Properties

Label 1323.4.a.bj.1.1
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.49279\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.49279 q^{2} +12.1851 q^{4} -8.19814 q^{5} -18.8030 q^{8} +O(q^{10})\) \(q-4.49279 q^{2} +12.1851 q^{4} -8.19814 q^{5} -18.8030 q^{8} +36.8325 q^{10} +33.3981 q^{11} -54.5961 q^{13} -13.0034 q^{16} -1.19885 q^{17} -124.289 q^{19} -99.8955 q^{20} -150.051 q^{22} +133.996 q^{23} -57.7905 q^{25} +245.289 q^{26} +145.699 q^{29} +78.1442 q^{31} +208.845 q^{32} +5.38620 q^{34} -134.807 q^{37} +558.403 q^{38} +154.149 q^{40} -178.303 q^{41} +211.077 q^{43} +406.961 q^{44} -602.014 q^{46} -518.128 q^{47} +259.641 q^{50} -665.261 q^{52} -269.732 q^{53} -273.802 q^{55} -654.593 q^{58} -306.382 q^{59} +38.0209 q^{61} -351.085 q^{62} -834.270 q^{64} +447.586 q^{65} +610.708 q^{67} -14.6082 q^{68} +1084.41 q^{71} +1083.74 q^{73} +605.659 q^{74} -1514.48 q^{76} -1198.84 q^{79} +106.603 q^{80} +801.077 q^{82} -150.087 q^{83} +9.82838 q^{85} -948.323 q^{86} -627.984 q^{88} +221.463 q^{89} +1632.76 q^{92} +2327.84 q^{94} +1018.94 q^{95} -1606.63 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8} + 12 q^{10} + 98 q^{11} - 124 q^{13} + 139 q^{16} + 30 q^{17} + 182 q^{19} - 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} - 245 q^{26} + 323 q^{29} + 26 q^{31} + 398 q^{32} + 114 q^{34} - 112 q^{37} + 1015 q^{38} - 147 q^{40} - 524 q^{41} + 8 q^{43} + 937 q^{44} - 339 q^{46} + 288 q^{47} + 2576 q^{50} - 1075 q^{52} + 1353 q^{53} + 156 q^{55} - 81 q^{58} + 165 q^{59} + 56 q^{61} - 1215 q^{62} - 1706 q^{64} + 1694 q^{65} - 988 q^{67} + 2625 q^{68} + 792 q^{71} + 1487 q^{73} + 2736 q^{74} + 1952 q^{76} - 1273 q^{79} - 2501 q^{80} - 2049 q^{82} - 1170 q^{83} + 216 q^{85} - 160 q^{86} + 9 q^{88} + 1058 q^{89} + 3834 q^{92} + 1653 q^{94} + 3260 q^{95} - 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.49279 −1.58844 −0.794220 0.607630i \(-0.792120\pi\)
−0.794220 + 0.607630i \(0.792120\pi\)
\(3\) 0 0
\(4\) 12.1851 1.52314
\(5\) −8.19814 −0.733264 −0.366632 0.930366i \(-0.619489\pi\)
−0.366632 + 0.930366i \(0.619489\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −18.8030 −0.830982
\(9\) 0 0
\(10\) 36.8325 1.16475
\(11\) 33.3981 0.915447 0.457723 0.889095i \(-0.348665\pi\)
0.457723 + 0.889095i \(0.348665\pi\)
\(12\) 0 0
\(13\) −54.5961 −1.16479 −0.582393 0.812907i \(-0.697884\pi\)
−0.582393 + 0.812907i \(0.697884\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −13.0034 −0.203177
\(17\) −1.19885 −0.0171038 −0.00855191 0.999963i \(-0.502722\pi\)
−0.00855191 + 0.999963i \(0.502722\pi\)
\(18\) 0 0
\(19\) −124.289 −1.50073 −0.750363 0.661026i \(-0.770121\pi\)
−0.750363 + 0.661026i \(0.770121\pi\)
\(20\) −99.8955 −1.11687
\(21\) 0 0
\(22\) −150.051 −1.45413
\(23\) 133.996 1.21478 0.607391 0.794403i \(-0.292216\pi\)
0.607391 + 0.794403i \(0.292216\pi\)
\(24\) 0 0
\(25\) −57.7905 −0.462324
\(26\) 245.289 1.85019
\(27\) 0 0
\(28\) 0 0
\(29\) 145.699 0.932949 0.466475 0.884535i \(-0.345524\pi\)
0.466475 + 0.884535i \(0.345524\pi\)
\(30\) 0 0
\(31\) 78.1442 0.452745 0.226373 0.974041i \(-0.427313\pi\)
0.226373 + 0.974041i \(0.427313\pi\)
\(32\) 208.845 1.15372
\(33\) 0 0
\(34\) 5.38620 0.0271684
\(35\) 0 0
\(36\) 0 0
\(37\) −134.807 −0.598976 −0.299488 0.954100i \(-0.596816\pi\)
−0.299488 + 0.954100i \(0.596816\pi\)
\(38\) 558.403 2.38381
\(39\) 0 0
\(40\) 154.149 0.609329
\(41\) −178.303 −0.679177 −0.339588 0.940574i \(-0.610288\pi\)
−0.339588 + 0.940574i \(0.610288\pi\)
\(42\) 0 0
\(43\) 211.077 0.748579 0.374289 0.927312i \(-0.377887\pi\)
0.374289 + 0.927312i \(0.377887\pi\)
\(44\) 406.961 1.39436
\(45\) 0 0
\(46\) −602.014 −1.92961
\(47\) −518.128 −1.60801 −0.804007 0.594620i \(-0.797303\pi\)
−0.804007 + 0.594620i \(0.797303\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 259.641 0.734374
\(51\) 0 0
\(52\) −665.261 −1.77414
\(53\) −269.732 −0.699067 −0.349533 0.936924i \(-0.613660\pi\)
−0.349533 + 0.936924i \(0.613660\pi\)
\(54\) 0 0
\(55\) −273.802 −0.671264
\(56\) 0 0
\(57\) 0 0
\(58\) −654.593 −1.48193
\(59\) −306.382 −0.676060 −0.338030 0.941135i \(-0.609760\pi\)
−0.338030 + 0.941135i \(0.609760\pi\)
\(60\) 0 0
\(61\) 38.0209 0.0798045 0.0399023 0.999204i \(-0.487295\pi\)
0.0399023 + 0.999204i \(0.487295\pi\)
\(62\) −351.085 −0.719159
\(63\) 0 0
\(64\) −834.270 −1.62943
\(65\) 447.586 0.854096
\(66\) 0 0
\(67\) 610.708 1.11358 0.556790 0.830653i \(-0.312033\pi\)
0.556790 + 0.830653i \(0.312033\pi\)
\(68\) −14.6082 −0.0260516
\(69\) 0 0
\(70\) 0 0
\(71\) 1084.41 1.81261 0.906305 0.422624i \(-0.138891\pi\)
0.906305 + 0.422624i \(0.138891\pi\)
\(72\) 0 0
\(73\) 1083.74 1.73757 0.868785 0.495190i \(-0.164901\pi\)
0.868785 + 0.495190i \(0.164901\pi\)
\(74\) 605.659 0.951438
\(75\) 0 0
\(76\) −1514.48 −2.28582
\(77\) 0 0
\(78\) 0 0
\(79\) −1198.84 −1.70734 −0.853671 0.520813i \(-0.825629\pi\)
−0.853671 + 0.520813i \(0.825629\pi\)
\(80\) 106.603 0.148983
\(81\) 0 0
\(82\) 801.077 1.07883
\(83\) −150.087 −0.198484 −0.0992418 0.995063i \(-0.531642\pi\)
−0.0992418 + 0.995063i \(0.531642\pi\)
\(84\) 0 0
\(85\) 9.82838 0.0125416
\(86\) −948.323 −1.18907
\(87\) 0 0
\(88\) −627.984 −0.760720
\(89\) 221.463 0.263764 0.131882 0.991265i \(-0.457898\pi\)
0.131882 + 0.991265i \(0.457898\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1632.76 1.85029
\(93\) 0 0
\(94\) 2327.84 2.55424
\(95\) 1018.94 1.10043
\(96\) 0 0
\(97\) −1606.63 −1.68174 −0.840869 0.541239i \(-0.817955\pi\)
−0.840869 + 0.541239i \(0.817955\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −704.186 −0.704186
\(101\) −1159.68 −1.14250 −0.571249 0.820777i \(-0.693541\pi\)
−0.571249 + 0.820777i \(0.693541\pi\)
\(102\) 0 0
\(103\) 791.398 0.757075 0.378538 0.925586i \(-0.376427\pi\)
0.378538 + 0.925586i \(0.376427\pi\)
\(104\) 1026.57 0.967917
\(105\) 0 0
\(106\) 1211.85 1.11043
\(107\) −1876.54 −1.69544 −0.847721 0.530442i \(-0.822026\pi\)
−0.847721 + 0.530442i \(0.822026\pi\)
\(108\) 0 0
\(109\) −1428.37 −1.25516 −0.627582 0.778551i \(-0.715955\pi\)
−0.627582 + 0.778551i \(0.715955\pi\)
\(110\) 1230.14 1.06626
\(111\) 0 0
\(112\) 0 0
\(113\) −1016.39 −0.846144 −0.423072 0.906096i \(-0.639048\pi\)
−0.423072 + 0.906096i \(0.639048\pi\)
\(114\) 0 0
\(115\) −1098.51 −0.890756
\(116\) 1775.36 1.42102
\(117\) 0 0
\(118\) 1376.51 1.07388
\(119\) 0 0
\(120\) 0 0
\(121\) −215.565 −0.161957
\(122\) −170.820 −0.126765
\(123\) 0 0
\(124\) 952.198 0.689596
\(125\) 1498.54 1.07227
\(126\) 0 0
\(127\) 505.178 0.352971 0.176485 0.984303i \(-0.443527\pi\)
0.176485 + 0.984303i \(0.443527\pi\)
\(128\) 2077.44 1.43454
\(129\) 0 0
\(130\) −2010.91 −1.35668
\(131\) 2511.19 1.67483 0.837417 0.546564i \(-0.184065\pi\)
0.837417 + 0.546564i \(0.184065\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2743.78 −1.76885
\(135\) 0 0
\(136\) 22.5420 0.0142130
\(137\) −2152.31 −1.34222 −0.671112 0.741356i \(-0.734183\pi\)
−0.671112 + 0.741356i \(0.734183\pi\)
\(138\) 0 0
\(139\) −68.0412 −0.0415193 −0.0207596 0.999784i \(-0.506608\pi\)
−0.0207596 + 0.999784i \(0.506608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4872.01 −2.87922
\(143\) −1823.41 −1.06630
\(144\) 0 0
\(145\) −1194.46 −0.684098
\(146\) −4869.03 −2.76003
\(147\) 0 0
\(148\) −1642.64 −0.912327
\(149\) 806.001 0.443155 0.221578 0.975143i \(-0.428879\pi\)
0.221578 + 0.975143i \(0.428879\pi\)
\(150\) 0 0
\(151\) −2419.94 −1.30418 −0.652092 0.758139i \(-0.726109\pi\)
−0.652092 + 0.758139i \(0.726109\pi\)
\(152\) 2337.00 1.24708
\(153\) 0 0
\(154\) 0 0
\(155\) −640.637 −0.331982
\(156\) 0 0
\(157\) 309.080 0.157116 0.0785582 0.996910i \(-0.474968\pi\)
0.0785582 + 0.996910i \(0.474968\pi\)
\(158\) 5386.13 2.71201
\(159\) 0 0
\(160\) −1712.14 −0.845980
\(161\) 0 0
\(162\) 0 0
\(163\) 3859.17 1.85444 0.927219 0.374520i \(-0.122193\pi\)
0.927219 + 0.374520i \(0.122193\pi\)
\(164\) −2172.65 −1.03448
\(165\) 0 0
\(166\) 674.307 0.315280
\(167\) 2907.66 1.34731 0.673656 0.739045i \(-0.264723\pi\)
0.673656 + 0.739045i \(0.264723\pi\)
\(168\) 0 0
\(169\) 783.732 0.356728
\(170\) −44.1568 −0.0199216
\(171\) 0 0
\(172\) 2572.00 1.14019
\(173\) 117.665 0.0517105 0.0258552 0.999666i \(-0.491769\pi\)
0.0258552 + 0.999666i \(0.491769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −434.288 −0.185998
\(177\) 0 0
\(178\) −994.985 −0.418973
\(179\) 770.254 0.321628 0.160814 0.986985i \(-0.448588\pi\)
0.160814 + 0.986985i \(0.448588\pi\)
\(180\) 0 0
\(181\) −1669.12 −0.685442 −0.342721 0.939437i \(-0.611349\pi\)
−0.342721 + 0.939437i \(0.611349\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2519.52 −1.00946
\(185\) 1105.17 0.439208
\(186\) 0 0
\(187\) −40.0395 −0.0156576
\(188\) −6313.46 −2.44924
\(189\) 0 0
\(190\) −4577.86 −1.74796
\(191\) 234.737 0.0889266 0.0444633 0.999011i \(-0.485842\pi\)
0.0444633 + 0.999011i \(0.485842\pi\)
\(192\) 0 0
\(193\) −1405.12 −0.524056 −0.262028 0.965060i \(-0.584391\pi\)
−0.262028 + 0.965060i \(0.584391\pi\)
\(194\) 7218.25 2.67134
\(195\) 0 0
\(196\) 0 0
\(197\) 2361.35 0.854006 0.427003 0.904250i \(-0.359569\pi\)
0.427003 + 0.904250i \(0.359569\pi\)
\(198\) 0 0
\(199\) 4376.07 1.55885 0.779426 0.626494i \(-0.215511\pi\)
0.779426 + 0.626494i \(0.215511\pi\)
\(200\) 1086.63 0.384183
\(201\) 0 0
\(202\) 5210.19 1.81479
\(203\) 0 0
\(204\) 0 0
\(205\) 1461.75 0.498016
\(206\) −3555.58 −1.20257
\(207\) 0 0
\(208\) 709.932 0.236658
\(209\) −4151.01 −1.37383
\(210\) 0 0
\(211\) 2545.66 0.830573 0.415286 0.909691i \(-0.363681\pi\)
0.415286 + 0.909691i \(0.363681\pi\)
\(212\) −3286.72 −1.06478
\(213\) 0 0
\(214\) 8430.91 2.69311
\(215\) −1730.44 −0.548906
\(216\) 0 0
\(217\) 0 0
\(218\) 6417.35 1.99375
\(219\) 0 0
\(220\) −3336.32 −1.02243
\(221\) 65.4528 0.0199223
\(222\) 0 0
\(223\) −2022.14 −0.607231 −0.303615 0.952795i \(-0.598194\pi\)
−0.303615 + 0.952795i \(0.598194\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4566.44 1.34405
\(227\) 432.266 0.126390 0.0631949 0.998001i \(-0.479871\pi\)
0.0631949 + 0.998001i \(0.479871\pi\)
\(228\) 0 0
\(229\) −2660.05 −0.767603 −0.383801 0.923416i \(-0.625385\pi\)
−0.383801 + 0.923416i \(0.625385\pi\)
\(230\) 4935.39 1.41491
\(231\) 0 0
\(232\) −2739.57 −0.775264
\(233\) 6823.98 1.91869 0.959343 0.282242i \(-0.0910780\pi\)
0.959343 + 0.282242i \(0.0910780\pi\)
\(234\) 0 0
\(235\) 4247.68 1.17910
\(236\) −3733.31 −1.02974
\(237\) 0 0
\(238\) 0 0
\(239\) −325.438 −0.0880787 −0.0440393 0.999030i \(-0.514023\pi\)
−0.0440393 + 0.999030i \(0.514023\pi\)
\(240\) 0 0
\(241\) −1806.27 −0.482790 −0.241395 0.970427i \(-0.577605\pi\)
−0.241395 + 0.970427i \(0.577605\pi\)
\(242\) 968.490 0.257260
\(243\) 0 0
\(244\) 463.290 0.121554
\(245\) 0 0
\(246\) 0 0
\(247\) 6785.67 1.74802
\(248\) −1469.34 −0.376223
\(249\) 0 0
\(250\) −6732.63 −1.70324
\(251\) 1606.29 0.403937 0.201969 0.979392i \(-0.435266\pi\)
0.201969 + 0.979392i \(0.435266\pi\)
\(252\) 0 0
\(253\) 4475.20 1.11207
\(254\) −2269.66 −0.560673
\(255\) 0 0
\(256\) −2659.33 −0.649250
\(257\) 2166.19 0.525772 0.262886 0.964827i \(-0.415326\pi\)
0.262886 + 0.964827i \(0.415326\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 5453.91 1.30091
\(261\) 0 0
\(262\) −11282.2 −2.66038
\(263\) 5791.63 1.35790 0.678949 0.734185i \(-0.262436\pi\)
0.678949 + 0.734185i \(0.262436\pi\)
\(264\) 0 0
\(265\) 2211.30 0.512600
\(266\) 0 0
\(267\) 0 0
\(268\) 7441.56 1.69614
\(269\) 3492.17 0.791529 0.395764 0.918352i \(-0.370480\pi\)
0.395764 + 0.918352i \(0.370480\pi\)
\(270\) 0 0
\(271\) −5533.06 −1.24026 −0.620128 0.784501i \(-0.712919\pi\)
−0.620128 + 0.784501i \(0.712919\pi\)
\(272\) 15.5891 0.00347511
\(273\) 0 0
\(274\) 9669.89 2.13204
\(275\) −1930.09 −0.423233
\(276\) 0 0
\(277\) 2674.56 0.580140 0.290070 0.957005i \(-0.406321\pi\)
0.290070 + 0.957005i \(0.406321\pi\)
\(278\) 305.695 0.0659509
\(279\) 0 0
\(280\) 0 0
\(281\) 4545.05 0.964893 0.482446 0.875926i \(-0.339748\pi\)
0.482446 + 0.875926i \(0.339748\pi\)
\(282\) 0 0
\(283\) −29.1148 −0.00611553 −0.00305777 0.999995i \(-0.500973\pi\)
−0.00305777 + 0.999995i \(0.500973\pi\)
\(284\) 13213.6 2.76087
\(285\) 0 0
\(286\) 8192.18 1.69375
\(287\) 0 0
\(288\) 0 0
\(289\) −4911.56 −0.999707
\(290\) 5366.44 1.08665
\(291\) 0 0
\(292\) 13205.6 2.64657
\(293\) 2605.05 0.519415 0.259708 0.965687i \(-0.416374\pi\)
0.259708 + 0.965687i \(0.416374\pi\)
\(294\) 0 0
\(295\) 2511.76 0.495730
\(296\) 2534.77 0.497739
\(297\) 0 0
\(298\) −3621.19 −0.703926
\(299\) −7315.63 −1.41496
\(300\) 0 0
\(301\) 0 0
\(302\) 10872.3 2.07162
\(303\) 0 0
\(304\) 1616.17 0.304914
\(305\) −311.701 −0.0585178
\(306\) 0 0
\(307\) 7800.91 1.45023 0.725116 0.688626i \(-0.241786\pi\)
0.725116 + 0.688626i \(0.241786\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2878.25 0.527334
\(311\) 7083.86 1.29160 0.645802 0.763505i \(-0.276523\pi\)
0.645802 + 0.763505i \(0.276523\pi\)
\(312\) 0 0
\(313\) 2684.54 0.484790 0.242395 0.970178i \(-0.422067\pi\)
0.242395 + 0.970178i \(0.422067\pi\)
\(314\) −1388.63 −0.249570
\(315\) 0 0
\(316\) −14608.0 −2.60053
\(317\) 7429.11 1.31628 0.658139 0.752896i \(-0.271344\pi\)
0.658139 + 0.752896i \(0.271344\pi\)
\(318\) 0 0
\(319\) 4866.06 0.854065
\(320\) 6839.47 1.19481
\(321\) 0 0
\(322\) 0 0
\(323\) 149.004 0.0256681
\(324\) 0 0
\(325\) 3155.14 0.538509
\(326\) −17338.4 −2.94566
\(327\) 0 0
\(328\) 3352.63 0.564384
\(329\) 0 0
\(330\) 0 0
\(331\) 7566.66 1.25650 0.628250 0.778012i \(-0.283772\pi\)
0.628250 + 0.778012i \(0.283772\pi\)
\(332\) −1828.83 −0.302319
\(333\) 0 0
\(334\) −13063.5 −2.14013
\(335\) −5006.67 −0.816548
\(336\) 0 0
\(337\) 3086.93 0.498979 0.249490 0.968377i \(-0.419737\pi\)
0.249490 + 0.968377i \(0.419737\pi\)
\(338\) −3521.14 −0.566642
\(339\) 0 0
\(340\) 119.760 0.0191027
\(341\) 2609.87 0.414464
\(342\) 0 0
\(343\) 0 0
\(344\) −3968.87 −0.622056
\(345\) 0 0
\(346\) −528.644 −0.0821390
\(347\) 7922.81 1.22570 0.612851 0.790198i \(-0.290023\pi\)
0.612851 + 0.790198i \(0.290023\pi\)
\(348\) 0 0
\(349\) 200.244 0.0307129 0.0153564 0.999882i \(-0.495112\pi\)
0.0153564 + 0.999882i \(0.495112\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6975.04 1.05617
\(353\) −8161.49 −1.23057 −0.615286 0.788304i \(-0.710960\pi\)
−0.615286 + 0.788304i \(0.710960\pi\)
\(354\) 0 0
\(355\) −8890.11 −1.32912
\(356\) 2698.55 0.401750
\(357\) 0 0
\(358\) −3460.59 −0.510888
\(359\) −1990.50 −0.292631 −0.146315 0.989238i \(-0.546741\pi\)
−0.146315 + 0.989238i \(0.546741\pi\)
\(360\) 0 0
\(361\) 8588.68 1.25218
\(362\) 7499.02 1.08878
\(363\) 0 0
\(364\) 0 0
\(365\) −8884.68 −1.27410
\(366\) 0 0
\(367\) 11008.8 1.56581 0.782907 0.622139i \(-0.213736\pi\)
0.782907 + 0.622139i \(0.213736\pi\)
\(368\) −1742.39 −0.246816
\(369\) 0 0
\(370\) −4965.28 −0.697655
\(371\) 0 0
\(372\) 0 0
\(373\) −449.248 −0.0623625 −0.0311812 0.999514i \(-0.509927\pi\)
−0.0311812 + 0.999514i \(0.509927\pi\)
\(374\) 179.889 0.0248712
\(375\) 0 0
\(376\) 9742.34 1.33623
\(377\) −7954.57 −1.08669
\(378\) 0 0
\(379\) 958.936 0.129966 0.0649832 0.997886i \(-0.479301\pi\)
0.0649832 + 0.997886i \(0.479301\pi\)
\(380\) 12415.9 1.67611
\(381\) 0 0
\(382\) −1054.62 −0.141255
\(383\) −6854.48 −0.914485 −0.457242 0.889342i \(-0.651163\pi\)
−0.457242 + 0.889342i \(0.651163\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6312.91 0.832432
\(387\) 0 0
\(388\) −19577.0 −2.56153
\(389\) −3318.57 −0.432540 −0.216270 0.976334i \(-0.569389\pi\)
−0.216270 + 0.976334i \(0.569389\pi\)
\(390\) 0 0
\(391\) −160.641 −0.0207774
\(392\) 0 0
\(393\) 0 0
\(394\) −10609.0 −1.35654
\(395\) 9828.25 1.25193
\(396\) 0 0
\(397\) −5813.51 −0.734942 −0.367471 0.930035i \(-0.619776\pi\)
−0.367471 + 0.930035i \(0.619776\pi\)
\(398\) −19660.8 −2.47614
\(399\) 0 0
\(400\) 751.471 0.0939338
\(401\) −860.524 −0.107163 −0.0535817 0.998563i \(-0.517064\pi\)
−0.0535817 + 0.998563i \(0.517064\pi\)
\(402\) 0 0
\(403\) −4266.37 −0.527352
\(404\) −14130.8 −1.74019
\(405\) 0 0
\(406\) 0 0
\(407\) −4502.30 −0.548331
\(408\) 0 0
\(409\) 7205.66 0.871142 0.435571 0.900154i \(-0.356547\pi\)
0.435571 + 0.900154i \(0.356547\pi\)
\(410\) −6567.34 −0.791068
\(411\) 0 0
\(412\) 9643.30 1.15313
\(413\) 0 0
\(414\) 0 0
\(415\) 1230.43 0.145541
\(416\) −11402.1 −1.34384
\(417\) 0 0
\(418\) 18649.6 2.18225
\(419\) 12568.5 1.46542 0.732711 0.680540i \(-0.238255\pi\)
0.732711 + 0.680540i \(0.238255\pi\)
\(420\) 0 0
\(421\) 7819.34 0.905205 0.452603 0.891712i \(-0.350496\pi\)
0.452603 + 0.891712i \(0.350496\pi\)
\(422\) −11437.1 −1.31932
\(423\) 0 0
\(424\) 5071.77 0.580912
\(425\) 69.2824 0.00790751
\(426\) 0 0
\(427\) 0 0
\(428\) −22866.0 −2.58240
\(429\) 0 0
\(430\) 7774.48 0.871904
\(431\) 11713.1 1.30905 0.654526 0.756039i \(-0.272868\pi\)
0.654526 + 0.756039i \(0.272868\pi\)
\(432\) 0 0
\(433\) −12766.0 −1.41685 −0.708426 0.705785i \(-0.750594\pi\)
−0.708426 + 0.705785i \(0.750594\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −17404.9 −1.91179
\(437\) −16654.1 −1.82306
\(438\) 0 0
\(439\) 7106.41 0.772598 0.386299 0.922374i \(-0.373753\pi\)
0.386299 + 0.922374i \(0.373753\pi\)
\(440\) 5148.30 0.557808
\(441\) 0 0
\(442\) −294.065 −0.0316454
\(443\) −7723.24 −0.828313 −0.414156 0.910206i \(-0.635923\pi\)
−0.414156 + 0.910206i \(0.635923\pi\)
\(444\) 0 0
\(445\) −1815.58 −0.193409
\(446\) 9085.05 0.964550
\(447\) 0 0
\(448\) 0 0
\(449\) −5221.96 −0.548863 −0.274431 0.961607i \(-0.588490\pi\)
−0.274431 + 0.961607i \(0.588490\pi\)
\(450\) 0 0
\(451\) −5954.98 −0.621750
\(452\) −12384.9 −1.28880
\(453\) 0 0
\(454\) −1942.08 −0.200763
\(455\) 0 0
\(456\) 0 0
\(457\) 17829.6 1.82502 0.912511 0.409053i \(-0.134141\pi\)
0.912511 + 0.409053i \(0.134141\pi\)
\(458\) 11951.0 1.21929
\(459\) 0 0
\(460\) −13385.6 −1.35675
\(461\) 5283.56 0.533796 0.266898 0.963725i \(-0.414001\pi\)
0.266898 + 0.963725i \(0.414001\pi\)
\(462\) 0 0
\(463\) 16885.1 1.69485 0.847427 0.530912i \(-0.178151\pi\)
0.847427 + 0.530912i \(0.178151\pi\)
\(464\) −1894.57 −0.189554
\(465\) 0 0
\(466\) −30658.7 −3.04772
\(467\) 11603.4 1.14976 0.574882 0.818236i \(-0.305048\pi\)
0.574882 + 0.818236i \(0.305048\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −19083.9 −1.87293
\(471\) 0 0
\(472\) 5760.89 0.561794
\(473\) 7049.56 0.685284
\(474\) 0 0
\(475\) 7182.71 0.693821
\(476\) 0 0
\(477\) 0 0
\(478\) 1462.12 0.139908
\(479\) −10885.0 −1.03830 −0.519151 0.854683i \(-0.673752\pi\)
−0.519151 + 0.854683i \(0.673752\pi\)
\(480\) 0 0
\(481\) 7359.93 0.697679
\(482\) 8115.21 0.766883
\(483\) 0 0
\(484\) −2626.70 −0.246684
\(485\) 13171.4 1.23316
\(486\) 0 0
\(487\) 6080.50 0.565778 0.282889 0.959153i \(-0.408707\pi\)
0.282889 + 0.959153i \(0.408707\pi\)
\(488\) −714.906 −0.0663162
\(489\) 0 0
\(490\) 0 0
\(491\) 2787.59 0.256216 0.128108 0.991760i \(-0.459110\pi\)
0.128108 + 0.991760i \(0.459110\pi\)
\(492\) 0 0
\(493\) −174.671 −0.0159570
\(494\) −30486.6 −2.77663
\(495\) 0 0
\(496\) −1016.14 −0.0919877
\(497\) 0 0
\(498\) 0 0
\(499\) −797.710 −0.0715640 −0.0357820 0.999360i \(-0.511392\pi\)
−0.0357820 + 0.999360i \(0.511392\pi\)
\(500\) 18260.0 1.63322
\(501\) 0 0
\(502\) −7216.73 −0.641630
\(503\) 11880.8 1.05316 0.526581 0.850125i \(-0.323474\pi\)
0.526581 + 0.850125i \(0.323474\pi\)
\(504\) 0 0
\(505\) 9507.20 0.837752
\(506\) −20106.1 −1.76646
\(507\) 0 0
\(508\) 6155.67 0.537625
\(509\) −3817.45 −0.332428 −0.166214 0.986090i \(-0.553154\pi\)
−0.166214 + 0.986090i \(0.553154\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −4671.70 −0.403246
\(513\) 0 0
\(514\) −9732.24 −0.835157
\(515\) −6487.99 −0.555136
\(516\) 0 0
\(517\) −17304.5 −1.47205
\(518\) 0 0
\(519\) 0 0
\(520\) −8415.96 −0.709739
\(521\) −14854.6 −1.24912 −0.624559 0.780978i \(-0.714721\pi\)
−0.624559 + 0.780978i \(0.714721\pi\)
\(522\) 0 0
\(523\) 4929.02 0.412105 0.206052 0.978541i \(-0.433938\pi\)
0.206052 + 0.978541i \(0.433938\pi\)
\(524\) 30599.2 2.55101
\(525\) 0 0
\(526\) −26020.6 −2.15694
\(527\) −93.6835 −0.00774368
\(528\) 0 0
\(529\) 5787.81 0.475697
\(530\) −9934.90 −0.814235
\(531\) 0 0
\(532\) 0 0
\(533\) 9734.64 0.791096
\(534\) 0 0
\(535\) 15384.2 1.24321
\(536\) −11483.1 −0.925365
\(537\) 0 0
\(538\) −15689.6 −1.25730
\(539\) 0 0
\(540\) 0 0
\(541\) −17040.3 −1.35419 −0.677097 0.735894i \(-0.736762\pi\)
−0.677097 + 0.735894i \(0.736762\pi\)
\(542\) 24858.9 1.97007
\(543\) 0 0
\(544\) −250.375 −0.0197330
\(545\) 11710.0 0.920366
\(546\) 0 0
\(547\) −11566.3 −0.904096 −0.452048 0.891994i \(-0.649306\pi\)
−0.452048 + 0.891994i \(0.649306\pi\)
\(548\) −26226.3 −2.04440
\(549\) 0 0
\(550\) 8671.51 0.672280
\(551\) −18108.7 −1.40010
\(552\) 0 0
\(553\) 0 0
\(554\) −12016.2 −0.921517
\(555\) 0 0
\(556\) −829.092 −0.0632398
\(557\) −7632.22 −0.580588 −0.290294 0.956938i \(-0.593753\pi\)
−0.290294 + 0.956938i \(0.593753\pi\)
\(558\) 0 0
\(559\) −11524.0 −0.871935
\(560\) 0 0
\(561\) 0 0
\(562\) −20419.9 −1.53267
\(563\) 8856.14 0.662951 0.331476 0.943464i \(-0.392454\pi\)
0.331476 + 0.943464i \(0.392454\pi\)
\(564\) 0 0
\(565\) 8332.54 0.620447
\(566\) 130.807 0.00971416
\(567\) 0 0
\(568\) −20390.1 −1.50625
\(569\) −9455.97 −0.696687 −0.348343 0.937367i \(-0.613256\pi\)
−0.348343 + 0.937367i \(0.613256\pi\)
\(570\) 0 0
\(571\) −11895.7 −0.871841 −0.435920 0.899985i \(-0.643577\pi\)
−0.435920 + 0.899985i \(0.643577\pi\)
\(572\) −22218.5 −1.62413
\(573\) 0 0
\(574\) 0 0
\(575\) −7743.67 −0.561623
\(576\) 0 0
\(577\) −12231.2 −0.882482 −0.441241 0.897389i \(-0.645462\pi\)
−0.441241 + 0.897389i \(0.645462\pi\)
\(578\) 22066.6 1.58798
\(579\) 0 0
\(580\) −14554.6 −1.04198
\(581\) 0 0
\(582\) 0 0
\(583\) −9008.54 −0.639958
\(584\) −20377.6 −1.44389
\(585\) 0 0
\(586\) −11703.9 −0.825061
\(587\) −3450.15 −0.242595 −0.121297 0.992616i \(-0.538705\pi\)
−0.121297 + 0.992616i \(0.538705\pi\)
\(588\) 0 0
\(589\) −9712.44 −0.679447
\(590\) −11284.8 −0.787438
\(591\) 0 0
\(592\) 1752.94 0.121698
\(593\) 3550.47 0.245869 0.122935 0.992415i \(-0.460769\pi\)
0.122935 + 0.992415i \(0.460769\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9821.24 0.674989
\(597\) 0 0
\(598\) 32867.6 2.24758
\(599\) −20992.1 −1.43191 −0.715956 0.698146i \(-0.754009\pi\)
−0.715956 + 0.698146i \(0.754009\pi\)
\(600\) 0 0
\(601\) 6836.28 0.463990 0.231995 0.972717i \(-0.425475\pi\)
0.231995 + 0.972717i \(0.425475\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −29487.3 −1.98646
\(605\) 1767.24 0.118758
\(606\) 0 0
\(607\) 6273.64 0.419505 0.209752 0.977755i \(-0.432734\pi\)
0.209752 + 0.977755i \(0.432734\pi\)
\(608\) −25957.1 −1.73141
\(609\) 0 0
\(610\) 1400.40 0.0929520
\(611\) 28287.7 1.87299
\(612\) 0 0
\(613\) −14473.3 −0.953624 −0.476812 0.879005i \(-0.658208\pi\)
−0.476812 + 0.879005i \(0.658208\pi\)
\(614\) −35047.8 −2.30361
\(615\) 0 0
\(616\) 0 0
\(617\) 21999.9 1.43546 0.717732 0.696319i \(-0.245180\pi\)
0.717732 + 0.696319i \(0.245180\pi\)
\(618\) 0 0
\(619\) 16852.1 1.09426 0.547128 0.837049i \(-0.315721\pi\)
0.547128 + 0.837049i \(0.315721\pi\)
\(620\) −7806.26 −0.505656
\(621\) 0 0
\(622\) −31826.3 −2.05164
\(623\) 0 0
\(624\) 0 0
\(625\) −5061.44 −0.323932
\(626\) −12061.1 −0.770060
\(627\) 0 0
\(628\) 3766.18 0.239311
\(629\) 161.614 0.0102448
\(630\) 0 0
\(631\) −21296.7 −1.34359 −0.671796 0.740736i \(-0.734477\pi\)
−0.671796 + 0.740736i \(0.734477\pi\)
\(632\) 22541.8 1.41877
\(633\) 0 0
\(634\) −33377.4 −2.09083
\(635\) −4141.52 −0.258821
\(636\) 0 0
\(637\) 0 0
\(638\) −21862.2 −1.35663
\(639\) 0 0
\(640\) −17031.1 −1.05190
\(641\) 6878.90 0.423869 0.211935 0.977284i \(-0.432024\pi\)
0.211935 + 0.977284i \(0.432024\pi\)
\(642\) 0 0
\(643\) 7514.99 0.460906 0.230453 0.973084i \(-0.425979\pi\)
0.230453 + 0.973084i \(0.425979\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −669.444 −0.0407723
\(647\) −5992.65 −0.364135 −0.182067 0.983286i \(-0.558279\pi\)
−0.182067 + 0.983286i \(0.558279\pi\)
\(648\) 0 0
\(649\) −10232.6 −0.618896
\(650\) −14175.4 −0.855389
\(651\) 0 0
\(652\) 47024.5 2.82457
\(653\) 18811.8 1.12736 0.563678 0.825995i \(-0.309386\pi\)
0.563678 + 0.825995i \(0.309386\pi\)
\(654\) 0 0
\(655\) −20587.1 −1.22810
\(656\) 2318.54 0.137993
\(657\) 0 0
\(658\) 0 0
\(659\) 19824.0 1.17182 0.585912 0.810375i \(-0.300737\pi\)
0.585912 + 0.810375i \(0.300737\pi\)
\(660\) 0 0
\(661\) 605.232 0.0356139 0.0178070 0.999841i \(-0.494332\pi\)
0.0178070 + 0.999841i \(0.494332\pi\)
\(662\) −33995.4 −1.99587
\(663\) 0 0
\(664\) 2822.08 0.164936
\(665\) 0 0
\(666\) 0 0
\(667\) 19523.0 1.13333
\(668\) 35430.2 2.05215
\(669\) 0 0
\(670\) 22493.9 1.29704
\(671\) 1269.83 0.0730568
\(672\) 0 0
\(673\) 9474.72 0.542680 0.271340 0.962484i \(-0.412533\pi\)
0.271340 + 0.962484i \(0.412533\pi\)
\(674\) −13868.9 −0.792599
\(675\) 0 0
\(676\) 9549.89 0.543348
\(677\) 15227.0 0.864430 0.432215 0.901771i \(-0.357732\pi\)
0.432215 + 0.901771i \(0.357732\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −184.803 −0.0104219
\(681\) 0 0
\(682\) −11725.6 −0.658352
\(683\) 13326.9 0.746617 0.373309 0.927707i \(-0.378223\pi\)
0.373309 + 0.927707i \(0.378223\pi\)
\(684\) 0 0
\(685\) 17645.0 0.984204
\(686\) 0 0
\(687\) 0 0
\(688\) −2744.71 −0.152094
\(689\) 14726.3 0.814264
\(690\) 0 0
\(691\) −11465.0 −0.631188 −0.315594 0.948894i \(-0.602204\pi\)
−0.315594 + 0.948894i \(0.602204\pi\)
\(692\) 1433.77 0.0787624
\(693\) 0 0
\(694\) −35595.5 −1.94695
\(695\) 557.811 0.0304446
\(696\) 0 0
\(697\) 213.759 0.0116165
\(698\) −899.653 −0.0487856
\(699\) 0 0
\(700\) 0 0
\(701\) 3022.89 0.162872 0.0814358 0.996679i \(-0.474049\pi\)
0.0814358 + 0.996679i \(0.474049\pi\)
\(702\) 0 0
\(703\) 16755.0 0.898899
\(704\) −27863.1 −1.49166
\(705\) 0 0
\(706\) 36667.8 1.95469
\(707\) 0 0
\(708\) 0 0
\(709\) −8454.31 −0.447826 −0.223913 0.974609i \(-0.571883\pi\)
−0.223913 + 0.974609i \(0.571883\pi\)
\(710\) 39941.4 2.11123
\(711\) 0 0
\(712\) −4164.16 −0.219183
\(713\) 10471.0 0.549987
\(714\) 0 0
\(715\) 14948.5 0.781879
\(716\) 9385.66 0.489886
\(717\) 0 0
\(718\) 8942.89 0.464827
\(719\) −30109.8 −1.56176 −0.780881 0.624680i \(-0.785229\pi\)
−0.780881 + 0.624680i \(0.785229\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −38587.1 −1.98901
\(723\) 0 0
\(724\) −20338.5 −1.04403
\(725\) −8419.99 −0.431325
\(726\) 0 0
\(727\) −5605.16 −0.285947 −0.142974 0.989726i \(-0.545666\pi\)
−0.142974 + 0.989726i \(0.545666\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 39917.0 2.02383
\(731\) −253.050 −0.0128036
\(732\) 0 0
\(733\) −12654.2 −0.637647 −0.318824 0.947814i \(-0.603288\pi\)
−0.318824 + 0.947814i \(0.603288\pi\)
\(734\) −49460.1 −2.48720
\(735\) 0 0
\(736\) 27984.3 1.40152
\(737\) 20396.5 1.01942
\(738\) 0 0
\(739\) −1082.43 −0.0538805 −0.0269403 0.999637i \(-0.508576\pi\)
−0.0269403 + 0.999637i \(0.508576\pi\)
\(740\) 13466.6 0.668976
\(741\) 0 0
\(742\) 0 0
\(743\) 11054.5 0.545830 0.272915 0.962038i \(-0.412012\pi\)
0.272915 + 0.962038i \(0.412012\pi\)
\(744\) 0 0
\(745\) −6607.71 −0.324950
\(746\) 2018.38 0.0990591
\(747\) 0 0
\(748\) −487.887 −0.0238488
\(749\) 0 0
\(750\) 0 0
\(751\) −13634.8 −0.662505 −0.331252 0.943542i \(-0.607471\pi\)
−0.331252 + 0.943542i \(0.607471\pi\)
\(752\) 6737.40 0.326712
\(753\) 0 0
\(754\) 35738.2 1.72614
\(755\) 19839.0 0.956312
\(756\) 0 0
\(757\) 6016.97 0.288891 0.144446 0.989513i \(-0.453860\pi\)
0.144446 + 0.989513i \(0.453860\pi\)
\(758\) −4308.30 −0.206444
\(759\) 0 0
\(760\) −19159.0 −0.914436
\(761\) −10177.7 −0.484810 −0.242405 0.970175i \(-0.577936\pi\)
−0.242405 + 0.970175i \(0.577936\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 2860.31 0.135448
\(765\) 0 0
\(766\) 30795.7 1.45260
\(767\) 16727.2 0.787465
\(768\) 0 0
\(769\) −27107.4 −1.27116 −0.635578 0.772037i \(-0.719238\pi\)
−0.635578 + 0.772037i \(0.719238\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −17121.6 −0.798212
\(773\) 27976.4 1.30174 0.650868 0.759191i \(-0.274405\pi\)
0.650868 + 0.759191i \(0.274405\pi\)
\(774\) 0 0
\(775\) −4515.99 −0.209315
\(776\) 30209.4 1.39749
\(777\) 0 0
\(778\) 14909.6 0.687065
\(779\) 22161.0 1.01926
\(780\) 0 0
\(781\) 36217.1 1.65935
\(782\) 721.727 0.0330037
\(783\) 0 0
\(784\) 0 0
\(785\) −2533.88 −0.115208
\(786\) 0 0
\(787\) −13196.6 −0.597723 −0.298862 0.954296i \(-0.596607\pi\)
−0.298862 + 0.954296i \(0.596607\pi\)
\(788\) 28773.4 1.30077
\(789\) 0 0
\(790\) −44156.3 −1.98862
\(791\) 0 0
\(792\) 0 0
\(793\) −2075.79 −0.0929553
\(794\) 26118.9 1.16741
\(795\) 0 0
\(796\) 53323.1 2.37436
\(797\) 15109.4 0.671523 0.335761 0.941947i \(-0.391006\pi\)
0.335761 + 0.941947i \(0.391006\pi\)
\(798\) 0 0
\(799\) 621.160 0.0275032
\(800\) −12069.3 −0.533391
\(801\) 0 0
\(802\) 3866.15 0.170223
\(803\) 36195.0 1.59065
\(804\) 0 0
\(805\) 0 0
\(806\) 19167.9 0.837667
\(807\) 0 0
\(808\) 21805.4 0.949395
\(809\) −1786.54 −0.0776410 −0.0388205 0.999246i \(-0.512360\pi\)
−0.0388205 + 0.999246i \(0.512360\pi\)
\(810\) 0 0
\(811\) −3985.96 −0.172584 −0.0862921 0.996270i \(-0.527502\pi\)
−0.0862921 + 0.996270i \(0.527502\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 20227.9 0.870991
\(815\) −31638.0 −1.35979
\(816\) 0 0
\(817\) −26234.4 −1.12341
\(818\) −32373.5 −1.38376
\(819\) 0 0
\(820\) 17811.7 0.758549
\(821\) 11435.7 0.486127 0.243064 0.970010i \(-0.421848\pi\)
0.243064 + 0.970010i \(0.421848\pi\)
\(822\) 0 0
\(823\) 16083.0 0.681187 0.340593 0.940211i \(-0.389372\pi\)
0.340593 + 0.940211i \(0.389372\pi\)
\(824\) −14880.6 −0.629116
\(825\) 0 0
\(826\) 0 0
\(827\) −24003.6 −1.00929 −0.504647 0.863326i \(-0.668378\pi\)
−0.504647 + 0.863326i \(0.668378\pi\)
\(828\) 0 0
\(829\) 10329.8 0.432773 0.216386 0.976308i \(-0.430573\pi\)
0.216386 + 0.976308i \(0.430573\pi\)
\(830\) −5528.07 −0.231183
\(831\) 0 0
\(832\) 45547.9 1.89794
\(833\) 0 0
\(834\) 0 0
\(835\) −23837.4 −0.987935
\(836\) −50580.7 −2.09255
\(837\) 0 0
\(838\) −56467.6 −2.32774
\(839\) 29488.6 1.21342 0.606710 0.794923i \(-0.292489\pi\)
0.606710 + 0.794923i \(0.292489\pi\)
\(840\) 0 0
\(841\) −3160.94 −0.129605
\(842\) −35130.6 −1.43786
\(843\) 0 0
\(844\) 31019.3 1.26508
\(845\) −6425.14 −0.261576
\(846\) 0 0
\(847\) 0 0
\(848\) 3507.42 0.142035
\(849\) 0 0
\(850\) −311.271 −0.0125606
\(851\) −18063.5 −0.727626
\(852\) 0 0
\(853\) 9482.29 0.380618 0.190309 0.981724i \(-0.439051\pi\)
0.190309 + 0.981724i \(0.439051\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 35284.6 1.40888
\(857\) −47038.7 −1.87492 −0.937462 0.348087i \(-0.886831\pi\)
−0.937462 + 0.348087i \(0.886831\pi\)
\(858\) 0 0
\(859\) 31374.3 1.24619 0.623096 0.782146i \(-0.285875\pi\)
0.623096 + 0.782146i \(0.285875\pi\)
\(860\) −21085.6 −0.836062
\(861\) 0 0
\(862\) −52624.6 −2.07935
\(863\) −17338.9 −0.683922 −0.341961 0.939714i \(-0.611091\pi\)
−0.341961 + 0.939714i \(0.611091\pi\)
\(864\) 0 0
\(865\) −964.635 −0.0379174
\(866\) 57355.1 2.25059
\(867\) 0 0
\(868\) 0 0
\(869\) −40039.0 −1.56298
\(870\) 0 0
\(871\) −33342.3 −1.29708
\(872\) 26857.6 1.04302
\(873\) 0 0
\(874\) 74823.5 2.89581
\(875\) 0 0
\(876\) 0 0
\(877\) 25006.5 0.962838 0.481419 0.876491i \(-0.340121\pi\)
0.481419 + 0.876491i \(0.340121\pi\)
\(878\) −31927.6 −1.22723
\(879\) 0 0
\(880\) 3560.35 0.136386
\(881\) 38905.0 1.48779 0.743895 0.668296i \(-0.232976\pi\)
0.743895 + 0.668296i \(0.232976\pi\)
\(882\) 0 0
\(883\) −15343.4 −0.584764 −0.292382 0.956302i \(-0.594448\pi\)
−0.292382 + 0.956302i \(0.594448\pi\)
\(884\) 797.552 0.0303445
\(885\) 0 0
\(886\) 34698.9 1.31573
\(887\) −42542.6 −1.61042 −0.805210 0.592990i \(-0.797947\pi\)
−0.805210 + 0.592990i \(0.797947\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 8157.02 0.307218
\(891\) 0 0
\(892\) −24640.1 −0.924900
\(893\) 64397.4 2.41319
\(894\) 0 0
\(895\) −6314.65 −0.235839
\(896\) 0 0
\(897\) 0 0
\(898\) 23461.2 0.871836
\(899\) 11385.5 0.422389
\(900\) 0 0
\(901\) 323.369 0.0119567
\(902\) 26754.5 0.987613
\(903\) 0 0
\(904\) 19111.2 0.703131
\(905\) 13683.7 0.502610
\(906\) 0 0
\(907\) 33699.3 1.23370 0.616850 0.787081i \(-0.288408\pi\)
0.616850 + 0.787081i \(0.288408\pi\)
\(908\) 5267.22 0.192510
\(909\) 0 0
\(910\) 0 0
\(911\) 654.806 0.0238141 0.0119071 0.999929i \(-0.496210\pi\)
0.0119071 + 0.999929i \(0.496210\pi\)
\(912\) 0 0
\(913\) −5012.61 −0.181701
\(914\) −80104.7 −2.89894
\(915\) 0 0
\(916\) −32413.1 −1.16917
\(917\) 0 0
\(918\) 0 0
\(919\) 50222.2 1.80270 0.901348 0.433096i \(-0.142579\pi\)
0.901348 + 0.433096i \(0.142579\pi\)
\(920\) 20655.3 0.740203
\(921\) 0 0
\(922\) −23737.9 −0.847903
\(923\) −59204.3 −2.11130
\(924\) 0 0
\(925\) 7790.56 0.276921
\(926\) −75861.2 −2.69217
\(927\) 0 0
\(928\) 30428.4 1.07636
\(929\) −26946.4 −0.951650 −0.475825 0.879540i \(-0.657851\pi\)
−0.475825 + 0.879540i \(0.657851\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 83151.2 2.92243
\(933\) 0 0
\(934\) −52131.5 −1.82633
\(935\) 328.249 0.0114812
\(936\) 0 0
\(937\) 48370.5 1.68644 0.843220 0.537568i \(-0.180657\pi\)
0.843220 + 0.537568i \(0.180657\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 51758.6 1.79594
\(941\) 23148.5 0.801934 0.400967 0.916092i \(-0.368674\pi\)
0.400967 + 0.916092i \(0.368674\pi\)
\(942\) 0 0
\(943\) −23891.8 −0.825052
\(944\) 3983.99 0.137360
\(945\) 0 0
\(946\) −31672.2 −1.08853
\(947\) −34082.8 −1.16953 −0.584764 0.811203i \(-0.698813\pi\)
−0.584764 + 0.811203i \(0.698813\pi\)
\(948\) 0 0
\(949\) −59168.1 −2.02390
\(950\) −32270.4 −1.10209
\(951\) 0 0
\(952\) 0 0
\(953\) 27180.8 0.923895 0.461947 0.886907i \(-0.347151\pi\)
0.461947 + 0.886907i \(0.347151\pi\)
\(954\) 0 0
\(955\) −1924.41 −0.0652067
\(956\) −3965.51 −0.134156
\(957\) 0 0
\(958\) 48903.8 1.64928
\(959\) 0 0
\(960\) 0 0
\(961\) −23684.5 −0.795022
\(962\) −33066.6 −1.10822
\(963\) 0 0
\(964\) −22009.7 −0.735358
\(965\) 11519.4 0.384271
\(966\) 0 0
\(967\) 5650.95 0.187924 0.0939619 0.995576i \(-0.470047\pi\)
0.0939619 + 0.995576i \(0.470047\pi\)
\(968\) 4053.27 0.134584
\(969\) 0 0
\(970\) −59176.2 −1.95880
\(971\) 33830.8 1.11811 0.559054 0.829131i \(-0.311165\pi\)
0.559054 + 0.829131i \(0.311165\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −27318.4 −0.898704
\(975\) 0 0
\(976\) −494.399 −0.0162145
\(977\) 9015.14 0.295210 0.147605 0.989046i \(-0.452844\pi\)
0.147605 + 0.989046i \(0.452844\pi\)
\(978\) 0 0
\(979\) 7396.43 0.241462
\(980\) 0 0
\(981\) 0 0
\(982\) −12524.1 −0.406984
\(983\) −57809.1 −1.87571 −0.937856 0.347025i \(-0.887192\pi\)
−0.937856 + 0.347025i \(0.887192\pi\)
\(984\) 0 0
\(985\) −19358.7 −0.626212
\(986\) 784.762 0.0253468
\(987\) 0 0
\(988\) 82684.5 2.66249
\(989\) 28283.3 0.909361
\(990\) 0 0
\(991\) −21178.9 −0.678879 −0.339440 0.940628i \(-0.610237\pi\)
−0.339440 + 0.940628i \(0.610237\pi\)
\(992\) 16320.0 0.522340
\(993\) 0 0
\(994\) 0 0
\(995\) −35875.7 −1.14305
\(996\) 0 0
\(997\) −30608.4 −0.972294 −0.486147 0.873877i \(-0.661598\pi\)
−0.486147 + 0.873877i \(0.661598\pi\)
\(998\) 3583.94 0.113675
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bj.1.1 7
3.2 odd 2 1323.4.a.bi.1.7 7
7.2 even 3 189.4.e.f.109.7 14
7.4 even 3 189.4.e.f.163.7 yes 14
7.6 odd 2 1323.4.a.bk.1.1 7
21.2 odd 6 189.4.e.g.109.1 yes 14
21.11 odd 6 189.4.e.g.163.1 yes 14
21.20 even 2 1323.4.a.bh.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.7 14 7.2 even 3
189.4.e.f.163.7 yes 14 7.4 even 3
189.4.e.g.109.1 yes 14 21.2 odd 6
189.4.e.g.163.1 yes 14 21.11 odd 6
1323.4.a.bh.1.7 7 21.20 even 2
1323.4.a.bi.1.7 7 3.2 odd 2
1323.4.a.bj.1.1 7 1.1 even 1 trivial
1323.4.a.bk.1.1 7 7.6 odd 2