Properties

Label 1323.4.a.bh.1.5
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.63185\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.63185 q^{2} -5.33705 q^{4} +12.3790 q^{5} -21.7641 q^{8} +O(q^{10})\) \(q+1.63185 q^{2} -5.33705 q^{4} +12.3790 q^{5} -21.7641 q^{8} +20.2007 q^{10} +29.0051 q^{11} +52.9884 q^{13} +7.18051 q^{16} -122.047 q^{17} -141.105 q^{19} -66.0672 q^{20} +47.3321 q^{22} -60.2992 q^{23} +28.2389 q^{25} +86.4693 q^{26} +126.997 q^{29} -150.849 q^{31} +185.831 q^{32} -199.163 q^{34} -341.581 q^{37} -230.262 q^{38} -269.418 q^{40} +292.082 q^{41} +290.696 q^{43} -154.802 q^{44} -98.3995 q^{46} +284.082 q^{47} +46.0818 q^{50} -282.802 q^{52} -387.993 q^{53} +359.053 q^{55} +207.241 q^{58} +269.312 q^{59} +239.606 q^{61} -246.163 q^{62} +245.804 q^{64} +655.941 q^{65} -712.250 q^{67} +651.370 q^{68} -270.507 q^{71} -146.083 q^{73} -557.411 q^{74} +753.083 q^{76} -652.792 q^{79} +88.8874 q^{80} +476.636 q^{82} -35.0239 q^{83} -1510.81 q^{85} +474.373 q^{86} -631.271 q^{88} -1394.56 q^{89} +321.820 q^{92} +463.581 q^{94} -1746.73 q^{95} -805.822 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 31 q^{4} - q^{5} - 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - q^{2} + 31 q^{4} - q^{5} - 84 q^{8} - 12 q^{10} - 98 q^{11} + 124 q^{13} + 139 q^{16} + 30 q^{17} - 182 q^{19} - 110 q^{20} + 276 q^{22} + 6 q^{23} + 388 q^{25} - 245 q^{26} - 323 q^{29} - 26 q^{31} - 398 q^{32} - 114 q^{34} - 112 q^{37} + 1015 q^{38} + 147 q^{40} - 524 q^{41} + 8 q^{43} - 937 q^{44} - 339 q^{46} + 288 q^{47} - 2576 q^{50} + 1075 q^{52} - 1353 q^{53} - 156 q^{55} - 81 q^{58} + 165 q^{59} - 56 q^{61} - 1215 q^{62} - 1706 q^{64} - 1694 q^{65} - 988 q^{67} + 2625 q^{68} - 792 q^{71} - 1487 q^{73} - 2736 q^{74} - 1952 q^{76} - 1273 q^{79} - 2501 q^{80} + 2049 q^{82} - 1170 q^{83} + 216 q^{85} + 160 q^{86} + 9 q^{88} + 1058 q^{89} - 3834 q^{92} - 1653 q^{94} - 3260 q^{95} + 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63185 0.576948 0.288474 0.957488i \(-0.406852\pi\)
0.288474 + 0.957488i \(0.406852\pi\)
\(3\) 0 0
\(4\) −5.33705 −0.667131
\(5\) 12.3790 1.10721 0.553604 0.832780i \(-0.313252\pi\)
0.553604 + 0.832780i \(0.313252\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −21.7641 −0.961848
\(9\) 0 0
\(10\) 20.2007 0.638802
\(11\) 29.0051 0.795033 0.397517 0.917595i \(-0.369872\pi\)
0.397517 + 0.917595i \(0.369872\pi\)
\(12\) 0 0
\(13\) 52.9884 1.13049 0.565243 0.824924i \(-0.308782\pi\)
0.565243 + 0.824924i \(0.308782\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 7.18051 0.112196
\(17\) −122.047 −1.74122 −0.870609 0.491975i \(-0.836275\pi\)
−0.870609 + 0.491975i \(0.836275\pi\)
\(18\) 0 0
\(19\) −141.105 −1.70377 −0.851885 0.523728i \(-0.824541\pi\)
−0.851885 + 0.523728i \(0.824541\pi\)
\(20\) −66.0672 −0.738654
\(21\) 0 0
\(22\) 47.3321 0.458693
\(23\) −60.2992 −0.546663 −0.273332 0.961920i \(-0.588126\pi\)
−0.273332 + 0.961920i \(0.588126\pi\)
\(24\) 0 0
\(25\) 28.2389 0.225912
\(26\) 86.4693 0.652232
\(27\) 0 0
\(28\) 0 0
\(29\) 126.997 0.813201 0.406601 0.913606i \(-0.366714\pi\)
0.406601 + 0.913606i \(0.366714\pi\)
\(30\) 0 0
\(31\) −150.849 −0.873975 −0.436988 0.899468i \(-0.643955\pi\)
−0.436988 + 0.899468i \(0.643955\pi\)
\(32\) 185.831 1.02658
\(33\) 0 0
\(34\) −199.163 −1.00459
\(35\) 0 0
\(36\) 0 0
\(37\) −341.581 −1.51772 −0.758860 0.651254i \(-0.774243\pi\)
−0.758860 + 0.651254i \(0.774243\pi\)
\(38\) −230.262 −0.982987
\(39\) 0 0
\(40\) −269.418 −1.06497
\(41\) 292.082 1.11258 0.556288 0.830990i \(-0.312225\pi\)
0.556288 + 0.830990i \(0.312225\pi\)
\(42\) 0 0
\(43\) 290.696 1.03095 0.515473 0.856906i \(-0.327616\pi\)
0.515473 + 0.856906i \(0.327616\pi\)
\(44\) −154.802 −0.530392
\(45\) 0 0
\(46\) −98.3995 −0.315396
\(47\) 284.082 0.881652 0.440826 0.897593i \(-0.354686\pi\)
0.440826 + 0.897593i \(0.354686\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 46.0818 0.130339
\(51\) 0 0
\(52\) −282.802 −0.754183
\(53\) −387.993 −1.00556 −0.502782 0.864413i \(-0.667690\pi\)
−0.502782 + 0.864413i \(0.667690\pi\)
\(54\) 0 0
\(55\) 359.053 0.880268
\(56\) 0 0
\(57\) 0 0
\(58\) 207.241 0.469175
\(59\) 269.312 0.594261 0.297131 0.954837i \(-0.403970\pi\)
0.297131 + 0.954837i \(0.403970\pi\)
\(60\) 0 0
\(61\) 239.606 0.502925 0.251462 0.967867i \(-0.419089\pi\)
0.251462 + 0.967867i \(0.419089\pi\)
\(62\) −246.163 −0.504238
\(63\) 0 0
\(64\) 245.804 0.480087
\(65\) 655.941 1.25168
\(66\) 0 0
\(67\) −712.250 −1.29873 −0.649367 0.760475i \(-0.724966\pi\)
−0.649367 + 0.760475i \(0.724966\pi\)
\(68\) 651.370 1.16162
\(69\) 0 0
\(70\) 0 0
\(71\) −270.507 −0.452160 −0.226080 0.974109i \(-0.572591\pi\)
−0.226080 + 0.974109i \(0.572591\pi\)
\(72\) 0 0
\(73\) −146.083 −0.234215 −0.117108 0.993119i \(-0.537362\pi\)
−0.117108 + 0.993119i \(0.537362\pi\)
\(74\) −557.411 −0.875645
\(75\) 0 0
\(76\) 753.083 1.13664
\(77\) 0 0
\(78\) 0 0
\(79\) −652.792 −0.929681 −0.464841 0.885394i \(-0.653888\pi\)
−0.464841 + 0.885394i \(0.653888\pi\)
\(80\) 88.8874 0.124224
\(81\) 0 0
\(82\) 476.636 0.641898
\(83\) −35.0239 −0.0463178 −0.0231589 0.999732i \(-0.507372\pi\)
−0.0231589 + 0.999732i \(0.507372\pi\)
\(84\) 0 0
\(85\) −1510.81 −1.92789
\(86\) 474.373 0.594802
\(87\) 0 0
\(88\) −631.271 −0.764701
\(89\) −1394.56 −1.66093 −0.830465 0.557071i \(-0.811925\pi\)
−0.830465 + 0.557071i \(0.811925\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 321.820 0.364696
\(93\) 0 0
\(94\) 463.581 0.508667
\(95\) −1746.73 −1.88643
\(96\) 0 0
\(97\) −805.822 −0.843493 −0.421746 0.906714i \(-0.638583\pi\)
−0.421746 + 0.906714i \(0.638583\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −150.713 −0.150713
\(101\) −1014.81 −0.999778 −0.499889 0.866089i \(-0.666626\pi\)
−0.499889 + 0.866089i \(0.666626\pi\)
\(102\) 0 0
\(103\) −1039.39 −0.994310 −0.497155 0.867662i \(-0.665622\pi\)
−0.497155 + 0.867662i \(0.665622\pi\)
\(104\) −1153.25 −1.08736
\(105\) 0 0
\(106\) −633.147 −0.580158
\(107\) −608.338 −0.549628 −0.274814 0.961497i \(-0.588616\pi\)
−0.274814 + 0.961497i \(0.588616\pi\)
\(108\) 0 0
\(109\) 1077.71 0.947029 0.473514 0.880786i \(-0.342985\pi\)
0.473514 + 0.880786i \(0.342985\pi\)
\(110\) 585.923 0.507869
\(111\) 0 0
\(112\) 0 0
\(113\) −2064.78 −1.71893 −0.859463 0.511199i \(-0.829202\pi\)
−0.859463 + 0.511199i \(0.829202\pi\)
\(114\) 0 0
\(115\) −746.442 −0.605270
\(116\) −677.792 −0.542512
\(117\) 0 0
\(118\) 439.478 0.342858
\(119\) 0 0
\(120\) 0 0
\(121\) −489.704 −0.367922
\(122\) 391.002 0.290161
\(123\) 0 0
\(124\) 805.087 0.583056
\(125\) −1197.80 −0.857078
\(126\) 0 0
\(127\) −130.430 −0.0911320 −0.0455660 0.998961i \(-0.514509\pi\)
−0.0455660 + 0.998961i \(0.514509\pi\)
\(128\) −1085.53 −0.749594
\(129\) 0 0
\(130\) 1070.40 0.722157
\(131\) 1905.07 1.27058 0.635292 0.772272i \(-0.280880\pi\)
0.635292 + 0.772272i \(0.280880\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1162.29 −0.749302
\(135\) 0 0
\(136\) 2656.24 1.67479
\(137\) 559.298 0.348789 0.174394 0.984676i \(-0.444203\pi\)
0.174394 + 0.984676i \(0.444203\pi\)
\(138\) 0 0
\(139\) 699.079 0.426583 0.213292 0.976989i \(-0.431582\pi\)
0.213292 + 0.976989i \(0.431582\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −441.429 −0.260872
\(143\) 1536.93 0.898775
\(144\) 0 0
\(145\) 1572.10 0.900384
\(146\) −238.386 −0.135130
\(147\) 0 0
\(148\) 1823.04 1.01252
\(149\) −1614.90 −0.887904 −0.443952 0.896050i \(-0.646424\pi\)
−0.443952 + 0.896050i \(0.646424\pi\)
\(150\) 0 0
\(151\) −3.59271 −0.00193623 −0.000968116 1.00000i \(-0.500308\pi\)
−0.000968116 1.00000i \(0.500308\pi\)
\(152\) 3071.02 1.63877
\(153\) 0 0
\(154\) 0 0
\(155\) −1867.35 −0.967673
\(156\) 0 0
\(157\) −697.746 −0.354689 −0.177345 0.984149i \(-0.556751\pi\)
−0.177345 + 0.984149i \(0.556751\pi\)
\(158\) −1065.26 −0.536377
\(159\) 0 0
\(160\) 2300.39 1.13664
\(161\) 0 0
\(162\) 0 0
\(163\) 145.908 0.0701130 0.0350565 0.999385i \(-0.488839\pi\)
0.0350565 + 0.999385i \(0.488839\pi\)
\(164\) −1558.86 −0.742234
\(165\) 0 0
\(166\) −57.1539 −0.0267229
\(167\) 1816.18 0.841556 0.420778 0.907164i \(-0.361757\pi\)
0.420778 + 0.907164i \(0.361757\pi\)
\(168\) 0 0
\(169\) 610.766 0.278000
\(170\) −2465.43 −1.11229
\(171\) 0 0
\(172\) −1551.46 −0.687776
\(173\) 2424.68 1.06558 0.532790 0.846247i \(-0.321144\pi\)
0.532790 + 0.846247i \(0.321144\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 208.272 0.0891992
\(177\) 0 0
\(178\) −2275.71 −0.958270
\(179\) −2835.36 −1.18394 −0.591969 0.805961i \(-0.701649\pi\)
−0.591969 + 0.805961i \(0.701649\pi\)
\(180\) 0 0
\(181\) 219.212 0.0900214 0.0450107 0.998987i \(-0.485668\pi\)
0.0450107 + 0.998987i \(0.485668\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1312.36 0.525807
\(185\) −4228.43 −1.68043
\(186\) 0 0
\(187\) −3539.98 −1.38433
\(188\) −1516.16 −0.588178
\(189\) 0 0
\(190\) −2850.41 −1.08837
\(191\) −223.424 −0.0846410 −0.0423205 0.999104i \(-0.513475\pi\)
−0.0423205 + 0.999104i \(0.513475\pi\)
\(192\) 0 0
\(193\) −352.158 −0.131342 −0.0656708 0.997841i \(-0.520919\pi\)
−0.0656708 + 0.997841i \(0.520919\pi\)
\(194\) −1314.98 −0.486651
\(195\) 0 0
\(196\) 0 0
\(197\) −5347.45 −1.93396 −0.966981 0.254850i \(-0.917974\pi\)
−0.966981 + 0.254850i \(0.917974\pi\)
\(198\) 0 0
\(199\) −582.228 −0.207402 −0.103701 0.994609i \(-0.533069\pi\)
−0.103701 + 0.994609i \(0.533069\pi\)
\(200\) −614.596 −0.217292
\(201\) 0 0
\(202\) −1656.03 −0.576820
\(203\) 0 0
\(204\) 0 0
\(205\) 3615.68 1.23185
\(206\) −1696.13 −0.573665
\(207\) 0 0
\(208\) 380.484 0.126836
\(209\) −4092.76 −1.35455
\(210\) 0 0
\(211\) 5467.96 1.78403 0.892014 0.452008i \(-0.149292\pi\)
0.892014 + 0.452008i \(0.149292\pi\)
\(212\) 2070.74 0.670843
\(213\) 0 0
\(214\) −992.719 −0.317107
\(215\) 3598.51 1.14147
\(216\) 0 0
\(217\) 0 0
\(218\) 1758.67 0.546386
\(219\) 0 0
\(220\) −1916.29 −0.587254
\(221\) −6467.06 −1.96842
\(222\) 0 0
\(223\) −4368.05 −1.31169 −0.655844 0.754897i \(-0.727687\pi\)
−0.655844 + 0.754897i \(0.727687\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3369.43 −0.991730
\(227\) 636.952 0.186238 0.0931189 0.995655i \(-0.470316\pi\)
0.0931189 + 0.995655i \(0.470316\pi\)
\(228\) 0 0
\(229\) −983.495 −0.283804 −0.141902 0.989881i \(-0.545322\pi\)
−0.141902 + 0.989881i \(0.545322\pi\)
\(230\) −1218.09 −0.349209
\(231\) 0 0
\(232\) −2763.99 −0.782176
\(233\) 1677.37 0.471623 0.235811 0.971799i \(-0.424225\pi\)
0.235811 + 0.971799i \(0.424225\pi\)
\(234\) 0 0
\(235\) 3516.64 0.976173
\(236\) −1437.33 −0.396450
\(237\) 0 0
\(238\) 0 0
\(239\) 2705.18 0.732148 0.366074 0.930586i \(-0.380702\pi\)
0.366074 + 0.930586i \(0.380702\pi\)
\(240\) 0 0
\(241\) 2140.73 0.572185 0.286092 0.958202i \(-0.407644\pi\)
0.286092 + 0.958202i \(0.407644\pi\)
\(242\) −799.126 −0.212272
\(243\) 0 0
\(244\) −1278.79 −0.335517
\(245\) 0 0
\(246\) 0 0
\(247\) −7476.91 −1.92609
\(248\) 3283.09 0.840631
\(249\) 0 0
\(250\) −1954.64 −0.494489
\(251\) 918.484 0.230973 0.115486 0.993309i \(-0.463157\pi\)
0.115486 + 0.993309i \(0.463157\pi\)
\(252\) 0 0
\(253\) −1748.98 −0.434616
\(254\) −212.842 −0.0525784
\(255\) 0 0
\(256\) −3737.86 −0.912563
\(257\) 4232.18 1.02722 0.513611 0.858023i \(-0.328308\pi\)
0.513611 + 0.858023i \(0.328308\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −3500.79 −0.835038
\(261\) 0 0
\(262\) 3108.79 0.733060
\(263\) −5825.05 −1.36573 −0.682867 0.730542i \(-0.739267\pi\)
−0.682867 + 0.730542i \(0.739267\pi\)
\(264\) 0 0
\(265\) −4802.95 −1.11337
\(266\) 0 0
\(267\) 0 0
\(268\) 3801.31 0.866426
\(269\) −2592.23 −0.587550 −0.293775 0.955875i \(-0.594912\pi\)
−0.293775 + 0.955875i \(0.594912\pi\)
\(270\) 0 0
\(271\) 3709.89 0.831586 0.415793 0.909459i \(-0.363504\pi\)
0.415793 + 0.909459i \(0.363504\pi\)
\(272\) −876.359 −0.195357
\(273\) 0 0
\(274\) 912.694 0.201233
\(275\) 819.073 0.179607
\(276\) 0 0
\(277\) −323.380 −0.0701445 −0.0350722 0.999385i \(-0.511166\pi\)
−0.0350722 + 0.999385i \(0.511166\pi\)
\(278\) 1140.79 0.246116
\(279\) 0 0
\(280\) 0 0
\(281\) −4990.53 −1.05947 −0.529733 0.848165i \(-0.677708\pi\)
−0.529733 + 0.848165i \(0.677708\pi\)
\(282\) 0 0
\(283\) −2458.67 −0.516441 −0.258221 0.966086i \(-0.583136\pi\)
−0.258221 + 0.966086i \(0.583136\pi\)
\(284\) 1443.71 0.301650
\(285\) 0 0
\(286\) 2508.05 0.518546
\(287\) 0 0
\(288\) 0 0
\(289\) 9982.43 2.03184
\(290\) 2565.44 0.519474
\(291\) 0 0
\(292\) 779.651 0.156252
\(293\) 3028.06 0.603758 0.301879 0.953346i \(-0.402386\pi\)
0.301879 + 0.953346i \(0.402386\pi\)
\(294\) 0 0
\(295\) 3333.80 0.657972
\(296\) 7434.22 1.45982
\(297\) 0 0
\(298\) −2635.28 −0.512274
\(299\) −3195.16 −0.617995
\(300\) 0 0
\(301\) 0 0
\(302\) −5.86279 −0.00111710
\(303\) 0 0
\(304\) −1013.20 −0.191155
\(305\) 2966.08 0.556843
\(306\) 0 0
\(307\) 8277.86 1.53890 0.769450 0.638707i \(-0.220530\pi\)
0.769450 + 0.638707i \(0.220530\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3047.25 −0.558297
\(311\) 824.071 0.150253 0.0751267 0.997174i \(-0.476064\pi\)
0.0751267 + 0.997174i \(0.476064\pi\)
\(312\) 0 0
\(313\) 2427.80 0.438426 0.219213 0.975677i \(-0.429651\pi\)
0.219213 + 0.975677i \(0.429651\pi\)
\(314\) −1138.62 −0.204637
\(315\) 0 0
\(316\) 3483.98 0.620219
\(317\) −7970.35 −1.41218 −0.706088 0.708125i \(-0.749542\pi\)
−0.706088 + 0.708125i \(0.749542\pi\)
\(318\) 0 0
\(319\) 3683.58 0.646522
\(320\) 3042.81 0.531556
\(321\) 0 0
\(322\) 0 0
\(323\) 17221.4 2.96664
\(324\) 0 0
\(325\) 1496.34 0.255390
\(326\) 238.101 0.0404515
\(327\) 0 0
\(328\) −6356.92 −1.07013
\(329\) 0 0
\(330\) 0 0
\(331\) 2273.66 0.377558 0.188779 0.982020i \(-0.439547\pi\)
0.188779 + 0.982020i \(0.439547\pi\)
\(332\) 186.924 0.0309000
\(333\) 0 0
\(334\) 2963.73 0.485534
\(335\) −8816.92 −1.43797
\(336\) 0 0
\(337\) 3142.92 0.508030 0.254015 0.967200i \(-0.418249\pi\)
0.254015 + 0.967200i \(0.418249\pi\)
\(338\) 996.681 0.160391
\(339\) 0 0
\(340\) 8063.29 1.28616
\(341\) −4375.38 −0.694839
\(342\) 0 0
\(343\) 0 0
\(344\) −6326.74 −0.991613
\(345\) 0 0
\(346\) 3956.73 0.614784
\(347\) −8966.74 −1.38720 −0.693602 0.720358i \(-0.743977\pi\)
−0.693602 + 0.720358i \(0.743977\pi\)
\(348\) 0 0
\(349\) 140.981 0.0216234 0.0108117 0.999942i \(-0.496558\pi\)
0.0108117 + 0.999942i \(0.496558\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5390.03 0.816164
\(353\) −8208.98 −1.23773 −0.618867 0.785496i \(-0.712408\pi\)
−0.618867 + 0.785496i \(0.712408\pi\)
\(354\) 0 0
\(355\) −3348.60 −0.500635
\(356\) 7442.82 1.10806
\(357\) 0 0
\(358\) −4626.90 −0.683070
\(359\) −8749.05 −1.28623 −0.643116 0.765769i \(-0.722359\pi\)
−0.643116 + 0.765769i \(0.722359\pi\)
\(360\) 0 0
\(361\) 13051.5 1.90284
\(362\) 357.722 0.0519376
\(363\) 0 0
\(364\) 0 0
\(365\) −1808.36 −0.259325
\(366\) 0 0
\(367\) 5917.89 0.841721 0.420860 0.907125i \(-0.361728\pi\)
0.420860 + 0.907125i \(0.361728\pi\)
\(368\) −432.979 −0.0613332
\(369\) 0 0
\(370\) −6900.18 −0.969522
\(371\) 0 0
\(372\) 0 0
\(373\) 11660.7 1.61868 0.809342 0.587338i \(-0.199824\pi\)
0.809342 + 0.587338i \(0.199824\pi\)
\(374\) −5776.73 −0.798684
\(375\) 0 0
\(376\) −6182.80 −0.848015
\(377\) 6729.39 0.919313
\(378\) 0 0
\(379\) −14306.7 −1.93902 −0.969508 0.245060i \(-0.921192\pi\)
−0.969508 + 0.245060i \(0.921192\pi\)
\(380\) 9322.39 1.25850
\(381\) 0 0
\(382\) −364.596 −0.0488334
\(383\) 10840.5 1.44627 0.723136 0.690705i \(-0.242700\pi\)
0.723136 + 0.690705i \(0.242700\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −574.671 −0.0757772
\(387\) 0 0
\(388\) 4300.71 0.562721
\(389\) 11175.5 1.45660 0.728301 0.685257i \(-0.240310\pi\)
0.728301 + 0.685257i \(0.240310\pi\)
\(390\) 0 0
\(391\) 7359.33 0.951860
\(392\) 0 0
\(393\) 0 0
\(394\) −8726.27 −1.11579
\(395\) −8080.89 −1.02935
\(396\) 0 0
\(397\) 13077.9 1.65330 0.826650 0.562716i \(-0.190244\pi\)
0.826650 + 0.562716i \(0.190244\pi\)
\(398\) −950.111 −0.119660
\(399\) 0 0
\(400\) 202.770 0.0253463
\(401\) −2733.63 −0.340427 −0.170213 0.985407i \(-0.554446\pi\)
−0.170213 + 0.985407i \(0.554446\pi\)
\(402\) 0 0
\(403\) −7993.22 −0.988017
\(404\) 5416.10 0.666983
\(405\) 0 0
\(406\) 0 0
\(407\) −9907.60 −1.20664
\(408\) 0 0
\(409\) −11521.1 −1.39286 −0.696431 0.717623i \(-0.745230\pi\)
−0.696431 + 0.717623i \(0.745230\pi\)
\(410\) 5900.26 0.710715
\(411\) 0 0
\(412\) 5547.27 0.663336
\(413\) 0 0
\(414\) 0 0
\(415\) −433.560 −0.0512834
\(416\) 9846.86 1.16053
\(417\) 0 0
\(418\) −6678.78 −0.781507
\(419\) −2426.62 −0.282931 −0.141465 0.989943i \(-0.545181\pi\)
−0.141465 + 0.989943i \(0.545181\pi\)
\(420\) 0 0
\(421\) 10188.2 1.17943 0.589716 0.807611i \(-0.299240\pi\)
0.589716 + 0.807611i \(0.299240\pi\)
\(422\) 8922.91 1.02929
\(423\) 0 0
\(424\) 8444.32 0.967199
\(425\) −3446.47 −0.393361
\(426\) 0 0
\(427\) 0 0
\(428\) 3246.73 0.366674
\(429\) 0 0
\(430\) 5872.25 0.658570
\(431\) 6780.40 0.757773 0.378887 0.925443i \(-0.376307\pi\)
0.378887 + 0.925443i \(0.376307\pi\)
\(432\) 0 0
\(433\) −6122.85 −0.679550 −0.339775 0.940507i \(-0.610351\pi\)
−0.339775 + 0.940507i \(0.610351\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5751.81 −0.631792
\(437\) 8508.50 0.931389
\(438\) 0 0
\(439\) 15747.5 1.71204 0.856022 0.516939i \(-0.172929\pi\)
0.856022 + 0.516939i \(0.172929\pi\)
\(440\) −7814.48 −0.846684
\(441\) 0 0
\(442\) −10553.3 −1.13568
\(443\) −15063.8 −1.61558 −0.807789 0.589472i \(-0.799336\pi\)
−0.807789 + 0.589472i \(0.799336\pi\)
\(444\) 0 0
\(445\) −17263.2 −1.83900
\(446\) −7128.02 −0.756775
\(447\) 0 0
\(448\) 0 0
\(449\) 175.064 0.0184004 0.00920020 0.999958i \(-0.497071\pi\)
0.00920020 + 0.999958i \(0.497071\pi\)
\(450\) 0 0
\(451\) 8471.88 0.884535
\(452\) 11019.9 1.14675
\(453\) 0 0
\(454\) 1039.41 0.107450
\(455\) 0 0
\(456\) 0 0
\(457\) −12593.5 −1.28905 −0.644527 0.764582i \(-0.722946\pi\)
−0.644527 + 0.764582i \(0.722946\pi\)
\(458\) −1604.92 −0.163740
\(459\) 0 0
\(460\) 3983.80 0.403795
\(461\) 13781.7 1.39236 0.696182 0.717865i \(-0.254881\pi\)
0.696182 + 0.717865i \(0.254881\pi\)
\(462\) 0 0
\(463\) 8867.45 0.890076 0.445038 0.895512i \(-0.353190\pi\)
0.445038 + 0.895512i \(0.353190\pi\)
\(464\) 911.907 0.0912376
\(465\) 0 0
\(466\) 2737.22 0.272102
\(467\) −12839.0 −1.27221 −0.636103 0.771604i \(-0.719455\pi\)
−0.636103 + 0.771604i \(0.719455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 5738.65 0.563201
\(471\) 0 0
\(472\) −5861.34 −0.571589
\(473\) 8431.66 0.819636
\(474\) 0 0
\(475\) −3984.65 −0.384902
\(476\) 0 0
\(477\) 0 0
\(478\) 4414.46 0.422411
\(479\) 9955.21 0.949614 0.474807 0.880090i \(-0.342518\pi\)
0.474807 + 0.880090i \(0.342518\pi\)
\(480\) 0 0
\(481\) −18099.8 −1.71576
\(482\) 3493.36 0.330121
\(483\) 0 0
\(484\) 2613.58 0.245452
\(485\) −9975.25 −0.933923
\(486\) 0 0
\(487\) −16716.0 −1.55539 −0.777693 0.628644i \(-0.783610\pi\)
−0.777693 + 0.628644i \(0.783610\pi\)
\(488\) −5214.82 −0.483737
\(489\) 0 0
\(490\) 0 0
\(491\) 2981.39 0.274029 0.137014 0.990569i \(-0.456249\pi\)
0.137014 + 0.990569i \(0.456249\pi\)
\(492\) 0 0
\(493\) −15499.6 −1.41596
\(494\) −12201.2 −1.11125
\(495\) 0 0
\(496\) −1083.17 −0.0980561
\(497\) 0 0
\(498\) 0 0
\(499\) 8169.47 0.732897 0.366449 0.930438i \(-0.380574\pi\)
0.366449 + 0.930438i \(0.380574\pi\)
\(500\) 6392.73 0.571783
\(501\) 0 0
\(502\) 1498.83 0.133259
\(503\) −1858.71 −0.164763 −0.0823814 0.996601i \(-0.526253\pi\)
−0.0823814 + 0.996601i \(0.526253\pi\)
\(504\) 0 0
\(505\) −12562.3 −1.10696
\(506\) −2854.09 −0.250750
\(507\) 0 0
\(508\) 696.110 0.0607970
\(509\) −14749.0 −1.28436 −0.642179 0.766554i \(-0.721970\pi\)
−0.642179 + 0.766554i \(0.721970\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 2584.58 0.223093
\(513\) 0 0
\(514\) 6906.30 0.592653
\(515\) −12866.6 −1.10091
\(516\) 0 0
\(517\) 8239.83 0.700943
\(518\) 0 0
\(519\) 0 0
\(520\) −14276.0 −1.20393
\(521\) 13232.1 1.11268 0.556342 0.830953i \(-0.312204\pi\)
0.556342 + 0.830953i \(0.312204\pi\)
\(522\) 0 0
\(523\) 16100.9 1.34617 0.673083 0.739567i \(-0.264969\pi\)
0.673083 + 0.739567i \(0.264969\pi\)
\(524\) −10167.4 −0.847646
\(525\) 0 0
\(526\) −9505.64 −0.787958
\(527\) 18410.6 1.52178
\(528\) 0 0
\(529\) −8531.01 −0.701159
\(530\) −7837.71 −0.642356
\(531\) 0 0
\(532\) 0 0
\(533\) 15477.0 1.25775
\(534\) 0 0
\(535\) −7530.60 −0.608553
\(536\) 15501.5 1.24918
\(537\) 0 0
\(538\) −4230.14 −0.338986
\(539\) 0 0
\(540\) 0 0
\(541\) 3622.62 0.287890 0.143945 0.989586i \(-0.454021\pi\)
0.143945 + 0.989586i \(0.454021\pi\)
\(542\) 6054.00 0.479782
\(543\) 0 0
\(544\) −22680.0 −1.78750
\(545\) 13341.0 1.04856
\(546\) 0 0
\(547\) 14543.8 1.13683 0.568417 0.822741i \(-0.307556\pi\)
0.568417 + 0.822741i \(0.307556\pi\)
\(548\) −2985.00 −0.232688
\(549\) 0 0
\(550\) 1336.61 0.103624
\(551\) −17919.9 −1.38551
\(552\) 0 0
\(553\) 0 0
\(554\) −527.709 −0.0404697
\(555\) 0 0
\(556\) −3731.02 −0.284587
\(557\) 11533.3 0.877346 0.438673 0.898647i \(-0.355449\pi\)
0.438673 + 0.898647i \(0.355449\pi\)
\(558\) 0 0
\(559\) 15403.5 1.16547
\(560\) 0 0
\(561\) 0 0
\(562\) −8143.81 −0.611256
\(563\) −276.313 −0.0206842 −0.0103421 0.999947i \(-0.503292\pi\)
−0.0103421 + 0.999947i \(0.503292\pi\)
\(564\) 0 0
\(565\) −25559.9 −1.90321
\(566\) −4012.20 −0.297960
\(567\) 0 0
\(568\) 5887.36 0.434909
\(569\) 15729.5 1.15890 0.579452 0.815007i \(-0.303267\pi\)
0.579452 + 0.815007i \(0.303267\pi\)
\(570\) 0 0
\(571\) 7718.30 0.565676 0.282838 0.959168i \(-0.408724\pi\)
0.282838 + 0.959168i \(0.408724\pi\)
\(572\) −8202.69 −0.599601
\(573\) 0 0
\(574\) 0 0
\(575\) −1702.79 −0.123498
\(576\) 0 0
\(577\) −15638.4 −1.12831 −0.564156 0.825668i \(-0.690798\pi\)
−0.564156 + 0.825668i \(0.690798\pi\)
\(578\) 16289.9 1.17227
\(579\) 0 0
\(580\) −8390.37 −0.600674
\(581\) 0 0
\(582\) 0 0
\(583\) −11253.8 −0.799457
\(584\) 3179.37 0.225279
\(585\) 0 0
\(586\) 4941.35 0.348337
\(587\) 14520.1 1.02097 0.510484 0.859888i \(-0.329466\pi\)
0.510484 + 0.859888i \(0.329466\pi\)
\(588\) 0 0
\(589\) 21285.5 1.48905
\(590\) 5440.28 0.379615
\(591\) 0 0
\(592\) −2452.73 −0.170281
\(593\) −5938.70 −0.411253 −0.205627 0.978631i \(-0.565923\pi\)
−0.205627 + 0.978631i \(0.565923\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8618.80 0.592349
\(597\) 0 0
\(598\) −5214.03 −0.356551
\(599\) −7264.82 −0.495547 −0.247774 0.968818i \(-0.579699\pi\)
−0.247774 + 0.968818i \(0.579699\pi\)
\(600\) 0 0
\(601\) 1691.27 0.114789 0.0573945 0.998352i \(-0.481721\pi\)
0.0573945 + 0.998352i \(0.481721\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.1745 0.00129172
\(605\) −6062.03 −0.407366
\(606\) 0 0
\(607\) −17410.4 −1.16420 −0.582099 0.813118i \(-0.697768\pi\)
−0.582099 + 0.813118i \(0.697768\pi\)
\(608\) −26221.6 −1.74905
\(609\) 0 0
\(610\) 4840.21 0.321269
\(611\) 15053.0 0.996696
\(612\) 0 0
\(613\) 10205.4 0.672418 0.336209 0.941787i \(-0.390855\pi\)
0.336209 + 0.941787i \(0.390855\pi\)
\(614\) 13508.3 0.887865
\(615\) 0 0
\(616\) 0 0
\(617\) −8936.08 −0.583068 −0.291534 0.956560i \(-0.594166\pi\)
−0.291534 + 0.956560i \(0.594166\pi\)
\(618\) 0 0
\(619\) 18560.2 1.20517 0.602584 0.798056i \(-0.294138\pi\)
0.602584 + 0.798056i \(0.294138\pi\)
\(620\) 9966.15 0.645565
\(621\) 0 0
\(622\) 1344.76 0.0866883
\(623\) 0 0
\(624\) 0 0
\(625\) −18357.4 −1.17488
\(626\) 3961.82 0.252949
\(627\) 0 0
\(628\) 3723.91 0.236624
\(629\) 41688.9 2.64268
\(630\) 0 0
\(631\) −6191.13 −0.390594 −0.195297 0.980744i \(-0.562567\pi\)
−0.195297 + 0.980744i \(0.562567\pi\)
\(632\) 14207.4 0.894212
\(633\) 0 0
\(634\) −13006.5 −0.814751
\(635\) −1614.59 −0.100902
\(636\) 0 0
\(637\) 0 0
\(638\) 6011.06 0.373010
\(639\) 0 0
\(640\) −13437.7 −0.829957
\(641\) −1592.53 −0.0981298 −0.0490649 0.998796i \(-0.515624\pi\)
−0.0490649 + 0.998796i \(0.515624\pi\)
\(642\) 0 0
\(643\) 20101.4 1.23285 0.616426 0.787413i \(-0.288580\pi\)
0.616426 + 0.787413i \(0.288580\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 28102.8 1.71159
\(647\) 13953.3 0.847855 0.423927 0.905696i \(-0.360651\pi\)
0.423927 + 0.905696i \(0.360651\pi\)
\(648\) 0 0
\(649\) 7811.42 0.472458
\(650\) 2441.80 0.147347
\(651\) 0 0
\(652\) −778.720 −0.0467746
\(653\) −32040.0 −1.92010 −0.960049 0.279832i \(-0.909721\pi\)
−0.960049 + 0.279832i \(0.909721\pi\)
\(654\) 0 0
\(655\) 23582.8 1.40680
\(656\) 2097.30 0.124826
\(657\) 0 0
\(658\) 0 0
\(659\) 22240.2 1.31465 0.657325 0.753607i \(-0.271688\pi\)
0.657325 + 0.753607i \(0.271688\pi\)
\(660\) 0 0
\(661\) −913.832 −0.0537730 −0.0268865 0.999638i \(-0.508559\pi\)
−0.0268865 + 0.999638i \(0.508559\pi\)
\(662\) 3710.28 0.217831
\(663\) 0 0
\(664\) 762.265 0.0445506
\(665\) 0 0
\(666\) 0 0
\(667\) −7657.85 −0.444547
\(668\) −9693.02 −0.561429
\(669\) 0 0
\(670\) −14387.9 −0.829634
\(671\) 6949.80 0.399842
\(672\) 0 0
\(673\) −7951.84 −0.455454 −0.227727 0.973725i \(-0.573129\pi\)
−0.227727 + 0.973725i \(0.573129\pi\)
\(674\) 5128.79 0.293106
\(675\) 0 0
\(676\) −3259.69 −0.185462
\(677\) −2633.40 −0.149498 −0.0747488 0.997202i \(-0.523816\pi\)
−0.0747488 + 0.997202i \(0.523816\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 32881.6 1.85434
\(681\) 0 0
\(682\) −7139.99 −0.400886
\(683\) 31241.6 1.75026 0.875129 0.483890i \(-0.160776\pi\)
0.875129 + 0.483890i \(0.160776\pi\)
\(684\) 0 0
\(685\) 6923.54 0.386182
\(686\) 0 0
\(687\) 0 0
\(688\) 2087.34 0.115668
\(689\) −20559.1 −1.13678
\(690\) 0 0
\(691\) 5773.50 0.317850 0.158925 0.987291i \(-0.449197\pi\)
0.158925 + 0.987291i \(0.449197\pi\)
\(692\) −12940.7 −0.710882
\(693\) 0 0
\(694\) −14632.4 −0.800344
\(695\) 8653.87 0.472317
\(696\) 0 0
\(697\) −35647.7 −1.93724
\(698\) 230.061 0.0124756
\(699\) 0 0
\(700\) 0 0
\(701\) −18643.2 −1.00449 −0.502243 0.864726i \(-0.667492\pi\)
−0.502243 + 0.864726i \(0.667492\pi\)
\(702\) 0 0
\(703\) 48198.8 2.58585
\(704\) 7129.58 0.381685
\(705\) 0 0
\(706\) −13395.9 −0.714107
\(707\) 0 0
\(708\) 0 0
\(709\) 10420.4 0.551970 0.275985 0.961162i \(-0.410996\pi\)
0.275985 + 0.961162i \(0.410996\pi\)
\(710\) −5464.43 −0.288840
\(711\) 0 0
\(712\) 30351.3 1.59756
\(713\) 9096.06 0.477770
\(714\) 0 0
\(715\) 19025.6 0.995131
\(716\) 15132.5 0.789842
\(717\) 0 0
\(718\) −14277.2 −0.742088
\(719\) −8269.85 −0.428947 −0.214474 0.976730i \(-0.568804\pi\)
−0.214474 + 0.976730i \(0.568804\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 21298.2 1.09784
\(723\) 0 0
\(724\) −1169.94 −0.0600561
\(725\) 3586.27 0.183712
\(726\) 0 0
\(727\) 4112.34 0.209791 0.104896 0.994483i \(-0.466549\pi\)
0.104896 + 0.994483i \(0.466549\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2950.97 −0.149617
\(731\) −35478.5 −1.79510
\(732\) 0 0
\(733\) 28562.7 1.43927 0.719636 0.694352i \(-0.244309\pi\)
0.719636 + 0.694352i \(0.244309\pi\)
\(734\) 9657.14 0.485629
\(735\) 0 0
\(736\) −11205.4 −0.561193
\(737\) −20658.9 −1.03254
\(738\) 0 0
\(739\) 23183.9 1.15404 0.577019 0.816731i \(-0.304216\pi\)
0.577019 + 0.816731i \(0.304216\pi\)
\(740\) 22567.3 1.12107
\(741\) 0 0
\(742\) 0 0
\(743\) 7212.11 0.356106 0.178053 0.984021i \(-0.443020\pi\)
0.178053 + 0.984021i \(0.443020\pi\)
\(744\) 0 0
\(745\) −19990.8 −0.983096
\(746\) 19028.6 0.933896
\(747\) 0 0
\(748\) 18893.1 0.923528
\(749\) 0 0
\(750\) 0 0
\(751\) −21762.2 −1.05741 −0.528703 0.848807i \(-0.677322\pi\)
−0.528703 + 0.848807i \(0.677322\pi\)
\(752\) 2039.86 0.0989174
\(753\) 0 0
\(754\) 10981.4 0.530396
\(755\) −44.4741 −0.00214381
\(756\) 0 0
\(757\) −29737.8 −1.42779 −0.713896 0.700252i \(-0.753071\pi\)
−0.713896 + 0.700252i \(0.753071\pi\)
\(758\) −23346.5 −1.11871
\(759\) 0 0
\(760\) 38016.1 1.81446
\(761\) −30539.9 −1.45476 −0.727378 0.686237i \(-0.759261\pi\)
−0.727378 + 0.686237i \(0.759261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1192.43 0.0564667
\(765\) 0 0
\(766\) 17690.1 0.834424
\(767\) 14270.4 0.671805
\(768\) 0 0
\(769\) −39801.3 −1.86642 −0.933208 0.359338i \(-0.883003\pi\)
−0.933208 + 0.359338i \(0.883003\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1879.49 0.0876220
\(773\) 15163.9 0.705574 0.352787 0.935704i \(-0.385234\pi\)
0.352787 + 0.935704i \(0.385234\pi\)
\(774\) 0 0
\(775\) −4259.81 −0.197441
\(776\) 17538.0 0.811312
\(777\) 0 0
\(778\) 18236.7 0.840383
\(779\) −41214.2 −1.89557
\(780\) 0 0
\(781\) −7846.10 −0.359482
\(782\) 12009.4 0.549173
\(783\) 0 0
\(784\) 0 0
\(785\) −8637.38 −0.392715
\(786\) 0 0
\(787\) −21917.3 −0.992717 −0.496359 0.868118i \(-0.665330\pi\)
−0.496359 + 0.868118i \(0.665330\pi\)
\(788\) 28539.6 1.29021
\(789\) 0 0
\(790\) −13186.8 −0.593882
\(791\) 0 0
\(792\) 0 0
\(793\) 12696.3 0.568550
\(794\) 21341.2 0.953868
\(795\) 0 0
\(796\) 3107.38 0.138364
\(797\) −3205.98 −0.142486 −0.0712431 0.997459i \(-0.522697\pi\)
−0.0712431 + 0.997459i \(0.522697\pi\)
\(798\) 0 0
\(799\) −34671.3 −1.53515
\(800\) 5247.66 0.231916
\(801\) 0 0
\(802\) −4460.89 −0.196408
\(803\) −4237.15 −0.186209
\(804\) 0 0
\(805\) 0 0
\(806\) −13043.8 −0.570034
\(807\) 0 0
\(808\) 22086.5 0.961634
\(809\) −39211.8 −1.70410 −0.852048 0.523464i \(-0.824640\pi\)
−0.852048 + 0.523464i \(0.824640\pi\)
\(810\) 0 0
\(811\) −14711.3 −0.636973 −0.318486 0.947927i \(-0.603175\pi\)
−0.318486 + 0.947927i \(0.603175\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16167.8 −0.696167
\(815\) 1806.19 0.0776297
\(816\) 0 0
\(817\) −41018.5 −1.75650
\(818\) −18800.7 −0.803609
\(819\) 0 0
\(820\) −19297.1 −0.821808
\(821\) 42916.2 1.82434 0.912171 0.409810i \(-0.134405\pi\)
0.912171 + 0.409810i \(0.134405\pi\)
\(822\) 0 0
\(823\) 6882.13 0.291490 0.145745 0.989322i \(-0.453442\pi\)
0.145745 + 0.989322i \(0.453442\pi\)
\(824\) 22621.4 0.956375
\(825\) 0 0
\(826\) 0 0
\(827\) 6598.74 0.277461 0.138731 0.990330i \(-0.455698\pi\)
0.138731 + 0.990330i \(0.455698\pi\)
\(828\) 0 0
\(829\) 23585.6 0.988134 0.494067 0.869424i \(-0.335510\pi\)
0.494067 + 0.869424i \(0.335510\pi\)
\(830\) −707.507 −0.0295879
\(831\) 0 0
\(832\) 13024.8 0.542731
\(833\) 0 0
\(834\) 0 0
\(835\) 22482.4 0.931779
\(836\) 21843.3 0.903666
\(837\) 0 0
\(838\) −3959.88 −0.163236
\(839\) 656.729 0.0270236 0.0135118 0.999909i \(-0.495699\pi\)
0.0135118 + 0.999909i \(0.495699\pi\)
\(840\) 0 0
\(841\) −8260.64 −0.338703
\(842\) 16625.6 0.680470
\(843\) 0 0
\(844\) −29182.8 −1.19018
\(845\) 7560.65 0.307804
\(846\) 0 0
\(847\) 0 0
\(848\) −2785.99 −0.112820
\(849\) 0 0
\(850\) −5624.14 −0.226949
\(851\) 20597.1 0.829682
\(852\) 0 0
\(853\) 26201.7 1.05173 0.525867 0.850567i \(-0.323741\pi\)
0.525867 + 0.850567i \(0.323741\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13239.9 0.528659
\(857\) −23208.5 −0.925072 −0.462536 0.886601i \(-0.653060\pi\)
−0.462536 + 0.886601i \(0.653060\pi\)
\(858\) 0 0
\(859\) 26175.4 1.03969 0.519845 0.854260i \(-0.325990\pi\)
0.519845 + 0.854260i \(0.325990\pi\)
\(860\) −19205.4 −0.761512
\(861\) 0 0
\(862\) 11064.6 0.437196
\(863\) −5651.84 −0.222933 −0.111466 0.993768i \(-0.535555\pi\)
−0.111466 + 0.993768i \(0.535555\pi\)
\(864\) 0 0
\(865\) 30015.1 1.17982
\(866\) −9991.60 −0.392065
\(867\) 0 0
\(868\) 0 0
\(869\) −18934.3 −0.739128
\(870\) 0 0
\(871\) −37741.0 −1.46820
\(872\) −23455.5 −0.910897
\(873\) 0 0
\(874\) 13884.6 0.537363
\(875\) 0 0
\(876\) 0 0
\(877\) 37510.2 1.44428 0.722138 0.691749i \(-0.243160\pi\)
0.722138 + 0.691749i \(0.243160\pi\)
\(878\) 25697.6 0.987760
\(879\) 0 0
\(880\) 2578.19 0.0987622
\(881\) −22133.8 −0.846434 −0.423217 0.906028i \(-0.639099\pi\)
−0.423217 + 0.906028i \(0.639099\pi\)
\(882\) 0 0
\(883\) 20678.1 0.788080 0.394040 0.919093i \(-0.371077\pi\)
0.394040 + 0.919093i \(0.371077\pi\)
\(884\) 34515.0 1.31320
\(885\) 0 0
\(886\) −24581.9 −0.932104
\(887\) −37469.8 −1.41839 −0.709196 0.705012i \(-0.750942\pi\)
−0.709196 + 0.705012i \(0.750942\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −28171.0 −1.06100
\(891\) 0 0
\(892\) 23312.5 0.875068
\(893\) −40085.3 −1.50213
\(894\) 0 0
\(895\) −35098.9 −1.31087
\(896\) 0 0
\(897\) 0 0
\(898\) 285.679 0.0106161
\(899\) −19157.4 −0.710718
\(900\) 0 0
\(901\) 47353.3 1.75091
\(902\) 13824.9 0.510330
\(903\) 0 0
\(904\) 44938.2 1.65334
\(905\) 2713.61 0.0996725
\(906\) 0 0
\(907\) 20503.9 0.750630 0.375315 0.926897i \(-0.377535\pi\)
0.375315 + 0.926897i \(0.377535\pi\)
\(908\) −3399.45 −0.124245
\(909\) 0 0
\(910\) 0 0
\(911\) −3533.81 −0.128519 −0.0642593 0.997933i \(-0.520468\pi\)
−0.0642593 + 0.997933i \(0.520468\pi\)
\(912\) 0 0
\(913\) −1015.87 −0.0368242
\(914\) −20550.7 −0.743717
\(915\) 0 0
\(916\) 5248.96 0.189335
\(917\) 0 0
\(918\) 0 0
\(919\) 29803.8 1.06979 0.534895 0.844919i \(-0.320351\pi\)
0.534895 + 0.844919i \(0.320351\pi\)
\(920\) 16245.7 0.582178
\(921\) 0 0
\(922\) 22489.8 0.803321
\(923\) −14333.7 −0.511160
\(924\) 0 0
\(925\) −9645.90 −0.342870
\(926\) 14470.4 0.513528
\(927\) 0 0
\(928\) 23600.0 0.834815
\(929\) 14446.4 0.510194 0.255097 0.966915i \(-0.417893\pi\)
0.255097 + 0.966915i \(0.417893\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −8952.20 −0.314634
\(933\) 0 0
\(934\) −20951.5 −0.733996
\(935\) −43821.3 −1.53274
\(936\) 0 0
\(937\) −29384.8 −1.02450 −0.512251 0.858836i \(-0.671188\pi\)
−0.512251 + 0.858836i \(0.671188\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −18768.5 −0.651235
\(941\) 4659.97 0.161435 0.0807176 0.996737i \(-0.474279\pi\)
0.0807176 + 0.996737i \(0.474279\pi\)
\(942\) 0 0
\(943\) −17612.3 −0.608204
\(944\) 1933.80 0.0666735
\(945\) 0 0
\(946\) 13759.2 0.472887
\(947\) −54321.9 −1.86402 −0.932008 0.362437i \(-0.881945\pi\)
−0.932008 + 0.362437i \(0.881945\pi\)
\(948\) 0 0
\(949\) −7740.69 −0.264777
\(950\) −6502.37 −0.222068
\(951\) 0 0
\(952\) 0 0
\(953\) 23606.5 0.802404 0.401202 0.915990i \(-0.368593\pi\)
0.401202 + 0.915990i \(0.368593\pi\)
\(954\) 0 0
\(955\) −2765.77 −0.0937153
\(956\) −14437.7 −0.488439
\(957\) 0 0
\(958\) 16245.5 0.547878
\(959\) 0 0
\(960\) 0 0
\(961\) −7035.67 −0.236168
\(962\) −29536.3 −0.989905
\(963\) 0 0
\(964\) −11425.2 −0.381722
\(965\) −4359.36 −0.145422
\(966\) 0 0
\(967\) 7021.95 0.233517 0.116758 0.993160i \(-0.462750\pi\)
0.116758 + 0.993160i \(0.462750\pi\)
\(968\) 10658.0 0.353885
\(969\) 0 0
\(970\) −16278.2 −0.538825
\(971\) −1483.48 −0.0490290 −0.0245145 0.999699i \(-0.507804\pi\)
−0.0245145 + 0.999699i \(0.507804\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −27278.1 −0.897377
\(975\) 0 0
\(976\) 1720.49 0.0564259
\(977\) −26152.1 −0.856375 −0.428187 0.903690i \(-0.640848\pi\)
−0.428187 + 0.903690i \(0.640848\pi\)
\(978\) 0 0
\(979\) −40449.3 −1.32049
\(980\) 0 0
\(981\) 0 0
\(982\) 4865.19 0.158100
\(983\) 39185.3 1.27143 0.635716 0.771923i \(-0.280705\pi\)
0.635716 + 0.771923i \(0.280705\pi\)
\(984\) 0 0
\(985\) −66196.0 −2.14130
\(986\) −25293.2 −0.816936
\(987\) 0 0
\(988\) 39904.6 1.28496
\(989\) −17528.7 −0.563580
\(990\) 0 0
\(991\) −23009.7 −0.737564 −0.368782 0.929516i \(-0.620225\pi\)
−0.368782 + 0.929516i \(0.620225\pi\)
\(992\) −28032.3 −0.897204
\(993\) 0 0
\(994\) 0 0
\(995\) −7207.38 −0.229638
\(996\) 0 0
\(997\) 11154.2 0.354320 0.177160 0.984182i \(-0.443309\pi\)
0.177160 + 0.984182i \(0.443309\pi\)
\(998\) 13331.4 0.422843
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bh.1.5 7
3.2 odd 2 1323.4.a.bk.1.3 7
7.3 odd 6 189.4.e.g.163.3 yes 14
7.5 odd 6 189.4.e.g.109.3 yes 14
7.6 odd 2 1323.4.a.bi.1.5 7
21.5 even 6 189.4.e.f.109.5 14
21.17 even 6 189.4.e.f.163.5 yes 14
21.20 even 2 1323.4.a.bj.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.5 14 21.5 even 6
189.4.e.f.163.5 yes 14 21.17 even 6
189.4.e.g.109.3 yes 14 7.5 odd 6
189.4.e.g.163.3 yes 14 7.3 odd 6
1323.4.a.bh.1.5 7 1.1 even 1 trivial
1323.4.a.bi.1.5 7 7.6 odd 2
1323.4.a.bj.1.3 7 21.20 even 2
1323.4.a.bk.1.3 7 3.2 odd 2