Properties

Label 1323.4.a.bh.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.76215\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.76215 q^{2} +14.6781 q^{4} +18.7013 q^{5} -31.8020 q^{8} +O(q^{10})\) \(q-4.76215 q^{2} +14.6781 q^{4} +18.7013 q^{5} -31.8020 q^{8} -89.0586 q^{10} -59.4578 q^{11} +12.2112 q^{13} +34.0213 q^{16} +11.5215 q^{17} -49.8054 q^{19} +274.500 q^{20} +283.147 q^{22} +125.792 q^{23} +224.740 q^{25} -58.1516 q^{26} -228.511 q^{29} +189.567 q^{31} +92.4014 q^{32} -54.8669 q^{34} +33.1458 q^{37} +237.181 q^{38} -594.740 q^{40} -524.149 q^{41} +234.349 q^{43} -872.727 q^{44} -599.039 q^{46} -273.742 q^{47} -1070.25 q^{50} +179.237 q^{52} -255.936 q^{53} -1111.94 q^{55} +1088.20 q^{58} +168.833 q^{59} +195.141 q^{61} -902.749 q^{62} -712.200 q^{64} +228.366 q^{65} +515.148 q^{67} +169.113 q^{68} -319.048 q^{71} -635.518 q^{73} -157.845 q^{74} -731.048 q^{76} -852.002 q^{79} +636.244 q^{80} +2496.08 q^{82} -264.419 q^{83} +215.467 q^{85} -1116.01 q^{86} +1890.88 q^{88} -914.197 q^{89} +1846.38 q^{92} +1303.60 q^{94} -931.428 q^{95} +455.582 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 31 q^{4} - q^{5} - 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - q^{2} + 31 q^{4} - q^{5} - 84 q^{8} - 12 q^{10} - 98 q^{11} + 124 q^{13} + 139 q^{16} + 30 q^{17} - 182 q^{19} - 110 q^{20} + 276 q^{22} + 6 q^{23} + 388 q^{25} - 245 q^{26} - 323 q^{29} - 26 q^{31} - 398 q^{32} - 114 q^{34} - 112 q^{37} + 1015 q^{38} + 147 q^{40} - 524 q^{41} + 8 q^{43} - 937 q^{44} - 339 q^{46} + 288 q^{47} - 2576 q^{50} + 1075 q^{52} - 1353 q^{53} - 156 q^{55} - 81 q^{58} + 165 q^{59} - 56 q^{61} - 1215 q^{62} - 1706 q^{64} - 1694 q^{65} - 988 q^{67} + 2625 q^{68} - 792 q^{71} - 1487 q^{73} - 2736 q^{74} - 1952 q^{76} - 1273 q^{79} - 2501 q^{80} + 2049 q^{82} - 1170 q^{83} + 216 q^{85} + 160 q^{86} + 9 q^{88} + 1058 q^{89} - 3834 q^{92} - 1653 q^{94} - 3260 q^{95} + 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.76215 −1.68367 −0.841837 0.539732i \(-0.818526\pi\)
−0.841837 + 0.539732i \(0.818526\pi\)
\(3\) 0 0
\(4\) 14.6781 1.83476
\(5\) 18.7013 1.67270 0.836350 0.548196i \(-0.184685\pi\)
0.836350 + 0.548196i \(0.184685\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −31.8020 −1.40546
\(9\) 0 0
\(10\) −89.0586 −2.81628
\(11\) −59.4578 −1.62975 −0.814873 0.579639i \(-0.803193\pi\)
−0.814873 + 0.579639i \(0.803193\pi\)
\(12\) 0 0
\(13\) 12.2112 0.260521 0.130261 0.991480i \(-0.458419\pi\)
0.130261 + 0.991480i \(0.458419\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 34.0213 0.531583
\(17\) 11.5215 0.164374 0.0821872 0.996617i \(-0.473809\pi\)
0.0821872 + 0.996617i \(0.473809\pi\)
\(18\) 0 0
\(19\) −49.8054 −0.601376 −0.300688 0.953723i \(-0.597216\pi\)
−0.300688 + 0.953723i \(0.597216\pi\)
\(20\) 274.500 3.06900
\(21\) 0 0
\(22\) 283.147 2.74396
\(23\) 125.792 1.14041 0.570204 0.821503i \(-0.306864\pi\)
0.570204 + 0.821503i \(0.306864\pi\)
\(24\) 0 0
\(25\) 224.740 1.79792
\(26\) −58.1516 −0.438633
\(27\) 0 0
\(28\) 0 0
\(29\) −228.511 −1.46322 −0.731610 0.681723i \(-0.761231\pi\)
−0.731610 + 0.681723i \(0.761231\pi\)
\(30\) 0 0
\(31\) 189.567 1.09830 0.549150 0.835724i \(-0.314951\pi\)
0.549150 + 0.835724i \(0.314951\pi\)
\(32\) 92.4014 0.510451
\(33\) 0 0
\(34\) −54.8669 −0.276753
\(35\) 0 0
\(36\) 0 0
\(37\) 33.1458 0.147274 0.0736370 0.997285i \(-0.476539\pi\)
0.0736370 + 0.997285i \(0.476539\pi\)
\(38\) 237.181 1.01252
\(39\) 0 0
\(40\) −594.740 −2.35092
\(41\) −524.149 −1.99654 −0.998272 0.0587584i \(-0.981286\pi\)
−0.998272 + 0.0587584i \(0.981286\pi\)
\(42\) 0 0
\(43\) 234.349 0.831115 0.415558 0.909567i \(-0.363586\pi\)
0.415558 + 0.909567i \(0.363586\pi\)
\(44\) −872.727 −2.99019
\(45\) 0 0
\(46\) −599.039 −1.92007
\(47\) −273.742 −0.849560 −0.424780 0.905297i \(-0.639649\pi\)
−0.424780 + 0.905297i \(0.639649\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1070.25 −3.02712
\(51\) 0 0
\(52\) 179.237 0.477994
\(53\) −255.936 −0.663312 −0.331656 0.943400i \(-0.607607\pi\)
−0.331656 + 0.943400i \(0.607607\pi\)
\(54\) 0 0
\(55\) −1111.94 −2.72608
\(56\) 0 0
\(57\) 0 0
\(58\) 1088.20 2.46359
\(59\) 168.833 0.372545 0.186272 0.982498i \(-0.440359\pi\)
0.186272 + 0.982498i \(0.440359\pi\)
\(60\) 0 0
\(61\) 195.141 0.409595 0.204797 0.978804i \(-0.434346\pi\)
0.204797 + 0.978804i \(0.434346\pi\)
\(62\) −902.749 −1.84918
\(63\) 0 0
\(64\) −712.200 −1.39102
\(65\) 228.366 0.435774
\(66\) 0 0
\(67\) 515.148 0.939334 0.469667 0.882844i \(-0.344374\pi\)
0.469667 + 0.882844i \(0.344374\pi\)
\(68\) 169.113 0.301587
\(69\) 0 0
\(70\) 0 0
\(71\) −319.048 −0.533295 −0.266648 0.963794i \(-0.585916\pi\)
−0.266648 + 0.963794i \(0.585916\pi\)
\(72\) 0 0
\(73\) −635.518 −1.01893 −0.509464 0.860492i \(-0.670156\pi\)
−0.509464 + 0.860492i \(0.670156\pi\)
\(74\) −157.845 −0.247961
\(75\) 0 0
\(76\) −731.048 −1.10338
\(77\) 0 0
\(78\) 0 0
\(79\) −852.002 −1.21339 −0.606694 0.794935i \(-0.707505\pi\)
−0.606694 + 0.794935i \(0.707505\pi\)
\(80\) 636.244 0.889178
\(81\) 0 0
\(82\) 2496.08 3.36153
\(83\) −264.419 −0.349684 −0.174842 0.984597i \(-0.555941\pi\)
−0.174842 + 0.984597i \(0.555941\pi\)
\(84\) 0 0
\(85\) 215.467 0.274949
\(86\) −1116.01 −1.39933
\(87\) 0 0
\(88\) 1890.88 2.29055
\(89\) −914.197 −1.08882 −0.544409 0.838820i \(-0.683246\pi\)
−0.544409 + 0.838820i \(0.683246\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1846.38 2.09237
\(93\) 0 0
\(94\) 1303.60 1.43038
\(95\) −931.428 −1.00592
\(96\) 0 0
\(97\) 455.582 0.476880 0.238440 0.971157i \(-0.423364\pi\)
0.238440 + 0.971157i \(0.423364\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 3298.76 3.29876
\(101\) −900.185 −0.886849 −0.443424 0.896312i \(-0.646237\pi\)
−0.443424 + 0.896312i \(0.646237\pi\)
\(102\) 0 0
\(103\) 114.380 0.109419 0.0547095 0.998502i \(-0.482577\pi\)
0.0547095 + 0.998502i \(0.482577\pi\)
\(104\) −388.341 −0.366153
\(105\) 0 0
\(106\) 1218.81 1.11680
\(107\) 904.066 0.816816 0.408408 0.912799i \(-0.366084\pi\)
0.408408 + 0.912799i \(0.366084\pi\)
\(108\) 0 0
\(109\) 1446.61 1.27119 0.635596 0.772022i \(-0.280754\pi\)
0.635596 + 0.772022i \(0.280754\pi\)
\(110\) 5295.23 4.58982
\(111\) 0 0
\(112\) 0 0
\(113\) −10.2655 −0.00854596 −0.00427298 0.999991i \(-0.501360\pi\)
−0.00427298 + 0.999991i \(0.501360\pi\)
\(114\) 0 0
\(115\) 2352.47 1.90756
\(116\) −3354.10 −2.68466
\(117\) 0 0
\(118\) −804.006 −0.627244
\(119\) 0 0
\(120\) 0 0
\(121\) 2204.23 1.65607
\(122\) −929.292 −0.689624
\(123\) 0 0
\(124\) 2782.49 2.01512
\(125\) 1865.28 1.33468
\(126\) 0 0
\(127\) −1590.09 −1.11101 −0.555503 0.831514i \(-0.687474\pi\)
−0.555503 + 0.831514i \(0.687474\pi\)
\(128\) 2652.39 1.83157
\(129\) 0 0
\(130\) −1087.51 −0.733701
\(131\) 224.882 0.149985 0.0749924 0.997184i \(-0.476107\pi\)
0.0749924 + 0.997184i \(0.476107\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2453.21 −1.58153
\(135\) 0 0
\(136\) −366.406 −0.231022
\(137\) −2251.72 −1.40421 −0.702106 0.712072i \(-0.747757\pi\)
−0.702106 + 0.712072i \(0.747757\pi\)
\(138\) 0 0
\(139\) −3015.34 −1.83998 −0.919992 0.391937i \(-0.871805\pi\)
−0.919992 + 0.391937i \(0.871805\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1519.35 0.897896
\(143\) −726.051 −0.424584
\(144\) 0 0
\(145\) −4273.46 −2.44753
\(146\) 3026.43 1.71554
\(147\) 0 0
\(148\) 486.517 0.270212
\(149\) 387.308 0.212950 0.106475 0.994315i \(-0.466044\pi\)
0.106475 + 0.994315i \(0.466044\pi\)
\(150\) 0 0
\(151\) 1643.03 0.885480 0.442740 0.896650i \(-0.354006\pi\)
0.442740 + 0.896650i \(0.354006\pi\)
\(152\) 1583.91 0.845212
\(153\) 0 0
\(154\) 0 0
\(155\) 3545.17 1.83713
\(156\) 0 0
\(157\) 693.668 0.352616 0.176308 0.984335i \(-0.443585\pi\)
0.176308 + 0.984335i \(0.443585\pi\)
\(158\) 4057.36 2.04295
\(159\) 0 0
\(160\) 1728.03 0.853830
\(161\) 0 0
\(162\) 0 0
\(163\) 1745.54 0.838781 0.419390 0.907806i \(-0.362244\pi\)
0.419390 + 0.907806i \(0.362244\pi\)
\(164\) −7693.50 −3.66318
\(165\) 0 0
\(166\) 1259.20 0.588754
\(167\) −3320.55 −1.53863 −0.769316 0.638868i \(-0.779403\pi\)
−0.769316 + 0.638868i \(0.779403\pi\)
\(168\) 0 0
\(169\) −2047.89 −0.932129
\(170\) −1026.09 −0.462924
\(171\) 0 0
\(172\) 3439.80 1.52490
\(173\) 54.1150 0.0237820 0.0118910 0.999929i \(-0.496215\pi\)
0.0118910 + 0.999929i \(0.496215\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2022.83 −0.866345
\(177\) 0 0
\(178\) 4353.54 1.83321
\(179\) 3720.54 1.55355 0.776776 0.629776i \(-0.216854\pi\)
0.776776 + 0.629776i \(0.216854\pi\)
\(180\) 0 0
\(181\) −1280.85 −0.525992 −0.262996 0.964797i \(-0.584711\pi\)
−0.262996 + 0.964797i \(0.584711\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4000.43 −1.60280
\(185\) 619.871 0.246345
\(186\) 0 0
\(187\) −685.041 −0.267889
\(188\) −4018.00 −1.55874
\(189\) 0 0
\(190\) 4435.60 1.69364
\(191\) −940.010 −0.356108 −0.178054 0.984021i \(-0.556980\pi\)
−0.178054 + 0.984021i \(0.556980\pi\)
\(192\) 0 0
\(193\) −1412.92 −0.526965 −0.263483 0.964664i \(-0.584871\pi\)
−0.263483 + 0.964664i \(0.584871\pi\)
\(194\) −2169.55 −0.802910
\(195\) 0 0
\(196\) 0 0
\(197\) −3007.74 −1.08778 −0.543890 0.839156i \(-0.683049\pi\)
−0.543890 + 0.839156i \(0.683049\pi\)
\(198\) 0 0
\(199\) 22.0447 0.00785280 0.00392640 0.999992i \(-0.498750\pi\)
0.00392640 + 0.999992i \(0.498750\pi\)
\(200\) −7147.19 −2.52691
\(201\) 0 0
\(202\) 4286.82 1.49316
\(203\) 0 0
\(204\) 0 0
\(205\) −9802.29 −3.33962
\(206\) −544.693 −0.184226
\(207\) 0 0
\(208\) 415.441 0.138489
\(209\) 2961.32 0.980090
\(210\) 0 0
\(211\) −4881.84 −1.59279 −0.796397 0.604774i \(-0.793264\pi\)
−0.796397 + 0.604774i \(0.793264\pi\)
\(212\) −3756.65 −1.21702
\(213\) 0 0
\(214\) −4305.30 −1.37525
\(215\) 4382.65 1.39021
\(216\) 0 0
\(217\) 0 0
\(218\) −6888.96 −2.14027
\(219\) 0 0
\(220\) −16321.2 −5.00169
\(221\) 140.691 0.0428230
\(222\) 0 0
\(223\) −144.053 −0.0432579 −0.0216290 0.999766i \(-0.506885\pi\)
−0.0216290 + 0.999766i \(0.506885\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 48.8857 0.0143886
\(227\) 4922.14 1.43918 0.719590 0.694400i \(-0.244330\pi\)
0.719590 + 0.694400i \(0.244330\pi\)
\(228\) 0 0
\(229\) 15.7889 0.00455616 0.00227808 0.999997i \(-0.499275\pi\)
0.00227808 + 0.999997i \(0.499275\pi\)
\(230\) −11202.8 −3.21171
\(231\) 0 0
\(232\) 7267.10 2.05650
\(233\) 727.505 0.204551 0.102276 0.994756i \(-0.467388\pi\)
0.102276 + 0.994756i \(0.467388\pi\)
\(234\) 0 0
\(235\) −5119.34 −1.42106
\(236\) 2478.14 0.683530
\(237\) 0 0
\(238\) 0 0
\(239\) −63.6850 −0.0172361 −0.00861807 0.999963i \(-0.502743\pi\)
−0.00861807 + 0.999963i \(0.502743\pi\)
\(240\) 0 0
\(241\) −3349.78 −0.895345 −0.447672 0.894198i \(-0.647747\pi\)
−0.447672 + 0.894198i \(0.647747\pi\)
\(242\) −10496.9 −2.78829
\(243\) 0 0
\(244\) 2864.30 0.751508
\(245\) 0 0
\(246\) 0 0
\(247\) −608.184 −0.156671
\(248\) −6028.62 −1.54362
\(249\) 0 0
\(250\) −8882.74 −2.24717
\(251\) 4922.71 1.23792 0.618961 0.785422i \(-0.287554\pi\)
0.618961 + 0.785422i \(0.287554\pi\)
\(252\) 0 0
\(253\) −7479.30 −1.85857
\(254\) 7572.26 1.87057
\(255\) 0 0
\(256\) −6933.49 −1.69275
\(257\) −2873.40 −0.697422 −0.348711 0.937230i \(-0.613381\pi\)
−0.348711 + 0.937230i \(0.613381\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3351.97 0.799540
\(261\) 0 0
\(262\) −1070.92 −0.252526
\(263\) −4367.70 −1.02405 −0.512023 0.858972i \(-0.671104\pi\)
−0.512023 + 0.858972i \(0.671104\pi\)
\(264\) 0 0
\(265\) −4786.35 −1.10952
\(266\) 0 0
\(267\) 0 0
\(268\) 7561.39 1.72345
\(269\) 5354.90 1.21373 0.606866 0.794804i \(-0.292426\pi\)
0.606866 + 0.794804i \(0.292426\pi\)
\(270\) 0 0
\(271\) 3042.25 0.681931 0.340966 0.940076i \(-0.389246\pi\)
0.340966 + 0.940076i \(0.389246\pi\)
\(272\) 391.975 0.0873786
\(273\) 0 0
\(274\) 10723.0 2.36424
\(275\) −13362.6 −2.93016
\(276\) 0 0
\(277\) −8580.03 −1.86110 −0.930549 0.366167i \(-0.880670\pi\)
−0.930549 + 0.366167i \(0.880670\pi\)
\(278\) 14359.5 3.09793
\(279\) 0 0
\(280\) 0 0
\(281\) 953.058 0.202330 0.101165 0.994870i \(-0.467743\pi\)
0.101165 + 0.994870i \(0.467743\pi\)
\(282\) 0 0
\(283\) 7531.60 1.58200 0.791002 0.611813i \(-0.209560\pi\)
0.791002 + 0.611813i \(0.209560\pi\)
\(284\) −4683.00 −0.978469
\(285\) 0 0
\(286\) 3457.57 0.714861
\(287\) 0 0
\(288\) 0 0
\(289\) −4780.26 −0.972981
\(290\) 20350.9 4.12084
\(291\) 0 0
\(292\) −9328.19 −1.86949
\(293\) −1325.09 −0.264207 −0.132104 0.991236i \(-0.542173\pi\)
−0.132104 + 0.991236i \(0.542173\pi\)
\(294\) 0 0
\(295\) 3157.40 0.623155
\(296\) −1054.10 −0.206988
\(297\) 0 0
\(298\) −1844.42 −0.358538
\(299\) 1536.07 0.297100
\(300\) 0 0
\(301\) 0 0
\(302\) −7824.33 −1.49086
\(303\) 0 0
\(304\) −1694.45 −0.319681
\(305\) 3649.41 0.685129
\(306\) 0 0
\(307\) 8871.73 1.64930 0.824652 0.565640i \(-0.191371\pi\)
0.824652 + 0.565640i \(0.191371\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −16882.6 −3.09312
\(311\) −4531.09 −0.826156 −0.413078 0.910696i \(-0.635546\pi\)
−0.413078 + 0.910696i \(0.635546\pi\)
\(312\) 0 0
\(313\) −4316.61 −0.779518 −0.389759 0.920917i \(-0.627442\pi\)
−0.389759 + 0.920917i \(0.627442\pi\)
\(314\) −3303.35 −0.593691
\(315\) 0 0
\(316\) −12505.7 −2.22628
\(317\) −6697.55 −1.18666 −0.593331 0.804959i \(-0.702187\pi\)
−0.593331 + 0.804959i \(0.702187\pi\)
\(318\) 0 0
\(319\) 13586.8 2.38468
\(320\) −13319.1 −2.32675
\(321\) 0 0
\(322\) 0 0
\(323\) −573.831 −0.0988508
\(324\) 0 0
\(325\) 2744.35 0.468397
\(326\) −8312.53 −1.41223
\(327\) 0 0
\(328\) 16669.0 2.80607
\(329\) 0 0
\(330\) 0 0
\(331\) −8065.66 −1.33936 −0.669681 0.742649i \(-0.733569\pi\)
−0.669681 + 0.742649i \(0.733569\pi\)
\(332\) −3881.16 −0.641586
\(333\) 0 0
\(334\) 15812.9 2.59056
\(335\) 9633.97 1.57122
\(336\) 0 0
\(337\) −480.216 −0.0776232 −0.0388116 0.999247i \(-0.512357\pi\)
−0.0388116 + 0.999247i \(0.512357\pi\)
\(338\) 9752.34 1.56940
\(339\) 0 0
\(340\) 3162.64 0.504465
\(341\) −11271.3 −1.78995
\(342\) 0 0
\(343\) 0 0
\(344\) −7452.78 −1.16810
\(345\) 0 0
\(346\) −257.704 −0.0400412
\(347\) 2237.12 0.346094 0.173047 0.984914i \(-0.444639\pi\)
0.173047 + 0.984914i \(0.444639\pi\)
\(348\) 0 0
\(349\) −2602.84 −0.399217 −0.199609 0.979876i \(-0.563967\pi\)
−0.199609 + 0.979876i \(0.563967\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5493.99 −0.831905
\(353\) −6938.47 −1.04617 −0.523084 0.852281i \(-0.675219\pi\)
−0.523084 + 0.852281i \(0.675219\pi\)
\(354\) 0 0
\(355\) −5966.62 −0.892043
\(356\) −13418.7 −1.99772
\(357\) 0 0
\(358\) −17717.8 −2.61568
\(359\) −2153.11 −0.316538 −0.158269 0.987396i \(-0.550591\pi\)
−0.158269 + 0.987396i \(0.550591\pi\)
\(360\) 0 0
\(361\) −4378.42 −0.638347
\(362\) 6099.59 0.885600
\(363\) 0 0
\(364\) 0 0
\(365\) −11885.0 −1.70436
\(366\) 0 0
\(367\) −1848.98 −0.262986 −0.131493 0.991317i \(-0.541977\pi\)
−0.131493 + 0.991317i \(0.541977\pi\)
\(368\) 4279.60 0.606221
\(369\) 0 0
\(370\) −2951.92 −0.414765
\(371\) 0 0
\(372\) 0 0
\(373\) −44.2183 −0.00613816 −0.00306908 0.999995i \(-0.500977\pi\)
−0.00306908 + 0.999995i \(0.500977\pi\)
\(374\) 3262.27 0.451037
\(375\) 0 0
\(376\) 8705.53 1.19403
\(377\) −2790.39 −0.381200
\(378\) 0 0
\(379\) 3338.62 0.452489 0.226245 0.974071i \(-0.427355\pi\)
0.226245 + 0.974071i \(0.427355\pi\)
\(380\) −13671.6 −1.84562
\(381\) 0 0
\(382\) 4476.47 0.599571
\(383\) 8000.54 1.06739 0.533693 0.845678i \(-0.320804\pi\)
0.533693 + 0.845678i \(0.320804\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6728.54 0.887238
\(387\) 0 0
\(388\) 6687.07 0.874960
\(389\) 1125.83 0.146740 0.0733701 0.997305i \(-0.476625\pi\)
0.0733701 + 0.997305i \(0.476625\pi\)
\(390\) 0 0
\(391\) 1449.30 0.187454
\(392\) 0 0
\(393\) 0 0
\(394\) 14323.3 1.83147
\(395\) −15933.6 −2.02963
\(396\) 0 0
\(397\) −182.743 −0.0231023 −0.0115512 0.999933i \(-0.503677\pi\)
−0.0115512 + 0.999933i \(0.503677\pi\)
\(398\) −104.980 −0.0132216
\(399\) 0 0
\(400\) 7645.96 0.955745
\(401\) 9397.81 1.17033 0.585167 0.810913i \(-0.301029\pi\)
0.585167 + 0.810913i \(0.301029\pi\)
\(402\) 0 0
\(403\) 2314.85 0.286131
\(404\) −13213.0 −1.62715
\(405\) 0 0
\(406\) 0 0
\(407\) −1970.78 −0.240019
\(408\) 0 0
\(409\) −2608.55 −0.315366 −0.157683 0.987490i \(-0.550402\pi\)
−0.157683 + 0.987490i \(0.550402\pi\)
\(410\) 46680.0 5.62283
\(411\) 0 0
\(412\) 1678.87 0.200758
\(413\) 0 0
\(414\) 0 0
\(415\) −4944.99 −0.584916
\(416\) 1128.33 0.132983
\(417\) 0 0
\(418\) −14102.3 −1.65015
\(419\) −9533.73 −1.11158 −0.555792 0.831322i \(-0.687585\pi\)
−0.555792 + 0.831322i \(0.687585\pi\)
\(420\) 0 0
\(421\) −11430.2 −1.32322 −0.661611 0.749848i \(-0.730127\pi\)
−0.661611 + 0.749848i \(0.730127\pi\)
\(422\) 23248.1 2.68175
\(423\) 0 0
\(424\) 8139.28 0.932260
\(425\) 2589.34 0.295532
\(426\) 0 0
\(427\) 0 0
\(428\) 13269.9 1.49866
\(429\) 0 0
\(430\) −20870.8 −2.34065
\(431\) −6992.79 −0.781510 −0.390755 0.920495i \(-0.627786\pi\)
−0.390755 + 0.920495i \(0.627786\pi\)
\(432\) 0 0
\(433\) 4730.76 0.525048 0.262524 0.964925i \(-0.415445\pi\)
0.262524 + 0.964925i \(0.415445\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 21233.4 2.33233
\(437\) −6265.10 −0.685814
\(438\) 0 0
\(439\) 8609.29 0.935988 0.467994 0.883732i \(-0.344977\pi\)
0.467994 + 0.883732i \(0.344977\pi\)
\(440\) 35362.0 3.83140
\(441\) 0 0
\(442\) −669.991 −0.0721000
\(443\) −5271.91 −0.565408 −0.282704 0.959207i \(-0.591231\pi\)
−0.282704 + 0.959207i \(0.591231\pi\)
\(444\) 0 0
\(445\) −17096.7 −1.82126
\(446\) 686.003 0.0728323
\(447\) 0 0
\(448\) 0 0
\(449\) 13513.8 1.42039 0.710197 0.704003i \(-0.248606\pi\)
0.710197 + 0.704003i \(0.248606\pi\)
\(450\) 0 0
\(451\) 31164.8 3.25386
\(452\) −150.677 −0.0156798
\(453\) 0 0
\(454\) −23440.0 −2.42311
\(455\) 0 0
\(456\) 0 0
\(457\) 7288.39 0.746031 0.373016 0.927825i \(-0.378324\pi\)
0.373016 + 0.927825i \(0.378324\pi\)
\(458\) −75.1891 −0.00767108
\(459\) 0 0
\(460\) 34529.8 3.49991
\(461\) 5654.21 0.571243 0.285621 0.958343i \(-0.407800\pi\)
0.285621 + 0.958343i \(0.407800\pi\)
\(462\) 0 0
\(463\) 4102.17 0.411758 0.205879 0.978577i \(-0.433995\pi\)
0.205879 + 0.978577i \(0.433995\pi\)
\(464\) −7774.24 −0.777823
\(465\) 0 0
\(466\) −3464.49 −0.344397
\(467\) −5104.11 −0.505761 −0.252880 0.967498i \(-0.581378\pi\)
−0.252880 + 0.967498i \(0.581378\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 24379.1 2.39260
\(471\) 0 0
\(472\) −5369.22 −0.523598
\(473\) −13933.9 −1.35451
\(474\) 0 0
\(475\) −11193.3 −1.08123
\(476\) 0 0
\(477\) 0 0
\(478\) 303.277 0.0290200
\(479\) −4200.44 −0.400674 −0.200337 0.979727i \(-0.564204\pi\)
−0.200337 + 0.979727i \(0.564204\pi\)
\(480\) 0 0
\(481\) 404.750 0.0383680
\(482\) 15952.1 1.50747
\(483\) 0 0
\(484\) 32353.9 3.03850
\(485\) 8520.00 0.797677
\(486\) 0 0
\(487\) 4300.99 0.400198 0.200099 0.979776i \(-0.435874\pi\)
0.200099 + 0.979776i \(0.435874\pi\)
\(488\) −6205.88 −0.575670
\(489\) 0 0
\(490\) 0 0
\(491\) −1774.44 −0.163095 −0.0815474 0.996669i \(-0.525986\pi\)
−0.0815474 + 0.996669i \(0.525986\pi\)
\(492\) 0 0
\(493\) −2632.78 −0.240516
\(494\) 2896.26 0.263783
\(495\) 0 0
\(496\) 6449.33 0.583838
\(497\) 0 0
\(498\) 0 0
\(499\) −6854.78 −0.614954 −0.307477 0.951556i \(-0.599485\pi\)
−0.307477 + 0.951556i \(0.599485\pi\)
\(500\) 27378.7 2.44883
\(501\) 0 0
\(502\) −23442.7 −2.08426
\(503\) −6584.76 −0.583698 −0.291849 0.956464i \(-0.594270\pi\)
−0.291849 + 0.956464i \(0.594270\pi\)
\(504\) 0 0
\(505\) −16834.7 −1.48343
\(506\) 35617.5 3.12923
\(507\) 0 0
\(508\) −23339.5 −2.03843
\(509\) 4220.29 0.367507 0.183754 0.982972i \(-0.441175\pi\)
0.183754 + 0.982972i \(0.441175\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11799.2 1.01847
\(513\) 0 0
\(514\) 13683.5 1.17423
\(515\) 2139.05 0.183025
\(516\) 0 0
\(517\) 16276.1 1.38457
\(518\) 0 0
\(519\) 0 0
\(520\) −7262.49 −0.612464
\(521\) −5111.00 −0.429783 −0.214891 0.976638i \(-0.568940\pi\)
−0.214891 + 0.976638i \(0.568940\pi\)
\(522\) 0 0
\(523\) −14147.7 −1.18286 −0.591429 0.806357i \(-0.701436\pi\)
−0.591429 + 0.806357i \(0.701436\pi\)
\(524\) 3300.83 0.275186
\(525\) 0 0
\(526\) 20799.7 1.72416
\(527\) 2184.09 0.180532
\(528\) 0 0
\(529\) 3656.53 0.300528
\(530\) 22793.3 1.86807
\(531\) 0 0
\(532\) 0 0
\(533\) −6400.49 −0.520142
\(534\) 0 0
\(535\) 16907.2 1.36629
\(536\) −16382.7 −1.32020
\(537\) 0 0
\(538\) −25500.8 −2.04353
\(539\) 0 0
\(540\) 0 0
\(541\) 21627.4 1.71874 0.859368 0.511357i \(-0.170857\pi\)
0.859368 + 0.511357i \(0.170857\pi\)
\(542\) −14487.6 −1.14815
\(543\) 0 0
\(544\) 1064.60 0.0839050
\(545\) 27053.5 2.12632
\(546\) 0 0
\(547\) −11453.9 −0.895305 −0.447652 0.894208i \(-0.647740\pi\)
−0.447652 + 0.894208i \(0.647740\pi\)
\(548\) −33050.9 −2.57639
\(549\) 0 0
\(550\) 63634.6 4.93343
\(551\) 11381.1 0.879946
\(552\) 0 0
\(553\) 0 0
\(554\) 40859.4 3.13348
\(555\) 0 0
\(556\) −44259.4 −3.37593
\(557\) −1041.42 −0.0792219 −0.0396109 0.999215i \(-0.512612\pi\)
−0.0396109 + 0.999215i \(0.512612\pi\)
\(558\) 0 0
\(559\) 2861.69 0.216523
\(560\) 0 0
\(561\) 0 0
\(562\) −4538.61 −0.340658
\(563\) −19938.9 −1.49259 −0.746293 0.665618i \(-0.768168\pi\)
−0.746293 + 0.665618i \(0.768168\pi\)
\(564\) 0 0
\(565\) −191.978 −0.0142948
\(566\) −35866.6 −2.66358
\(567\) 0 0
\(568\) 10146.4 0.749527
\(569\) 14051.2 1.03525 0.517625 0.855608i \(-0.326816\pi\)
0.517625 + 0.855608i \(0.326816\pi\)
\(570\) 0 0
\(571\) −21502.4 −1.57591 −0.787956 0.615732i \(-0.788861\pi\)
−0.787956 + 0.615732i \(0.788861\pi\)
\(572\) −10657.0 −0.779009
\(573\) 0 0
\(574\) 0 0
\(575\) 28270.4 2.05036
\(576\) 0 0
\(577\) −16860.9 −1.21652 −0.608259 0.793739i \(-0.708132\pi\)
−0.608259 + 0.793739i \(0.708132\pi\)
\(578\) 22764.3 1.63818
\(579\) 0 0
\(580\) −62726.2 −4.49063
\(581\) 0 0
\(582\) 0 0
\(583\) 15217.4 1.08103
\(584\) 20210.8 1.43207
\(585\) 0 0
\(586\) 6310.28 0.444839
\(587\) −3952.45 −0.277913 −0.138957 0.990298i \(-0.544375\pi\)
−0.138957 + 0.990298i \(0.544375\pi\)
\(588\) 0 0
\(589\) −9441.48 −0.660492
\(590\) −15036.0 −1.04919
\(591\) 0 0
\(592\) 1127.66 0.0782883
\(593\) −15161.7 −1.04995 −0.524973 0.851119i \(-0.675924\pi\)
−0.524973 + 0.851119i \(0.675924\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5684.93 0.390711
\(597\) 0 0
\(598\) −7314.98 −0.500220
\(599\) 7411.38 0.505544 0.252772 0.967526i \(-0.418658\pi\)
0.252772 + 0.967526i \(0.418658\pi\)
\(600\) 0 0
\(601\) −10776.0 −0.731388 −0.365694 0.930735i \(-0.619168\pi\)
−0.365694 + 0.930735i \(0.619168\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 24116.5 1.62464
\(605\) 41222.1 2.77011
\(606\) 0 0
\(607\) −11.6383 −0.000778225 0 −0.000389113 1.00000i \(-0.500124\pi\)
−0.000389113 1.00000i \(0.500124\pi\)
\(608\) −4602.09 −0.306973
\(609\) 0 0
\(610\) −17379.0 −1.15353
\(611\) −3342.71 −0.221329
\(612\) 0 0
\(613\) 15621.4 1.02927 0.514635 0.857410i \(-0.327928\pi\)
0.514635 + 0.857410i \(0.327928\pi\)
\(614\) −42248.5 −2.77689
\(615\) 0 0
\(616\) 0 0
\(617\) −26376.5 −1.72103 −0.860517 0.509422i \(-0.829859\pi\)
−0.860517 + 0.509422i \(0.829859\pi\)
\(618\) 0 0
\(619\) 21156.6 1.37375 0.686877 0.726774i \(-0.258981\pi\)
0.686877 + 0.726774i \(0.258981\pi\)
\(620\) 52036.2 3.37069
\(621\) 0 0
\(622\) 21577.7 1.39098
\(623\) 0 0
\(624\) 0 0
\(625\) 6790.67 0.434603
\(626\) 20556.3 1.31245
\(627\) 0 0
\(628\) 10181.7 0.646966
\(629\) 381.888 0.0242081
\(630\) 0 0
\(631\) 18757.1 1.18337 0.591686 0.806169i \(-0.298463\pi\)
0.591686 + 0.806169i \(0.298463\pi\)
\(632\) 27095.4 1.70537
\(633\) 0 0
\(634\) 31894.7 1.99795
\(635\) −29736.9 −1.85838
\(636\) 0 0
\(637\) 0 0
\(638\) −64702.2 −4.01502
\(639\) 0 0
\(640\) 49603.3 3.06366
\(641\) −3996.83 −0.246280 −0.123140 0.992389i \(-0.539296\pi\)
−0.123140 + 0.992389i \(0.539296\pi\)
\(642\) 0 0
\(643\) 22237.8 1.36388 0.681940 0.731408i \(-0.261136\pi\)
0.681940 + 0.731408i \(0.261136\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2732.67 0.166433
\(647\) 22992.2 1.39709 0.698545 0.715566i \(-0.253831\pi\)
0.698545 + 0.715566i \(0.253831\pi\)
\(648\) 0 0
\(649\) −10038.4 −0.607153
\(650\) −13069.0 −0.788628
\(651\) 0 0
\(652\) 25621.2 1.53896
\(653\) −29699.3 −1.77982 −0.889912 0.456132i \(-0.849234\pi\)
−0.889912 + 0.456132i \(0.849234\pi\)
\(654\) 0 0
\(655\) 4205.59 0.250880
\(656\) −17832.2 −1.06133
\(657\) 0 0
\(658\) 0 0
\(659\) −388.786 −0.0229817 −0.0114909 0.999934i \(-0.503658\pi\)
−0.0114909 + 0.999934i \(0.503658\pi\)
\(660\) 0 0
\(661\) −9988.03 −0.587730 −0.293865 0.955847i \(-0.594942\pi\)
−0.293865 + 0.955847i \(0.594942\pi\)
\(662\) 38409.9 2.25505
\(663\) 0 0
\(664\) 8409.06 0.491468
\(665\) 0 0
\(666\) 0 0
\(667\) −28744.7 −1.66867
\(668\) −48739.2 −2.82302
\(669\) 0 0
\(670\) −45878.4 −2.64543
\(671\) −11602.7 −0.667536
\(672\) 0 0
\(673\) 19996.8 1.14535 0.572674 0.819783i \(-0.305906\pi\)
0.572674 + 0.819783i \(0.305906\pi\)
\(674\) 2286.86 0.130692
\(675\) 0 0
\(676\) −30059.0 −1.71023
\(677\) −25123.8 −1.42627 −0.713135 0.701027i \(-0.752725\pi\)
−0.713135 + 0.701027i \(0.752725\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6852.28 −0.386431
\(681\) 0 0
\(682\) 53675.5 3.01370
\(683\) −23089.7 −1.29356 −0.646782 0.762675i \(-0.723886\pi\)
−0.646782 + 0.762675i \(0.723886\pi\)
\(684\) 0 0
\(685\) −42110.1 −2.34883
\(686\) 0 0
\(687\) 0 0
\(688\) 7972.88 0.441807
\(689\) −3125.29 −0.172807
\(690\) 0 0
\(691\) 10755.9 0.592147 0.296074 0.955165i \(-0.404323\pi\)
0.296074 + 0.955165i \(0.404323\pi\)
\(692\) 794.304 0.0436343
\(693\) 0 0
\(694\) −10653.5 −0.582710
\(695\) −56390.9 −3.07774
\(696\) 0 0
\(697\) −6038.96 −0.328181
\(698\) 12395.1 0.672152
\(699\) 0 0
\(700\) 0 0
\(701\) −31197.1 −1.68088 −0.840442 0.541901i \(-0.817705\pi\)
−0.840442 + 0.541901i \(0.817705\pi\)
\(702\) 0 0
\(703\) −1650.84 −0.0885670
\(704\) 42345.9 2.26700
\(705\) 0 0
\(706\) 33042.0 1.76141
\(707\) 0 0
\(708\) 0 0
\(709\) 28895.4 1.53059 0.765296 0.643678i \(-0.222592\pi\)
0.765296 + 0.643678i \(0.222592\pi\)
\(710\) 28413.9 1.50191
\(711\) 0 0
\(712\) 29073.3 1.53029
\(713\) 23846.0 1.25251
\(714\) 0 0
\(715\) −13578.1 −0.710201
\(716\) 54610.3 2.85040
\(717\) 0 0
\(718\) 10253.5 0.532946
\(719\) −190.317 −0.00987151 −0.00493575 0.999988i \(-0.501571\pi\)
−0.00493575 + 0.999988i \(0.501571\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 20850.7 1.07477
\(723\) 0 0
\(724\) −18800.4 −0.965069
\(725\) −51355.6 −2.63076
\(726\) 0 0
\(727\) 5281.27 0.269424 0.134712 0.990885i \(-0.456989\pi\)
0.134712 + 0.990885i \(0.456989\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 56598.4 2.86959
\(731\) 2700.05 0.136614
\(732\) 0 0
\(733\) 27817.2 1.40171 0.700853 0.713305i \(-0.252803\pi\)
0.700853 + 0.713305i \(0.252803\pi\)
\(734\) 8805.12 0.442783
\(735\) 0 0
\(736\) 11623.3 0.582122
\(737\) −30629.6 −1.53088
\(738\) 0 0
\(739\) −8553.43 −0.425768 −0.212884 0.977077i \(-0.568286\pi\)
−0.212884 + 0.977077i \(0.568286\pi\)
\(740\) 9098.52 0.451984
\(741\) 0 0
\(742\) 0 0
\(743\) 14150.4 0.698693 0.349346 0.936994i \(-0.386404\pi\)
0.349346 + 0.936994i \(0.386404\pi\)
\(744\) 0 0
\(745\) 7243.18 0.356201
\(746\) 210.574 0.0103347
\(747\) 0 0
\(748\) −10055.1 −0.491511
\(749\) 0 0
\(750\) 0 0
\(751\) −24243.3 −1.17796 −0.588981 0.808147i \(-0.700471\pi\)
−0.588981 + 0.808147i \(0.700471\pi\)
\(752\) −9313.05 −0.451612
\(753\) 0 0
\(754\) 13288.3 0.641817
\(755\) 30726.8 1.48114
\(756\) 0 0
\(757\) −13428.2 −0.644722 −0.322361 0.946617i \(-0.604476\pi\)
−0.322361 + 0.946617i \(0.604476\pi\)
\(758\) −15899.0 −0.761844
\(759\) 0 0
\(760\) 29621.3 1.41379
\(761\) 10525.9 0.501398 0.250699 0.968065i \(-0.419340\pi\)
0.250699 + 0.968065i \(0.419340\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −13797.5 −0.653373
\(765\) 0 0
\(766\) −38099.8 −1.79713
\(767\) 2061.65 0.0970558
\(768\) 0 0
\(769\) −31855.3 −1.49380 −0.746900 0.664936i \(-0.768459\pi\)
−0.746900 + 0.664936i \(0.768459\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20739.0 −0.966855
\(773\) −14812.7 −0.689232 −0.344616 0.938744i \(-0.611991\pi\)
−0.344616 + 0.938744i \(0.611991\pi\)
\(774\) 0 0
\(775\) 42603.4 1.97466
\(776\) −14488.4 −0.670237
\(777\) 0 0
\(778\) −5361.38 −0.247063
\(779\) 26105.5 1.20067
\(780\) 0 0
\(781\) 18969.9 0.869136
\(782\) −6901.80 −0.315611
\(783\) 0 0
\(784\) 0 0
\(785\) 12972.5 0.589821
\(786\) 0 0
\(787\) −38359.3 −1.73744 −0.868718 0.495307i \(-0.835056\pi\)
−0.868718 + 0.495307i \(0.835056\pi\)
\(788\) −44147.9 −1.99582
\(789\) 0 0
\(790\) 75878.1 3.41724
\(791\) 0 0
\(792\) 0 0
\(793\) 2382.91 0.106708
\(794\) 870.251 0.0388968
\(795\) 0 0
\(796\) 323.574 0.0144080
\(797\) 26078.1 1.15901 0.579506 0.814968i \(-0.303246\pi\)
0.579506 + 0.814968i \(0.303246\pi\)
\(798\) 0 0
\(799\) −3153.90 −0.139646
\(800\) 20766.3 0.917751
\(801\) 0 0
\(802\) −44753.8 −1.97046
\(803\) 37786.5 1.66060
\(804\) 0 0
\(805\) 0 0
\(806\) −11023.6 −0.481751
\(807\) 0 0
\(808\) 28627.7 1.24643
\(809\) 33877.7 1.47228 0.736142 0.676827i \(-0.236646\pi\)
0.736142 + 0.676827i \(0.236646\pi\)
\(810\) 0 0
\(811\) −15463.4 −0.669537 −0.334769 0.942300i \(-0.608658\pi\)
−0.334769 + 0.942300i \(0.608658\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 9385.14 0.404114
\(815\) 32644.0 1.40303
\(816\) 0 0
\(817\) −11671.9 −0.499813
\(818\) 12422.3 0.530973
\(819\) 0 0
\(820\) −143879. −6.12740
\(821\) −29146.6 −1.23901 −0.619503 0.784994i \(-0.712666\pi\)
−0.619503 + 0.784994i \(0.712666\pi\)
\(822\) 0 0
\(823\) −1831.30 −0.0775640 −0.0387820 0.999248i \(-0.512348\pi\)
−0.0387820 + 0.999248i \(0.512348\pi\)
\(824\) −3637.50 −0.153784
\(825\) 0 0
\(826\) 0 0
\(827\) −19801.5 −0.832609 −0.416304 0.909225i \(-0.636675\pi\)
−0.416304 + 0.909225i \(0.636675\pi\)
\(828\) 0 0
\(829\) −20707.6 −0.867557 −0.433778 0.901020i \(-0.642820\pi\)
−0.433778 + 0.901020i \(0.642820\pi\)
\(830\) 23548.8 0.984808
\(831\) 0 0
\(832\) −8696.82 −0.362389
\(833\) 0 0
\(834\) 0 0
\(835\) −62098.7 −2.57367
\(836\) 43466.5 1.79823
\(837\) 0 0
\(838\) 45401.1 1.87154
\(839\) 28880.2 1.18838 0.594192 0.804323i \(-0.297472\pi\)
0.594192 + 0.804323i \(0.297472\pi\)
\(840\) 0 0
\(841\) 27828.2 1.14101
\(842\) 54432.5 2.22787
\(843\) 0 0
\(844\) −71656.0 −2.92240
\(845\) −38298.2 −1.55917
\(846\) 0 0
\(847\) 0 0
\(848\) −8707.28 −0.352605
\(849\) 0 0
\(850\) −12330.8 −0.497580
\(851\) 4169.46 0.167952
\(852\) 0 0
\(853\) −34006.5 −1.36502 −0.682509 0.730877i \(-0.739111\pi\)
−0.682509 + 0.730877i \(0.739111\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −28751.1 −1.14801
\(857\) 27810.0 1.10849 0.554243 0.832355i \(-0.313008\pi\)
0.554243 + 0.832355i \(0.313008\pi\)
\(858\) 0 0
\(859\) −15538.4 −0.617186 −0.308593 0.951194i \(-0.599858\pi\)
−0.308593 + 0.951194i \(0.599858\pi\)
\(860\) 64328.9 2.55069
\(861\) 0 0
\(862\) 33300.7 1.31581
\(863\) 34590.4 1.36439 0.682196 0.731169i \(-0.261025\pi\)
0.682196 + 0.731169i \(0.261025\pi\)
\(864\) 0 0
\(865\) 1012.02 0.0397802
\(866\) −22528.6 −0.884010
\(867\) 0 0
\(868\) 0 0
\(869\) 50658.2 1.97752
\(870\) 0 0
\(871\) 6290.58 0.244717
\(872\) −46005.0 −1.78661
\(873\) 0 0
\(874\) 29835.4 1.15469
\(875\) 0 0
\(876\) 0 0
\(877\) −13884.4 −0.534597 −0.267298 0.963614i \(-0.586131\pi\)
−0.267298 + 0.963614i \(0.586131\pi\)
\(878\) −40998.7 −1.57590
\(879\) 0 0
\(880\) −37829.7 −1.44914
\(881\) −50252.5 −1.92173 −0.960867 0.277009i \(-0.910657\pi\)
−0.960867 + 0.277009i \(0.910657\pi\)
\(882\) 0 0
\(883\) −22551.2 −0.859466 −0.429733 0.902956i \(-0.641392\pi\)
−0.429733 + 0.902956i \(0.641392\pi\)
\(884\) 2065.07 0.0785700
\(885\) 0 0
\(886\) 25105.6 0.951964
\(887\) 28015.3 1.06050 0.530248 0.847842i \(-0.322099\pi\)
0.530248 + 0.847842i \(0.322099\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 81417.1 3.06641
\(891\) 0 0
\(892\) −2114.43 −0.0793679
\(893\) 13633.8 0.510905
\(894\) 0 0
\(895\) 69579.0 2.59863
\(896\) 0 0
\(897\) 0 0
\(898\) −64354.9 −2.39148
\(899\) −43318.2 −1.60706
\(900\) 0 0
\(901\) −2948.76 −0.109031
\(902\) −148411. −5.47844
\(903\) 0 0
\(904\) 326.462 0.0120110
\(905\) −23953.6 −0.879827
\(906\) 0 0
\(907\) 26825.9 0.982071 0.491035 0.871140i \(-0.336619\pi\)
0.491035 + 0.871140i \(0.336619\pi\)
\(908\) 72247.5 2.64055
\(909\) 0 0
\(910\) 0 0
\(911\) 9637.55 0.350501 0.175250 0.984524i \(-0.443926\pi\)
0.175250 + 0.984524i \(0.443926\pi\)
\(912\) 0 0
\(913\) 15721.8 0.569896
\(914\) −34708.4 −1.25607
\(915\) 0 0
\(916\) 231.751 0.00835945
\(917\) 0 0
\(918\) 0 0
\(919\) 3759.24 0.134936 0.0674678 0.997721i \(-0.478508\pi\)
0.0674678 + 0.997721i \(0.478508\pi\)
\(920\) −74813.3 −2.68100
\(921\) 0 0
\(922\) −26926.2 −0.961787
\(923\) −3895.95 −0.138935
\(924\) 0 0
\(925\) 7449.20 0.264787
\(926\) −19535.2 −0.693267
\(927\) 0 0
\(928\) −21114.7 −0.746902
\(929\) −4162.56 −0.147007 −0.0735033 0.997295i \(-0.523418\pi\)
−0.0735033 + 0.997295i \(0.523418\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 10678.4 0.375302
\(933\) 0 0
\(934\) 24306.6 0.851536
\(935\) −12811.2 −0.448097
\(936\) 0 0
\(937\) 39048.7 1.36144 0.680718 0.732545i \(-0.261668\pi\)
0.680718 + 0.732545i \(0.261668\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −75142.0 −2.60730
\(941\) −15015.4 −0.520179 −0.260089 0.965585i \(-0.583752\pi\)
−0.260089 + 0.965585i \(0.583752\pi\)
\(942\) 0 0
\(943\) −65933.6 −2.27687
\(944\) 5743.91 0.198038
\(945\) 0 0
\(946\) 66355.4 2.28055
\(947\) −12467.9 −0.427825 −0.213913 0.976853i \(-0.568621\pi\)
−0.213913 + 0.976853i \(0.568621\pi\)
\(948\) 0 0
\(949\) −7760.44 −0.265453
\(950\) 53304.1 1.82044
\(951\) 0 0
\(952\) 0 0
\(953\) −26584.1 −0.903612 −0.451806 0.892116i \(-0.649220\pi\)
−0.451806 + 0.892116i \(0.649220\pi\)
\(954\) 0 0
\(955\) −17579.4 −0.595662
\(956\) −934.773 −0.0316242
\(957\) 0 0
\(958\) 20003.1 0.674605
\(959\) 0 0
\(960\) 0 0
\(961\) 6144.81 0.206264
\(962\) −1927.48 −0.0645992
\(963\) 0 0
\(964\) −49168.3 −1.64274
\(965\) −26423.5 −0.881455
\(966\) 0 0
\(967\) 26613.6 0.885041 0.442521 0.896758i \(-0.354084\pi\)
0.442521 + 0.896758i \(0.354084\pi\)
\(968\) −70099.0 −2.32755
\(969\) 0 0
\(970\) −40573.5 −1.34303
\(971\) −10272.7 −0.339512 −0.169756 0.985486i \(-0.554298\pi\)
−0.169756 + 0.985486i \(0.554298\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −20481.9 −0.673803
\(975\) 0 0
\(976\) 6638.96 0.217734
\(977\) −36897.7 −1.20825 −0.604127 0.796888i \(-0.706478\pi\)
−0.604127 + 0.796888i \(0.706478\pi\)
\(978\) 0 0
\(979\) 54356.2 1.77450
\(980\) 0 0
\(981\) 0 0
\(982\) 8450.17 0.274599
\(983\) −21443.4 −0.695766 −0.347883 0.937538i \(-0.613099\pi\)
−0.347883 + 0.937538i \(0.613099\pi\)
\(984\) 0 0
\(985\) −56248.8 −1.81953
\(986\) 12537.7 0.404951
\(987\) 0 0
\(988\) −8926.97 −0.287454
\(989\) 29479.2 0.947810
\(990\) 0 0
\(991\) −16667.9 −0.534281 −0.267141 0.963658i \(-0.586079\pi\)
−0.267141 + 0.963658i \(0.586079\pi\)
\(992\) 17516.3 0.560628
\(993\) 0 0
\(994\) 0 0
\(995\) 412.266 0.0131354
\(996\) 0 0
\(997\) −20248.7 −0.643213 −0.321606 0.946873i \(-0.604223\pi\)
−0.321606 + 0.946873i \(0.604223\pi\)
\(998\) 32643.5 1.03538
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bh.1.2 7
3.2 odd 2 1323.4.a.bk.1.6 7
7.3 odd 6 189.4.e.g.163.6 yes 14
7.5 odd 6 189.4.e.g.109.6 yes 14
7.6 odd 2 1323.4.a.bi.1.2 7
21.5 even 6 189.4.e.f.109.2 14
21.17 even 6 189.4.e.f.163.2 yes 14
21.20 even 2 1323.4.a.bj.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.2 14 21.5 even 6
189.4.e.f.163.2 yes 14 21.17 even 6
189.4.e.g.109.6 yes 14 7.5 odd 6
189.4.e.g.163.6 yes 14 7.3 odd 6
1323.4.a.bh.1.2 7 1.1 even 1 trivial
1323.4.a.bi.1.2 7 7.6 odd 2
1323.4.a.bj.1.6 7 21.20 even 2
1323.4.a.bk.1.6 7 3.2 odd 2