856 0.999429i \(-0.510756\pi\)
−0.0337856 + 0.999429i \(0.510756\pi\)
\(72\) 0 0
\(73\) 482.240 0.773176 0.386588 0.922252i \(-0.373653\pi\)
0.386588 + 0.922252i \(0.373653\pi\)
\(74\) −173.964 −0.273282
\(75\) 0 0
\(76\) 398.095 0.600850
\(77\) 0 0
\(78\) 0 0
\(79\) −1074.97 −1.53093 −0.765466 0.643476i \(-0.777492\pi\)
−0.765466 + 0.643476i \(0.777492\pi\)
\(80\) −380.654 −0.531980
\(81\) 0 0
\(82\) −12.4115 −0.0167149
\(83\) −811.700 −1.07344 −0.536721 0.843760i \(-0.680337\pi\)
−0.536721 + 0.843760i \(0.680337\pi\)
\(84\) 0 0
\(85\) 640.851 0.817766
\(86\) 611.078 0.766212
\(87\) 0 0
\(88\) −206.483 −0.250127
\(89\) 997.039 1.18748 0.593741 0.804656i \(-0.297650\pi\)
0.593741 + 0.804656i \(0.297650\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −116.276 −0.131767
\(93\) 0 0
\(94\) −592.279 −0.649882
\(95\) 372.500 0.402291
\(96\) 0 0
\(97\) −1452.82 −1.52074 −0.760369 0.649491i \(-0.774982\pi\)
−0.760369 + 0.649491i \(0.774982\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −525.495 −0.525495
\(101\) −223.725 −0.220411 −0.110205 0.993909i \(-0.535151\pi\)
−0.110205 + 0.993909i \(0.535151\pi\)
\(102\) 0 0
\(103\) −538.467 −0.515114 −0.257557 0.966263i \(-0.582918\pi\)
−0.257557 + 0.966263i \(0.582918\pi\)
\(104\) 741.089 0.698748
\(105\) 0 0
\(106\) −1224.55 −1.12206
\(107\) 1898.05 1.71488 0.857438 0.514588i \(-0.172055\pi\)
0.857438 + 0.514588i \(0.172055\pi\)
\(108\) 0 0
\(109\) −854.503 −0.750886 −0.375443 0.926846i \(-0.622509\pi\)
−0.375443 + 0.926846i \(0.622509\pi\)
\(110\) 353.793 0.306662
\(111\) 0 0
\(112\) 0 0
\(113\) −802.087 −0.667734 −0.333867 0.942620i \(-0.608354\pi\)
−0.333867 + 0.942620i \(0.608354\pi\)
\(114\) 0 0
\(115\) −108.800 −0.0882229
\(116\) 1000.86 0.801098
\(117\) 0 0
\(118\) −1879.39 −1.46620
\(119\) 0 0
\(120\) 0 0
\(121\) −925.689 −0.695484
\(122\) −1541.97 −1.14429
\(123\) 0 0
\(124\) 464.500 0.336398
\(125\) −1096.91 −0.784887
\(126\) 0 0
\(127\) −1723.69 −1.20435 −0.602176 0.798364i \(-0.705699\pi\)
−0.602176 + 0.798364i \(0.705699\pi\)
\(128\) −1230.91 −0.849986
\(129\) 0 0
\(130\) −1269.80 −0.856685
\(131\) 1018.94 0.679585 0.339792 0.940500i \(-0.389643\pi\)
0.339792 + 0.940500i \(0.389643\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3551.02 2.28926
\(135\) 0 0
\(136\) 1357.55 0.855948
\(137\) 1838.22 1.14635 0.573173 0.819434i \(-0.305712\pi\)
0.573173 + 0.819434i \(0.305712\pi\)
\(138\) 0 0
\(139\) −1467.29 −0.895352 −0.447676 0.894196i \(-0.647748\pi\)
−0.447676 + 0.894196i \(0.647748\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 146.728 0.0867124
\(143\) −1454.70 −0.850689
\(144\) 0 0
\(145\) 936.509 0.536365
\(146\) −1750.36 −0.992196
\(147\) 0 0
\(148\) 247.997 0.137738
\(149\) −3510.13 −1.92994 −0.964971 0.262357i \(-0.915500\pi\)
−0.964971 + 0.262357i \(0.915500\pi\)
\(150\) 0 0
\(151\) 3237.59 1.74484 0.872421 0.488756i \(-0.162549\pi\)
0.872421 + 0.488756i \(0.162549\pi\)
\(152\) 789.086 0.421075
\(153\) 0 0
\(154\) 0 0
\(155\) 434.635 0.225231
\(156\) 0 0
\(157\) 2865.29 1.45653 0.728265 0.685296i \(-0.240327\pi\)
0.728265 + 0.685296i \(0.240327\pi\)
\(158\) 3901.76 1.96460
\(159\) 0 0
\(160\) 984.380 0.486388
\(161\) 0 0
\(162\) 0 0
\(163\) −612.714 −0.294426 −0.147213 0.989105i \(-0.547030\pi\)
−0.147213 + 0.989105i \(0.547030\pi\)
\(164\) 17.6934 0.00842453
\(165\) 0 0
\(166\) 2946.18 1.37752
\(167\) 1633.90 0.757096 0.378548 0.925582i \(-0.376423\pi\)
0.378548 + 0.925582i \(0.376423\pi\)
\(168\) 0 0
\(169\) 3024.09 1.37647
\(170\) −2326.06 −1.04942
\(171\) 0 0
\(172\) −871.133 −0.386182
\(173\) −1036.77 −0.455632 −0.227816 0.973704i \(-0.573158\pi\)
−0.227816 + 0.973704i \(0.573158\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1582.82 0.677897
\(177\) 0 0
\(178\) −3618.89 −1.52386
\(179\) −522.258 −0.218075 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(180\) 0 0
\(181\) 2657.83 1.09147 0.545733 0.837959i \(-0.316251\pi\)
0.545733 + 0.837959i \(0.316251\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −230.476 −0.0923421
\(185\) 232.052 0.0922207
\(186\) 0 0
\(187\) −2664.77 −1.04207
\(188\) 844.334 0.327550
\(189\) 0 0
\(190\) −1352.04 −0.516249
\(191\) 2915.42 1.10446 0.552231 0.833691i \(-0.313777\pi\)
0.552231 + 0.833691i \(0.313777\pi\)
\(192\) 0 0
\(193\) 1852.38 0.690866 0.345433 0.938443i \(-0.387732\pi\)
0.345433 + 0.938443i \(0.387732\pi\)
\(194\) 5273.22 1.95152
\(195\) 0 0
\(196\) 0 0
\(197\) −2926.04 −1.05823 −0.529116 0.848549i \(-0.677477\pi\)
−0.529116 + 0.848549i \(0.677477\pi\)
\(198\) 0 0
\(199\) −1629.32 −0.580398 −0.290199 0.956966i \(-0.593722\pi\)
−0.290199 + 0.956966i \(0.593722\pi\)
\(200\) −1041.61 −0.368266
\(201\) 0 0
\(202\) 812.041 0.282847
\(203\) 0 0
\(204\) 0 0
\(205\) 16.5558 0.00564054
\(206\) 1954.44 0.661031
\(207\) 0 0
\(208\) −5680.93 −1.89376
\(209\) −1548.92 −0.512637
\(210\) 0 0
\(211\) 1691.47 0.551874 0.275937 0.961176i \(-0.411012\pi\)
0.275937 + 0.961176i \(0.411012\pi\)
\(212\) 1745.68 0.565536
\(213\) 0 0
\(214\) −6889.25 −2.20065
\(215\) −815.125 −0.258563
\(216\) 0 0
\(217\) 0 0
\(218\) 3101.54 0.963591
\(219\) 0 0
\(220\) −504.356 −0.154562
\(221\) 9564.16 2.91111
\(222\) 0 0
\(223\) −749.266 −0.224998 −0.112499 0.993652i \(-0.535886\pi\)
−0.112499 + 0.993652i \(0.535886\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2911.29 0.856885
\(227\) −4707.28 −1.37636 −0.688179 0.725541i \(-0.741589\pi\)
−0.688179 + 0.725541i \(0.741589\pi\)
\(228\) 0 0
\(229\) 2430.11 0.701249 0.350625 0.936516i \(-0.385969\pi\)
0.350625 + 0.936516i \(0.385969\pi\)
\(230\) 394.904 0.113214
\(231\) 0 0
\(232\) 1983.86 0.561408
\(233\) 1789.19 0.503063 0.251531 0.967849i \(-0.419066\pi\)
0.251531 + 0.967849i \(0.419066\pi\)
\(234\) 0 0
\(235\) 790.048 0.219307
\(236\) 2679.19 0.738986
\(237\) 0 0
\(238\) 0 0
\(239\) 2506.96 0.678500 0.339250 0.940696i \(-0.389827\pi\)
0.339250 + 0.940696i \(0.389827\pi\)
\(240\) 0 0
\(241\) 3978.30 1.06334 0.531669 0.846952i \(-0.321565\pi\)
0.531669 + 0.846952i \(0.321565\pi\)
\(242\) 3359.92 0.892495
\(243\) 0 0
\(244\) 2198.19 0.576739
\(245\) 0 0
\(246\) 0 0
\(247\) 5559.24 1.43209
\(248\) 920.711 0.235747
\(249\) 0 0
\(250\) 3981.40 1.00722
\(251\) −2907.80 −0.731231 −0.365615 0.930766i \(-0.619141\pi\)
−0.365615 + 0.930766i \(0.619141\pi\)
\(252\) 0 0
\(253\) 452.409 0.112422
\(254\) 6256.37 1.54551
\(255\) 0 0
\(256\) 5339.73 1.30365
\(257\) 3820.55 0.927313 0.463657 0.886015i \(-0.346537\pi\)
0.463657 + 0.886015i \(0.346537\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1810.19 0.431781
\(261\) 0 0
\(262\) −3698.41 −0.872092
\(263\) −6420.45 −1.50533 −0.752665 0.658404i \(-0.771232\pi\)
−0.752665 + 0.658404i \(0.771232\pi\)
\(264\) 0 0
\(265\) 1633.44 0.378647
\(266\) 0 0
\(267\) 0 0
\(268\) −5062.22 −1.15382
\(269\) 1120.42 0.253952 0.126976 0.991906i \(-0.459473\pi\)
0.126976 + 0.991906i \(0.459473\pi\)
\(270\) 0 0
\(271\) −2238.17 −0.501694 −0.250847 0.968027i \(-0.580709\pi\)
−0.250847 + 0.968027i \(0.580709\pi\)
\(272\) −10406.5 −2.31980
\(273\) 0 0
\(274\) −6672.07 −1.47107
\(275\) 2044.61 0.448345
\(276\) 0 0
\(277\) 1895.27 0.411104 0.205552 0.978646i \(-0.434101\pi\)
0.205552 + 0.978646i \(0.434101\pi\)
\(278\) 5325.74 1.14898
\(279\) 0 0
\(280\) 0 0
\(281\) 8622.88 1.83060 0.915298 0.402777i \(-0.131955\pi\)
0.915298 + 0.402777i \(0.131955\pi\)
\(282\) 0 0
\(283\) 3047.26 0.640074 0.320037 0.947405i \(-0.396305\pi\)
0.320037 + 0.947405i \(0.396305\pi\)
\(284\) −209.171 −0.0437043
\(285\) 0 0
\(286\) 5280.06 1.09167
\(287\) 0 0
\(288\) 0 0
\(289\) 12606.9 2.56603
\(290\) −3399.19 −0.688302
\(291\) 0 0
\(292\) 2495.25 0.500081
\(293\) 8032.29 1.60154 0.800770 0.598972i \(-0.204424\pi\)
0.800770 + 0.598972i \(0.204424\pi\)
\(294\) 0 0
\(295\) 2506.94 0.494778
\(296\) 491.569 0.0965266
\(297\) 0 0
\(298\) 12740.5 2.47664
\(299\) −1623.74 −0.314059
\(300\) 0 0
\(301\) 0 0
\(302\) −11751.3 −2.23911
\(303\) 0 0
\(304\) −6048.86 −1.14120
\(305\) 2056.86 0.386148
\(306\) 0 0
\(307\) 1367.50 0.254226 0.127113 0.991888i \(-0.459429\pi\)
0.127113 + 0.991888i \(0.459429\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1577.57 −0.289032
\(311\) −1219.58 −0.222367 −0.111184 0.993800i \(-0.535464\pi\)
−0.111184 + 0.993800i \(0.535464\pi\)
\(312\) 0 0
\(313\) −4724.22 −0.853127 −0.426564 0.904458i \(-0.640276\pi\)
−0.426564 + 0.904458i \(0.640276\pi\)
\(314\) −10400.0 −1.86912
\(315\) 0 0
\(316\) −5562.22 −0.990188
\(317\) −1316.49 −0.233253 −0.116627 0.993176i \(-0.537208\pi\)
−0.116627 + 0.993176i \(0.537208\pi\)
\(318\) 0 0
\(319\) −3894.17 −0.683485
\(320\) −527.718 −0.0921885
\(321\) 0 0
\(322\) 0 0
\(323\) 10183.6 1.75427
\(324\) 0 0
\(325\) −7338.34 −1.25249
\(326\) 2223.93 0.377829
\(327\) 0 0
\(328\) 35.0711 0.00590390
\(329\) 0 0
\(330\) 0 0
\(331\) 7636.14 1.26804 0.634019 0.773318i \(-0.281404\pi\)
0.634019 + 0.773318i \(0.281404\pi\)
\(332\) −4199.98 −0.694289
\(333\) 0 0
\(334\) −5930.48 −0.971561
\(335\) −4736.75 −0.772526
\(336\) 0 0
\(337\) 9852.08 1.59251 0.796257 0.604959i \(-0.206810\pi\)
0.796257 + 0.604959i \(0.206810\pi\)
\(338\) −10976.4 −1.76638
\(339\) 0 0
\(340\) 3315.96 0.528921
\(341\) −1807.29 −0.287009
\(342\) 0 0
\(343\) 0 0
\(344\) −1726.72 −0.270635
\(345\) 0 0
\(346\) 3763.11 0.584700
\(347\) 3583.86 0.554442 0.277221 0.960806i \(-0.410587\pi\)
0.277221 + 0.960806i \(0.410587\pi\)
\(348\) 0 0
\(349\) 9485.94 1.45493 0.727465 0.686145i \(-0.240698\pi\)
0.727465 + 0.686145i \(0.240698\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4093.22 −0.619800
\(353\) 6507.74 0.981223 0.490612 0.871378i \(-0.336773\pi\)
0.490612 + 0.871378i \(0.336773\pi\)
\(354\) 0 0
\(355\) −195.723 −0.0292616
\(356\) 5158.98 0.768049
\(357\) 0 0
\(358\) 1895.61 0.279849
\(359\) 4133.74 0.607718 0.303859 0.952717i \(-0.401725\pi\)
0.303859 + 0.952717i \(0.401725\pi\)
\(360\) 0 0
\(361\) −939.709 −0.137004
\(362\) −9646.99 −1.40065
\(363\) 0 0
\(364\) 0 0
\(365\) 2334.82 0.334823
\(366\) 0 0
\(367\) 3294.87 0.468640 0.234320 0.972160i \(-0.424714\pi\)
0.234320 + 0.972160i \(0.424714\pi\)
\(368\) 1766.75 0.250267
\(369\) 0 0
\(370\) −842.267 −0.118344
\(371\) 0 0
\(372\) 0 0
\(373\) 2363.30 0.328062 0.164031 0.986455i \(-0.447550\pi\)
0.164031 + 0.986455i \(0.447550\pi\)
\(374\) 9672.17 1.33726
\(375\) 0 0
\(376\) 1673.60 0.229546
\(377\) 13976.6 1.90937
\(378\) 0 0
\(379\) 11071.4 1.50053 0.750266 0.661136i \(-0.229925\pi\)
0.750266 + 0.661136i \(0.229925\pi\)
\(380\) 1927.43 0.260197
\(381\) 0 0
\(382\) −10581.9 −1.41732
\(383\) 7122.40 0.950228 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6723.47 −0.886569
\(387\) 0 0
\(388\) −7517.33 −0.983595
\(389\) −259.070 −0.0337670 −0.0168835 0.999857i \(-0.505374\pi\)
−0.0168835 + 0.999857i \(0.505374\pi\)
\(390\) 0 0
\(391\) −2974.42 −0.384714
\(392\) 0 0
\(393\) 0 0
\(394\) 10620.5 1.35800
\(395\) −5204.61 −0.662968
\(396\) 0 0
\(397\) −10222.8 −1.29236 −0.646181 0.763185i \(-0.723635\pi\)
−0.646181 + 0.763185i \(0.723635\pi\)
\(398\) 5913.84 0.744809
\(399\) 0 0
\(400\) 7984.64 0.998080
\(401\) 5164.36 0.643131 0.321566 0.946887i \(-0.395791\pi\)
0.321566 + 0.946887i \(0.395791\pi\)
\(402\) 0 0
\(403\) 6486.56 0.801783
\(404\) −1157.62 −0.142559
\(405\) 0 0
\(406\) 0 0
\(407\) −964.914 −0.117516
\(408\) 0 0
\(409\) −4264.09 −0.515516 −0.257758 0.966210i \(-0.582984\pi\)
−0.257758 + 0.966210i \(0.582984\pi\)
\(410\) −60.0918 −0.00723835
\(411\) 0 0
\(412\) −2786.19 −0.333169
\(413\) 0 0
\(414\) 0 0
\(415\) −3929.95 −0.464852
\(416\) 14691.0 1.73146
\(417\) 0 0
\(418\) 5622.02 0.657852
\(419\) 16613.9 1.93710 0.968548 0.248829i \(-0.0800456\pi\)
0.968548 + 0.248829i \(0.0800456\pi\)
\(420\) 0 0
\(421\) −11821.1 −1.36847 −0.684235 0.729262i \(-0.739864\pi\)
−0.684235 + 0.729262i \(0.739864\pi\)
\(422\) −6139.43 −0.708205
\(423\) 0 0
\(424\) 3460.21 0.396327
\(425\) −13442.6 −1.53426
\(426\) 0 0
\(427\) 0 0
\(428\) 9821.10 1.10916
\(429\) 0 0
\(430\) 2958.61 0.331807
\(431\) −13124.5 −1.46679 −0.733395 0.679803i \(-0.762065\pi\)
−0.733395 + 0.679803i \(0.762065\pi\)
\(432\) 0 0
\(433\) −12962.7 −1.43868 −0.719341 0.694657i \(-0.755556\pi\)
−0.719341 + 0.694657i \(0.755556\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4421.46 −0.485664
\(437\) −1728.91 −0.189256
\(438\) 0 0
\(439\) 3842.58 0.417759 0.208880 0.977941i \(-0.433018\pi\)
0.208880 + 0.977941i \(0.433018\pi\)
\(440\) −999.713 −0.108317
\(441\) 0 0
\(442\) −34714.5 −3.73574
\(443\) −5143.88 −0.551677 −0.275839 0.961204i \(-0.588956\pi\)
−0.275839 + 0.961204i \(0.588956\pi\)
\(444\) 0 0
\(445\) 4827.29 0.514237
\(446\) 2719.57 0.288734
\(447\) 0 0
\(448\) 0 0
\(449\) −14627.7 −1.53747 −0.768733 0.639570i \(-0.779113\pi\)
−0.768733 + 0.639570i \(0.779113\pi\)
\(450\) 0 0
\(451\) −68.8421 −0.00718769
\(452\) −4150.24 −0.431882
\(453\) 0 0
\(454\) 17085.7 1.76624
\(455\) 0 0
\(456\) 0 0
\(457\) −3104.00 −0.317722 −0.158861 0.987301i \(-0.550782\pi\)
−0.158861 + 0.987301i \(0.550782\pi\)
\(458\) −8820.42 −0.899894
\(459\) 0 0
\(460\) −562.963 −0.0570615
\(461\) −13751.8 −1.38934 −0.694671 0.719327i \(-0.744450\pi\)
−0.694671 + 0.719327i \(0.744450\pi\)
\(462\) 0 0
\(463\) 5910.83 0.593303 0.296652 0.954986i \(-0.404130\pi\)
0.296652 + 0.954986i \(0.404130\pi\)
\(464\) −15207.6 −1.52154
\(465\) 0 0
\(466\) −6494.11 −0.645567
\(467\) −9331.46 −0.924643 −0.462322 0.886712i \(-0.652983\pi\)
−0.462322 + 0.886712i \(0.652983\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2867.59 −0.281430
\(471\) 0 0
\(472\) 5310.58 0.517880
\(473\) 3389.43 0.329484
\(474\) 0 0
\(475\) −7813.61 −0.754764
\(476\) 0 0
\(477\) 0 0
\(478\) −9099.35 −0.870700
\(479\) −19656.5 −1.87501 −0.937504 0.347975i \(-0.886869\pi\)
−0.937504 + 0.347975i \(0.886869\pi\)
\(480\) 0 0
\(481\) 3463.18 0.328290
\(482\) −14439.8 −1.36455
\(483\) 0 0
\(484\) −4789.79 −0.449830
\(485\) −7034.02 −0.658553
\(486\) 0 0
\(487\) 2272.06 0.211410 0.105705 0.994398i \(-0.466290\pi\)
0.105705 + 0.994398i \(0.466290\pi\)
\(488\) 4357.15 0.404178
\(489\) 0 0
\(490\) 0 0
\(491\) −14877.7 −1.36746 −0.683730 0.729735i \(-0.739643\pi\)
−0.683730 + 0.729735i \(0.739643\pi\)
\(492\) 0 0
\(493\) 25602.8 2.33893
\(494\) −20178.1 −1.83776
\(495\) 0 0
\(496\) −7057.85 −0.638925
\(497\) 0 0
\(498\) 0 0
\(499\) −16536.8 −1.48354 −0.741771 0.670653i \(-0.766014\pi\)
−0.741771 + 0.670653i \(0.766014\pi\)
\(500\) −5675.76 −0.507655
\(501\) 0 0
\(502\) 10554.3 0.938368
\(503\) 7642.71 0.677478 0.338739 0.940880i \(-0.390000\pi\)
0.338739 + 0.940880i \(0.390000\pi\)
\(504\) 0 0
\(505\) −1083.19 −0.0954484
\(506\) −1642.08 −0.144268
\(507\) 0 0
\(508\) −8918.88 −0.778959
\(509\) −4706.47 −0.409844 −0.204922 0.978778i \(-0.565694\pi\)
−0.204922 + 0.978778i \(0.565694\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −9534.04 −0.822947
\(513\) 0 0
\(514\) −13867.2 −1.19000
\(515\) −2607.06 −0.223069
\(516\) 0 0
\(517\) −3285.16 −0.279461
\(518\) 0 0
\(519\) 0 0
\(520\) 3588.08 0.302592
\(521\) 18520.7 1.55740 0.778701 0.627395i \(-0.215879\pi\)
0.778701 + 0.627395i \(0.215879\pi\)
\(522\) 0 0
\(523\) −6993.69 −0.584728 −0.292364 0.956307i \(-0.594442\pi\)
−0.292364 + 0.956307i \(0.594442\pi\)
\(524\) 5272.33 0.439547
\(525\) 0 0
\(526\) 23303.9 1.93175
\(527\) 11882.3 0.982163
\(528\) 0 0
\(529\) −11662.0 −0.958496
\(530\) −5928.81 −0.485908
\(531\) 0 0
\(532\) 0 0
\(533\) 247.082 0.0200794
\(534\) 0 0
\(535\) 9189.66 0.742624
\(536\) −10034.1 −0.808596
\(537\) 0 0
\(538\) −4066.71 −0.325889
\(539\) 0 0
\(540\) 0 0
\(541\) 1378.85 0.109577 0.0547886 0.998498i \(-0.482552\pi\)
0.0547886 + 0.998498i \(0.482552\pi\)
\(542\) 8123.75 0.643810
\(543\) 0 0
\(544\) 26911.5 2.12099
\(545\) −4137.19 −0.325170
\(546\) 0 0
\(547\) 10336.8 0.807985 0.403992 0.914762i \(-0.367622\pi\)
0.403992 + 0.914762i \(0.367622\pi\)
\(548\) 9511.49 0.741443
\(549\) 0 0
\(550\) −7421.21 −0.575348
\(551\) 14881.8 1.15061
\(552\) 0 0
\(553\) 0 0
\(554\) −6879.16 −0.527559
\(555\) 0 0
\(556\) −7592.20 −0.579103
\(557\) 10149.6 0.772087 0.386043 0.922481i \(-0.373841\pi\)
0.386043 + 0.922481i \(0.373841\pi\)
\(558\) 0 0
\(559\) −12165.0 −0.920440
\(560\) 0 0
\(561\) 0 0
\(562\) −31298.0 −2.34915
\(563\) −11168.3 −0.836034 −0.418017 0.908439i \(-0.637275\pi\)
−0.418017 + 0.908439i \(0.637275\pi\)
\(564\) 0 0
\(565\) −3883.41 −0.289161
\(566\) −11060.5 −0.821389
\(567\) 0 0
\(568\) −414.610 −0.0306279
\(569\) 18776.6 1.38340 0.691700 0.722185i \(-0.256862\pi\)
0.691700 + 0.722185i \(0.256862\pi\)
\(570\) 0 0
\(571\) −23499.3 −1.72227 −0.861133 0.508380i \(-0.830245\pi\)
−0.861133 + 0.508380i \(0.830245\pi\)
\(572\) −7527.08 −0.550215
\(573\) 0 0
\(574\) 0 0
\(575\) 2282.20 0.165521
\(576\) 0 0
\(577\) 2612.83 0.188516 0.0942578 0.995548i \(-0.469952\pi\)
0.0942578 + 0.995548i \(0.469952\pi\)
\(578\) −45758.6 −3.29292
\(579\) 0 0
\(580\) 4845.78 0.346914
\(581\) 0 0
\(582\) 0 0
\(583\) −6792.14 −0.482507
\(584\) 4945.98 0.350456
\(585\) 0 0
\(586\) −29154.3 −2.05521
\(587\) 18759.2 1.31904 0.659520 0.751687i \(-0.270759\pi\)
0.659520 + 0.751687i \(0.270759\pi\)
\(588\) 0 0
\(589\) 6906.67 0.483165
\(590\) −9099.29 −0.634935
\(591\) 0 0
\(592\) −3768.20 −0.261608
\(593\) −8103.13 −0.561139 −0.280570 0.959834i \(-0.590523\pi\)
−0.280570 + 0.959834i \(0.590523\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18162.5 −1.24826
\(597\) 0 0
\(598\) 5893.61 0.403023
\(599\) −5552.86 −0.378771 −0.189385 0.981903i \(-0.560650\pi\)
−0.189385 + 0.981903i \(0.560650\pi\)
\(600\) 0 0
\(601\) −21357.1 −1.44954 −0.724771 0.688990i \(-0.758054\pi\)
−0.724771 + 0.688990i \(0.758054\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16752.2 1.12854
\(605\) −4481.84 −0.301178
\(606\) 0 0
\(607\) 5098.24 0.340908 0.170454 0.985366i \(-0.445477\pi\)
0.170454 + 0.985366i \(0.445477\pi\)
\(608\) 15642.5 1.04340
\(609\) 0 0
\(610\) −7465.65 −0.495534
\(611\) 11790.8 0.780695
\(612\) 0 0
\(613\) 3247.67 0.213984 0.106992 0.994260i \(-0.465878\pi\)
0.106992 + 0.994260i \(0.465878\pi\)
\(614\) −4963.54 −0.326241
\(615\) 0 0
\(616\) 0 0
\(617\) −8366.93 −0.545932 −0.272966 0.962024i \(-0.588005\pi\)
−0.272966 + 0.962024i \(0.588005\pi\)
\(618\) 0 0
\(619\) 7396.28 0.480261 0.240130 0.970741i \(-0.422810\pi\)
0.240130 + 0.970741i \(0.422810\pi\)
\(620\) 2248.93 0.145676
\(621\) 0 0
\(622\) 4426.65 0.285357
\(623\) 0 0
\(624\) 0 0
\(625\) 7383.99 0.472575
\(626\) 17147.2 1.09479
\(627\) 0 0
\(628\) 14825.9 0.942066
\(629\) 6343.96 0.402147
\(630\) 0 0
\(631\) −8786.48 −0.554333 −0.277167 0.960822i \(-0.589395\pi\)
−0.277167 + 0.960822i \(0.589395\pi\)
\(632\) −11025.2 −0.693922
\(633\) 0 0
\(634\) 4778.38 0.299327
\(635\) −8345.46 −0.521542
\(636\) 0 0
\(637\) 0 0
\(638\) 14134.4 0.877097
\(639\) 0 0
\(640\) −5959.61 −0.368085
\(641\) 19571.4 1.20597 0.602984 0.797754i \(-0.293978\pi\)
0.602984 + 0.797754i \(0.293978\pi\)
\(642\) 0 0
\(643\) −4317.58 −0.264804 −0.132402 0.991196i \(-0.542269\pi\)
−0.132402 + 0.991196i \(0.542269\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −36962.8 −2.25121
\(647\) 21785.5 1.32376 0.661882 0.749608i \(-0.269758\pi\)
0.661882 + 0.749608i \(0.269758\pi\)
\(648\) 0 0
\(649\) −10424.3 −0.630492
\(650\) 26635.5 1.60728
\(651\) 0 0
\(652\) −3170.37 −0.190431
\(653\) 15028.4 0.900620 0.450310 0.892872i \(-0.351313\pi\)
0.450310 + 0.892872i \(0.351313\pi\)
\(654\) 0 0
\(655\) 4933.35 0.294293
\(656\) −268.843 −0.0160008
\(657\) 0 0
\(658\) 0 0
\(659\) −12160.9 −0.718851 −0.359426 0.933174i \(-0.617027\pi\)
−0.359426 + 0.933174i \(0.617027\pi\)
\(660\) 0 0
\(661\) 9160.84 0.539055 0.269527 0.962993i \(-0.413133\pi\)
0.269527 + 0.962993i \(0.413133\pi\)
\(662\) −27716.5 −1.62724
\(663\) 0 0
\(664\) −8325.02 −0.486556
\(665\) 0 0
\(666\) 0 0
\(667\) −4346.68 −0.252330
\(668\) 8454.30 0.489681
\(669\) 0 0
\(670\) 17192.7 0.991361
\(671\) −8552.77 −0.492066
\(672\) 0 0
\(673\) 3430.71 0.196499 0.0982496 0.995162i \(-0.468676\pi\)
0.0982496 + 0.995162i \(0.468676\pi\)
\(674\) −35759.5 −2.04363
\(675\) 0 0
\(676\) 15647.6 0.890281
\(677\) −17001.5 −0.965169 −0.482585 0.875849i \(-0.660302\pi\)
−0.482585 + 0.875849i \(0.660302\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6572.75 0.370667
\(681\) 0 0
\(682\) 6559.82 0.368311
\(683\) 13444.5 0.753203 0.376602 0.926375i \(-0.377093\pi\)
0.376602 + 0.926375i \(0.377093\pi\)
\(684\) 0 0
\(685\) 8899.96 0.496424
\(686\) 0 0
\(687\) 0 0
\(688\) 13236.4 0.733480
\(689\) 24377.7 1.34792
\(690\) 0 0
\(691\) 31057.5 1.70982 0.854908 0.518780i \(-0.173614\pi\)
0.854908 + 0.518780i \(0.173614\pi\)
\(692\) −5364.57 −0.294697
\(693\) 0 0
\(694\) −13008.1 −0.711500
\(695\) −7104.07 −0.387731
\(696\) 0 0
\(697\) 452.612 0.0245967
\(698\) −34430.6 −1.86707
\(699\) 0 0
\(700\) 0 0
\(701\) −2445.90 −0.131784 −0.0658919 0.997827i \(-0.520989\pi\)
−0.0658919 + 0.997827i \(0.520989\pi\)
\(702\) 0 0
\(703\) 3687.48 0.197832
\(704\) 2194.34 0.117475
\(705\) 0 0
\(706\) −23620.8 −1.25918
\(707\) 0 0
\(708\) 0 0
\(709\) −9660.67 −0.511726 −0.255863 0.966713i \(-0.582360\pi\)
−0.255863 + 0.966713i \(0.582360\pi\)
\(710\) 710.403 0.0375506
\(711\) 0 0
\(712\) 10225.9 0.538247
\(713\) −2017.30 −0.105959
\(714\) 0 0
\(715\) −7043.14 −0.368389
\(716\) −2702.32 −0.141048
\(717\) 0 0
\(718\) −15004.0 −0.779867
\(719\) −1519.36 −0.0788074 −0.0394037 0.999223i \(-0.512546\pi\)
−0.0394037 + 0.999223i \(0.512546\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3410.81 0.175813
\(723\) 0 0
\(724\) 13752.4 0.705946
\(725\) −19644.3 −1.00631
\(726\) 0 0
\(727\) 19126.9 0.975760 0.487880 0.872911i \(-0.337770\pi\)
0.487880 + 0.872911i \(0.337770\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −8474.58 −0.429669
\(731\) −22284.3 −1.12752
\(732\) 0 0
\(733\) 7231.51 0.364395 0.182198 0.983262i \(-0.441679\pi\)
0.182198 + 0.983262i \(0.441679\pi\)
\(734\) −11959.2 −0.601392
\(735\) 0 0
\(736\) −4568.86 −0.228819
\(737\) 19696.2 0.984423
\(738\) 0 0
\(739\) 17847.4 0.888400 0.444200 0.895928i \(-0.353488\pi\)
0.444200 + 0.895928i \(0.353488\pi\)
\(740\) 1200.71 0.0596472
\(741\) 0 0
\(742\) 0 0
\(743\) 26545.3 1.31070 0.655352 0.755323i \(-0.272520\pi\)
0.655352 + 0.755323i \(0.272520\pi\)
\(744\) 0 0
\(745\) −16994.8 −0.835758
\(746\) −8577.94 −0.420993
\(747\) 0 0
\(748\) −13788.3 −0.673999
\(749\) 0 0
\(750\) 0 0
\(751\) 9560.13 0.464519 0.232260 0.972654i \(-0.425388\pi\)
0.232260 + 0.972654i \(0.425388\pi\)
\(752\) −12829.2 −0.622120
\(753\) 0 0
\(754\) −50730.1 −2.45024
\(755\) 15675.2 0.755601
\(756\) 0 0
\(757\) −23995.4 −1.15209 −0.576043 0.817420i \(-0.695404\pi\)
−0.576043 + 0.817420i \(0.695404\pi\)
\(758\) −40185.4 −1.92559
\(759\) 0 0
\(760\) 3820.46 0.182346
\(761\) −33708.2 −1.60568 −0.802840 0.596195i \(-0.796679\pi\)
−0.802840 + 0.596195i \(0.796679\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 15085.2 0.714352
\(765\) 0 0
\(766\) −25851.7 −1.21940
\(767\) 37413.9 1.76133
\(768\) 0 0
\(769\) −1030.27 −0.0483127 −0.0241563 0.999708i \(-0.507690\pi\)
−0.0241563 + 0.999708i \(0.507690\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9584.76 0.446844
\(773\) −22464.3 −1.04526 −0.522629 0.852560i \(-0.675049\pi\)
−0.522629 + 0.852560i \(0.675049\pi\)
\(774\) 0 0
\(775\) −9116.97 −0.422569
\(776\) −14900.5 −0.689301
\(777\) 0 0
\(778\) 940.331 0.0433322
\(779\) 263.084 0.0121001
\(780\) 0 0
\(781\) 813.849 0.0372879
\(782\) 10796.1 0.493692
\(783\) 0 0
\(784\) 0 0
\(785\) 13872.7 0.630748
\(786\) 0 0
\(787\) −14149.4 −0.640878 −0.320439 0.947269i \(-0.603830\pi\)
−0.320439 + 0.947269i \(0.603830\pi\)
\(788\) −15140.2 −0.684452
\(789\) 0 0
\(790\) 18890.9 0.850768
\(791\) 0 0
\(792\) 0 0
\(793\) 30696.8 1.37462
\(794\) 37105.1 1.65845
\(795\) 0 0
\(796\) −8430.58 −0.375394
\(797\) −38562.7 −1.71388 −0.856939 0.515418i \(-0.827637\pi\)
−0.856939 + 0.515418i \(0.827637\pi\)
\(798\) 0 0
\(799\) 21598.7 0.956331
\(800\) −20648.5 −0.912543
\(801\) 0 0
\(802\) −18744.8 −0.825313
\(803\) −9708.61 −0.426662
\(804\) 0 0
\(805\) 0 0
\(806\) −23543.9 −1.02891
\(807\) 0 0
\(808\) −2294.58 −0.0999050
\(809\) −27134.6 −1.17924 −0.589618 0.807682i \(-0.700722\pi\)
−0.589618 + 0.807682i \(0.700722\pi\)
\(810\) 0 0
\(811\) 23383.8 1.01247 0.506237 0.862394i \(-0.331036\pi\)
0.506237 + 0.862394i \(0.331036\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3502.29 0.150805
\(815\) −2966.53 −0.127501
\(816\) 0 0
\(817\) −12952.9 −0.554670
\(818\) 15477.1 0.661547
\(819\) 0 0
\(820\) 85.6649 0.00364823
\(821\) −20243.9 −0.860558 −0.430279 0.902696i \(-0.641585\pi\)
−0.430279 + 0.902696i \(0.641585\pi\)
\(822\) 0 0
\(823\) −21196.2 −0.897757 −0.448878 0.893593i \(-0.648176\pi\)
−0.448878 + 0.893593i \(0.648176\pi\)
\(824\) −5522.67 −0.233484
\(825\) 0 0
\(826\) 0 0
\(827\) −10826.0 −0.455207 −0.227604 0.973754i \(-0.573089\pi\)
−0.227604 + 0.973754i \(0.573089\pi\)
\(828\) 0 0
\(829\) −9033.46 −0.378462 −0.189231 0.981933i \(-0.560600\pi\)
−0.189231 + 0.981933i \(0.560600\pi\)
\(830\) 14264.3 0.596532
\(831\) 0 0
\(832\) −7875.74 −0.328176
\(833\) 0 0
\(834\) 0 0
\(835\) 7910.74 0.327859
\(836\) −8014.58 −0.331567
\(837\) 0 0
\(838\) −60302.6 −2.48582
\(839\) 43749.5 1.80024 0.900120 0.435642i \(-0.143478\pi\)
0.900120 + 0.435642i \(0.143478\pi\)
\(840\) 0 0
\(841\) 13025.6 0.534078
\(842\) 42906.4 1.75612
\(843\) 0 0
\(844\) 8752.17 0.356946
\(845\) 14641.5 0.596076
\(846\) 0 0
\(847\) 0 0
\(848\) −26524.7 −1.07413
\(849\) 0 0
\(850\) 48791.8 1.96888
\(851\) −1077.04 −0.0433848
\(852\) 0 0
\(853\) 39350.1 1.57951 0.789754 0.613423i \(-0.210208\pi\)
0.789754 + 0.613423i \(0.210208\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 19467.0 0.777298
\(857\) 15285.5 0.609268 0.304634 0.952470i \(-0.401466\pi\)
0.304634 + 0.952470i \(0.401466\pi\)
\(858\) 0 0
\(859\) −8166.69 −0.324382 −0.162191 0.986759i \(-0.551856\pi\)
−0.162191 + 0.986759i \(0.551856\pi\)
\(860\) −4217.70 −0.167235
\(861\) 0 0
\(862\) 47637.3 1.88229
\(863\) 49204.1 1.94082 0.970409 0.241467i \(-0.0776284\pi\)
0.970409 + 0.241467i \(0.0776284\pi\)
\(864\) 0 0
\(865\) −5019.67 −0.197311
\(866\) 47050.1 1.84622
\(867\) 0 0
\(868\) 0 0
\(869\) 21641.7 0.844814
\(870\) 0 0
\(871\) −70691.9 −2.75006
\(872\) −8764.02 −0.340352
\(873\) 0 0
\(874\) 6275.31 0.242867
\(875\) 0 0
\(876\) 0 0
\(877\) −15821.4 −0.609180 −0.304590 0.952484i \(-0.598519\pi\)
−0.304590 + 0.952484i \(0.598519\pi\)
\(878\) −13947.2 −0.536099
\(879\) 0 0
\(880\) 7663.45 0.293562
\(881\) 14538.7 0.555982 0.277991 0.960584i \(-0.410331\pi\)
0.277991 + 0.960584i \(0.410331\pi\)
\(882\) 0 0
\(883\) 3842.17 0.146432 0.0732160 0.997316i \(-0.476674\pi\)
0.0732160 + 0.997316i \(0.476674\pi\)
\(884\) 49487.8 1.88287
\(885\) 0 0
\(886\) 18670.4 0.707952
\(887\) 37771.5 1.42981 0.714906 0.699221i \(-0.246470\pi\)
0.714906 + 0.699221i \(0.246470\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −17521.3 −0.659906
\(891\) 0 0
\(892\) −3876.93 −0.145526
\(893\) 12554.4 0.470457
\(894\) 0 0
\(895\) −2528.58 −0.0944370
\(896\) 0 0
\(897\) 0 0
\(898\) 53093.2 1.97299
\(899\) 17364.2 0.644191
\(900\) 0 0
\(901\) 44655.9 1.65117
\(902\) 249.872 0.00922376
\(903\) 0 0
\(904\) −8226.42 −0.302662
\(905\) 12868.2 0.472657
\(906\) 0 0
\(907\) 25275.6 0.925316 0.462658 0.886537i \(-0.346896\pi\)
0.462658 + 0.886537i \(0.346896\pi\)
\(908\) −24356.9 −0.890211
\(909\) 0 0
\(910\) 0 0
\(911\) −33060.3 −1.20234 −0.601172 0.799120i \(-0.705299\pi\)
−0.601172 + 0.799120i \(0.705299\pi\)
\(912\) 0 0
\(913\) 16341.4 0.592357
\(914\) 11266.4 0.407724
\(915\) 0 0
\(916\) 12574.1 0.453559
\(917\) 0 0
\(918\) 0 0
\(919\) −17305.1 −0.621158 −0.310579 0.950548i \(-0.600523\pi\)
−0.310579 + 0.950548i \(0.600523\pi\)
\(920\) −1115.88 −0.0399886
\(921\) 0 0
\(922\) 49914.2 1.78290
\(923\) −2920.99 −0.104166
\(924\) 0 0
\(925\) −4867.56 −0.173021
\(926\) −21454.2 −0.761370
\(927\) 0 0
\(928\) 39327.1 1.39114
\(929\) 26353.3 0.930703 0.465352 0.885126i \(-0.345928\pi\)
0.465352 + 0.885126i \(0.345928\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9257.80 0.325375
\(933\) 0 0
\(934\) 33869.8 1.18657
\(935\) −12901.8 −0.451267
\(936\) 0 0
\(937\) −6967.42 −0.242920 −0.121460 0.992596i \(-0.538758\pi\)
−0.121460 + 0.992596i \(0.538758\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4087.95 0.141845
\(941\) −44284.2 −1.53414 −0.767069 0.641565i \(-0.778285\pi\)
−0.767069 + 0.641565i \(0.778285\pi\)
\(942\) 0 0
\(943\) −76.8417 −0.00265356
\(944\) −40709.1 −1.40357
\(945\) 0 0
\(946\) −12302.4 −0.422818
\(947\) −29772.8 −1.02163 −0.510816 0.859690i \(-0.670657\pi\)
−0.510816 + 0.859690i \(0.670657\pi\)
\(948\) 0 0
\(949\) 34845.3 1.19191
\(950\) 28360.6 0.968568
\(951\) 0 0
\(952\) 0 0
\(953\) 17971.9 0.610878 0.305439 0.952212i \(-0.401197\pi\)
0.305439 + 0.952212i \(0.401197\pi\)
\(954\) 0 0
\(955\) 14115.4 0.478285
\(956\) 12971.7 0.438845
\(957\) 0 0
\(958\) 71346.1 2.40614
\(959\) 0 0
\(960\) 0 0
\(961\) −21732.3 −0.729491
\(962\) −12570.1 −0.421286
\(963\) 0 0
\(964\) 20584.9 0.687754
\(965\) 8968.53 0.299178
\(966\) 0 0
\(967\) −34100.9 −1.13403 −0.567017 0.823706i \(-0.691903\pi\)
−0.567017 + 0.823706i \(0.691903\pi\)
\(968\) −9494.12 −0.315240
\(969\) 0 0
\(970\) 25531.0 0.845103
\(971\) 22606.2 0.747134 0.373567 0.927603i \(-0.378135\pi\)
0.373567 + 0.927603i \(0.378135\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8246.77 −0.271297
\(975\) 0 0
\(976\) −33400.4 −1.09541
\(977\) −8740.62 −0.286220 −0.143110 0.989707i \(-0.545710\pi\)
−0.143110 + 0.989707i \(0.545710\pi\)
\(978\) 0 0
\(979\) −20072.7 −0.655288
\(980\) 0 0
\(981\) 0 0
\(982\) 54000.8 1.75482
\(983\) −44704.8 −1.45052 −0.725260 0.688475i \(-0.758281\pi\)
−0.725260 + 0.688475i \(0.758281\pi\)
\(984\) 0 0
\(985\) −14166.8 −0.458266
\(986\) −92928.8 −3.00148
\(987\) 0 0
\(988\) 28765.2 0.926258
\(989\) 3783.29 0.121640
\(990\) 0 0
\(991\) 17035.5 0.546064 0.273032 0.962005i \(-0.411973\pi\)
0.273032 + 0.962005i \(0.411973\pi\)
\(992\) 18251.8 0.584168
\(993\) 0 0
\(994\) 0 0
\(995\) −7888.55 −0.251341
\(996\) 0 0
\(997\) −29071.6 −0.923478 −0.461739 0.887016i \(-0.652774\pi\)
−0.461739 + 0.887016i \(0.652774\pi\)
\(998\) 60022.6 1.90379
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bj.1.2 7
3.2 odd 2 1323.4.a.bi.1.6 7
7.2 even 3 189.4.e.f.109.6 14
7.4 even 3 189.4.e.f.163.6 yes 14
7.6 odd 2 1323.4.a.bk.1.2 7
21.2 odd 6 189.4.e.g.109.2 yes 14
21.11 odd 6 189.4.e.g.163.2 yes 14
21.20 even 2 1323.4.a.bh.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.6 14 7.2 even 3
189.4.e.f.163.6 yes 14 7.4 even 3
189.4.e.g.109.2 yes 14 21.2 odd 6
189.4.e.g.163.2 yes 14 21.11 odd 6
1323.4.a.bh.1.6 7 21.20 even 2
1323.4.a.bi.1.6 7 3.2 odd 2
1323.4.a.bj.1.2 7 1.1 even 1 trivial
1323.4.a.bk.1.2 7 7.6 odd 2