Properties

Label 1323.4.a.bg.1.5
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 42x^{4} + 369x^{2} - 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.46131\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.46131 q^{2} +3.98067 q^{4} -6.55599 q^{5} -13.9122 q^{8} +O(q^{10})\) \(q+3.46131 q^{2} +3.98067 q^{4} -6.55599 q^{5} -13.9122 q^{8} -22.6923 q^{10} -2.29451 q^{11} -28.6343 q^{13} -79.9996 q^{16} +46.6643 q^{17} +67.5183 q^{19} -26.0972 q^{20} -7.94200 q^{22} +30.1188 q^{23} -82.0190 q^{25} -99.1122 q^{26} -24.0840 q^{29} +193.940 q^{31} -165.606 q^{32} +161.520 q^{34} +208.767 q^{37} +233.702 q^{38} +91.2080 q^{40} +234.347 q^{41} +46.0576 q^{43} -9.13366 q^{44} +104.251 q^{46} -194.239 q^{47} -283.893 q^{50} -113.984 q^{52} -221.635 q^{53} +15.0428 q^{55} -83.3623 q^{58} +710.748 q^{59} +634.111 q^{61} +671.285 q^{62} +66.7827 q^{64} +187.726 q^{65} +269.671 q^{67} +185.755 q^{68} +234.593 q^{71} -213.368 q^{73} +722.608 q^{74} +268.768 q^{76} +242.405 q^{79} +524.477 q^{80} +811.149 q^{82} +1337.82 q^{83} -305.931 q^{85} +159.420 q^{86} +31.9215 q^{88} -1105.39 q^{89} +119.893 q^{92} -672.322 q^{94} -442.650 q^{95} +1139.50 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 36 q^{4} + 180 q^{10} + 108 q^{13} + 420 q^{16} + 198 q^{19} - 84 q^{22} + 420 q^{25} - 90 q^{31} - 648 q^{34} - 402 q^{37} + 2844 q^{40} - 660 q^{43} - 1332 q^{46} + 1224 q^{52} + 846 q^{55} - 1800 q^{58} + 1152 q^{61} + 2964 q^{64} + 924 q^{67} + 1260 q^{73} + 5868 q^{76} - 1500 q^{79} + 4500 q^{82} - 2232 q^{85} - 2460 q^{88} - 4968 q^{94} + 3312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.46131 1.22376 0.611879 0.790951i \(-0.290414\pi\)
0.611879 + 0.790951i \(0.290414\pi\)
\(3\) 0 0
\(4\) 3.98067 0.497583
\(5\) −6.55599 −0.586386 −0.293193 0.956053i \(-0.594718\pi\)
−0.293193 + 0.956053i \(0.594718\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −13.9122 −0.614837
\(9\) 0 0
\(10\) −22.6923 −0.717594
\(11\) −2.29451 −0.0628927 −0.0314463 0.999505i \(-0.510011\pi\)
−0.0314463 + 0.999505i \(0.510011\pi\)
\(12\) 0 0
\(13\) −28.6343 −0.610902 −0.305451 0.952208i \(-0.598807\pi\)
−0.305451 + 0.952208i \(0.598807\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −79.9996 −1.24999
\(17\) 46.6643 0.665750 0.332875 0.942971i \(-0.391981\pi\)
0.332875 + 0.942971i \(0.391981\pi\)
\(18\) 0 0
\(19\) 67.5183 0.815251 0.407625 0.913149i \(-0.366357\pi\)
0.407625 + 0.913149i \(0.366357\pi\)
\(20\) −26.0972 −0.291776
\(21\) 0 0
\(22\) −7.94200 −0.0769654
\(23\) 30.1188 0.273053 0.136526 0.990636i \(-0.456406\pi\)
0.136526 + 0.990636i \(0.456406\pi\)
\(24\) 0 0
\(25\) −82.0190 −0.656152
\(26\) −99.1122 −0.747597
\(27\) 0 0
\(28\) 0 0
\(29\) −24.0840 −0.154217 −0.0771085 0.997023i \(-0.524569\pi\)
−0.0771085 + 0.997023i \(0.524569\pi\)
\(30\) 0 0
\(31\) 193.940 1.12363 0.561816 0.827262i \(-0.310103\pi\)
0.561816 + 0.827262i \(0.310103\pi\)
\(32\) −165.606 −0.914854
\(33\) 0 0
\(34\) 161.520 0.814717
\(35\) 0 0
\(36\) 0 0
\(37\) 208.767 0.927598 0.463799 0.885940i \(-0.346486\pi\)
0.463799 + 0.885940i \(0.346486\pi\)
\(38\) 233.702 0.997669
\(39\) 0 0
\(40\) 91.2080 0.360531
\(41\) 234.347 0.892656 0.446328 0.894869i \(-0.352731\pi\)
0.446328 + 0.894869i \(0.352731\pi\)
\(42\) 0 0
\(43\) 46.0576 0.163342 0.0816712 0.996659i \(-0.473974\pi\)
0.0816712 + 0.996659i \(0.473974\pi\)
\(44\) −9.13366 −0.0312943
\(45\) 0 0
\(46\) 104.251 0.334150
\(47\) −194.239 −0.602823 −0.301412 0.953494i \(-0.597458\pi\)
−0.301412 + 0.953494i \(0.597458\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −283.893 −0.802971
\(51\) 0 0
\(52\) −113.984 −0.303975
\(53\) −221.635 −0.574414 −0.287207 0.957869i \(-0.592727\pi\)
−0.287207 + 0.957869i \(0.592727\pi\)
\(54\) 0 0
\(55\) 15.0428 0.0368794
\(56\) 0 0
\(57\) 0 0
\(58\) −83.3623 −0.188724
\(59\) 710.748 1.56833 0.784165 0.620552i \(-0.213092\pi\)
0.784165 + 0.620552i \(0.213092\pi\)
\(60\) 0 0
\(61\) 634.111 1.33098 0.665489 0.746408i \(-0.268223\pi\)
0.665489 + 0.746408i \(0.268223\pi\)
\(62\) 671.285 1.37505
\(63\) 0 0
\(64\) 66.7827 0.130435
\(65\) 187.726 0.358224
\(66\) 0 0
\(67\) 269.671 0.491725 0.245862 0.969305i \(-0.420929\pi\)
0.245862 + 0.969305i \(0.420929\pi\)
\(68\) 185.755 0.331266
\(69\) 0 0
\(70\) 0 0
\(71\) 234.593 0.392127 0.196063 0.980591i \(-0.437184\pi\)
0.196063 + 0.980591i \(0.437184\pi\)
\(72\) 0 0
\(73\) −213.368 −0.342094 −0.171047 0.985263i \(-0.554715\pi\)
−0.171047 + 0.985263i \(0.554715\pi\)
\(74\) 722.608 1.13516
\(75\) 0 0
\(76\) 268.768 0.405655
\(77\) 0 0
\(78\) 0 0
\(79\) 242.405 0.345224 0.172612 0.984990i \(-0.444779\pi\)
0.172612 + 0.984990i \(0.444779\pi\)
\(80\) 524.477 0.732979
\(81\) 0 0
\(82\) 811.149 1.09240
\(83\) 1337.82 1.76922 0.884610 0.466332i \(-0.154425\pi\)
0.884610 + 0.466332i \(0.154425\pi\)
\(84\) 0 0
\(85\) −305.931 −0.390387
\(86\) 159.420 0.199892
\(87\) 0 0
\(88\) 31.9215 0.0386687
\(89\) −1105.39 −1.31653 −0.658263 0.752788i \(-0.728708\pi\)
−0.658263 + 0.752788i \(0.728708\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 119.893 0.135866
\(93\) 0 0
\(94\) −672.322 −0.737709
\(95\) −442.650 −0.478051
\(96\) 0 0
\(97\) 1139.50 1.19277 0.596387 0.802697i \(-0.296602\pi\)
0.596387 + 0.802697i \(0.296602\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −326.490 −0.326490
\(101\) 1351.19 1.33117 0.665586 0.746321i \(-0.268182\pi\)
0.665586 + 0.746321i \(0.268182\pi\)
\(102\) 0 0
\(103\) 28.3780 0.0271472 0.0135736 0.999908i \(-0.495679\pi\)
0.0135736 + 0.999908i \(0.495679\pi\)
\(104\) 398.365 0.375605
\(105\) 0 0
\(106\) −767.148 −0.702943
\(107\) −1551.30 −1.40159 −0.700794 0.713364i \(-0.747171\pi\)
−0.700794 + 0.713364i \(0.747171\pi\)
\(108\) 0 0
\(109\) −1265.70 −1.11222 −0.556111 0.831108i \(-0.687707\pi\)
−0.556111 + 0.831108i \(0.687707\pi\)
\(110\) 52.0677 0.0451314
\(111\) 0 0
\(112\) 0 0
\(113\) 480.406 0.399937 0.199968 0.979802i \(-0.435916\pi\)
0.199968 + 0.979802i \(0.435916\pi\)
\(114\) 0 0
\(115\) −197.459 −0.160114
\(116\) −95.8705 −0.0767358
\(117\) 0 0
\(118\) 2460.12 1.91926
\(119\) 0 0
\(120\) 0 0
\(121\) −1325.74 −0.996045
\(122\) 2194.86 1.62879
\(123\) 0 0
\(124\) 772.009 0.559100
\(125\) 1357.21 0.971144
\(126\) 0 0
\(127\) 1837.72 1.28403 0.642014 0.766693i \(-0.278099\pi\)
0.642014 + 0.766693i \(0.278099\pi\)
\(128\) 1556.01 1.07447
\(129\) 0 0
\(130\) 649.779 0.438380
\(131\) −1198.23 −0.799157 −0.399578 0.916699i \(-0.630843\pi\)
−0.399578 + 0.916699i \(0.630843\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 933.415 0.601752
\(135\) 0 0
\(136\) −649.201 −0.409328
\(137\) 2019.83 1.25960 0.629802 0.776756i \(-0.283136\pi\)
0.629802 + 0.776756i \(0.283136\pi\)
\(138\) 0 0
\(139\) 2320.01 1.41569 0.707843 0.706370i \(-0.249669\pi\)
0.707843 + 0.706370i \(0.249669\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 811.997 0.479868
\(143\) 65.7016 0.0384213
\(144\) 0 0
\(145\) 157.895 0.0904307
\(146\) −738.534 −0.418640
\(147\) 0 0
\(148\) 831.033 0.461557
\(149\) −1230.57 −0.676592 −0.338296 0.941040i \(-0.609851\pi\)
−0.338296 + 0.941040i \(0.609851\pi\)
\(150\) 0 0
\(151\) 30.8369 0.0166190 0.00830952 0.999965i \(-0.497355\pi\)
0.00830952 + 0.999965i \(0.497355\pi\)
\(152\) −939.326 −0.501246
\(153\) 0 0
\(154\) 0 0
\(155\) −1271.47 −0.658882
\(156\) 0 0
\(157\) −2340.62 −1.18982 −0.594910 0.803792i \(-0.702812\pi\)
−0.594910 + 0.803792i \(0.702812\pi\)
\(158\) 839.038 0.422470
\(159\) 0 0
\(160\) 1085.71 0.536457
\(161\) 0 0
\(162\) 0 0
\(163\) 2129.76 1.02341 0.511705 0.859161i \(-0.329014\pi\)
0.511705 + 0.859161i \(0.329014\pi\)
\(164\) 932.859 0.444171
\(165\) 0 0
\(166\) 4630.62 2.16510
\(167\) 158.641 0.0735092 0.0367546 0.999324i \(-0.488298\pi\)
0.0367546 + 0.999324i \(0.488298\pi\)
\(168\) 0 0
\(169\) −1377.08 −0.626798
\(170\) −1058.92 −0.477739
\(171\) 0 0
\(172\) 183.340 0.0812764
\(173\) −1116.85 −0.490823 −0.245412 0.969419i \(-0.578923\pi\)
−0.245412 + 0.969419i \(0.578923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 183.560 0.0786155
\(177\) 0 0
\(178\) −3826.09 −1.61111
\(179\) −3503.57 −1.46295 −0.731477 0.681866i \(-0.761169\pi\)
−0.731477 + 0.681866i \(0.761169\pi\)
\(180\) 0 0
\(181\) 1591.32 0.653492 0.326746 0.945112i \(-0.394048\pi\)
0.326746 + 0.945112i \(0.394048\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −419.018 −0.167883
\(185\) −1368.68 −0.543930
\(186\) 0 0
\(187\) −107.072 −0.0418708
\(188\) −773.201 −0.299955
\(189\) 0 0
\(190\) −1532.15 −0.585019
\(191\) 4924.24 1.86547 0.932737 0.360558i \(-0.117414\pi\)
0.932737 + 0.360558i \(0.117414\pi\)
\(192\) 0 0
\(193\) 3314.07 1.23602 0.618011 0.786170i \(-0.287939\pi\)
0.618011 + 0.786170i \(0.287939\pi\)
\(194\) 3944.17 1.45967
\(195\) 0 0
\(196\) 0 0
\(197\) 1024.59 0.370554 0.185277 0.982686i \(-0.440682\pi\)
0.185277 + 0.982686i \(0.440682\pi\)
\(198\) 0 0
\(199\) −795.124 −0.283240 −0.141620 0.989921i \(-0.545231\pi\)
−0.141620 + 0.989921i \(0.545231\pi\)
\(200\) 1141.06 0.403426
\(201\) 0 0
\(202\) 4676.89 1.62903
\(203\) 0 0
\(204\) 0 0
\(205\) −1536.38 −0.523441
\(206\) 98.2249 0.0332216
\(207\) 0 0
\(208\) 2290.73 0.763624
\(209\) −154.921 −0.0512733
\(210\) 0 0
\(211\) −850.964 −0.277644 −0.138822 0.990317i \(-0.544332\pi\)
−0.138822 + 0.990317i \(0.544332\pi\)
\(212\) −882.255 −0.285819
\(213\) 0 0
\(214\) −5369.53 −1.71520
\(215\) −301.953 −0.0957817
\(216\) 0 0
\(217\) 0 0
\(218\) −4380.98 −1.36109
\(219\) 0 0
\(220\) 59.8802 0.0183506
\(221\) −1336.20 −0.406708
\(222\) 0 0
\(223\) 4204.86 1.26268 0.631342 0.775505i \(-0.282505\pi\)
0.631342 + 0.775505i \(0.282505\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1662.84 0.489426
\(227\) −5199.29 −1.52022 −0.760108 0.649796i \(-0.774854\pi\)
−0.760108 + 0.649796i \(0.774854\pi\)
\(228\) 0 0
\(229\) 1357.28 0.391666 0.195833 0.980637i \(-0.437259\pi\)
0.195833 + 0.980637i \(0.437259\pi\)
\(230\) −683.466 −0.195941
\(231\) 0 0
\(232\) 335.061 0.0948183
\(233\) −6711.98 −1.88720 −0.943598 0.331093i \(-0.892583\pi\)
−0.943598 + 0.331093i \(0.892583\pi\)
\(234\) 0 0
\(235\) 1273.43 0.353487
\(236\) 2829.25 0.780375
\(237\) 0 0
\(238\) 0 0
\(239\) 1850.76 0.500902 0.250451 0.968129i \(-0.419421\pi\)
0.250451 + 0.968129i \(0.419421\pi\)
\(240\) 0 0
\(241\) 4864.74 1.30027 0.650136 0.759818i \(-0.274712\pi\)
0.650136 + 0.759818i \(0.274712\pi\)
\(242\) −4588.78 −1.21892
\(243\) 0 0
\(244\) 2524.18 0.662272
\(245\) 0 0
\(246\) 0 0
\(247\) −1933.34 −0.498039
\(248\) −2698.12 −0.690850
\(249\) 0 0
\(250\) 4697.74 1.18844
\(251\) −1901.00 −0.478049 −0.239024 0.971014i \(-0.576828\pi\)
−0.239024 + 0.971014i \(0.576828\pi\)
\(252\) 0 0
\(253\) −69.1078 −0.0171730
\(254\) 6360.93 1.57134
\(255\) 0 0
\(256\) 4851.55 1.18446
\(257\) −1670.33 −0.405417 −0.202709 0.979239i \(-0.564974\pi\)
−0.202709 + 0.979239i \(0.564974\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 747.276 0.178246
\(261\) 0 0
\(262\) −4147.43 −0.977974
\(263\) 3792.54 0.889195 0.444597 0.895731i \(-0.353347\pi\)
0.444597 + 0.895731i \(0.353347\pi\)
\(264\) 0 0
\(265\) 1453.04 0.336828
\(266\) 0 0
\(267\) 0 0
\(268\) 1073.47 0.244674
\(269\) −7923.59 −1.79595 −0.897973 0.440050i \(-0.854961\pi\)
−0.897973 + 0.440050i \(0.854961\pi\)
\(270\) 0 0
\(271\) 6340.76 1.42130 0.710652 0.703543i \(-0.248400\pi\)
0.710652 + 0.703543i \(0.248400\pi\)
\(272\) −3733.13 −0.832184
\(273\) 0 0
\(274\) 6991.25 1.54145
\(275\) 188.193 0.0412671
\(276\) 0 0
\(277\) −3169.14 −0.687420 −0.343710 0.939076i \(-0.611684\pi\)
−0.343710 + 0.939076i \(0.611684\pi\)
\(278\) 8030.26 1.73246
\(279\) 0 0
\(280\) 0 0
\(281\) −3492.87 −0.741520 −0.370760 0.928729i \(-0.620903\pi\)
−0.370760 + 0.928729i \(0.620903\pi\)
\(282\) 0 0
\(283\) 1904.23 0.399982 0.199991 0.979798i \(-0.435909\pi\)
0.199991 + 0.979798i \(0.435909\pi\)
\(284\) 933.834 0.195116
\(285\) 0 0
\(286\) 227.414 0.0470184
\(287\) 0 0
\(288\) 0 0
\(289\) −2735.44 −0.556776
\(290\) 546.523 0.110665
\(291\) 0 0
\(292\) −849.348 −0.170220
\(293\) −3988.81 −0.795320 −0.397660 0.917533i \(-0.630178\pi\)
−0.397660 + 0.917533i \(0.630178\pi\)
\(294\) 0 0
\(295\) −4659.66 −0.919646
\(296\) −2904.40 −0.570321
\(297\) 0 0
\(298\) −4259.38 −0.827985
\(299\) −862.432 −0.166808
\(300\) 0 0
\(301\) 0 0
\(302\) 106.736 0.0203377
\(303\) 0 0
\(304\) −5401.44 −1.01906
\(305\) −4157.23 −0.780466
\(306\) 0 0
\(307\) 1415.59 0.263165 0.131583 0.991305i \(-0.457994\pi\)
0.131583 + 0.991305i \(0.457994\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4400.94 −0.806311
\(311\) −8808.57 −1.60607 −0.803036 0.595931i \(-0.796783\pi\)
−0.803036 + 0.595931i \(0.796783\pi\)
\(312\) 0 0
\(313\) 4338.32 0.783439 0.391719 0.920085i \(-0.371880\pi\)
0.391719 + 0.920085i \(0.371880\pi\)
\(314\) −8101.61 −1.45605
\(315\) 0 0
\(316\) 964.933 0.171778
\(317\) 8911.96 1.57901 0.789504 0.613745i \(-0.210338\pi\)
0.789504 + 0.613745i \(0.210338\pi\)
\(318\) 0 0
\(319\) 55.2610 0.00969913
\(320\) −437.827 −0.0764852
\(321\) 0 0
\(322\) 0 0
\(323\) 3150.69 0.542753
\(324\) 0 0
\(325\) 2348.56 0.400845
\(326\) 7371.76 1.25240
\(327\) 0 0
\(328\) −3260.28 −0.548838
\(329\) 0 0
\(330\) 0 0
\(331\) 8405.16 1.39574 0.697869 0.716226i \(-0.254132\pi\)
0.697869 + 0.716226i \(0.254132\pi\)
\(332\) 5325.43 0.880334
\(333\) 0 0
\(334\) 549.107 0.0899574
\(335\) −1767.96 −0.288340
\(336\) 0 0
\(337\) 7481.10 1.20926 0.604631 0.796506i \(-0.293321\pi\)
0.604631 + 0.796506i \(0.293321\pi\)
\(338\) −4766.49 −0.767049
\(339\) 0 0
\(340\) −1217.81 −0.194250
\(341\) −444.996 −0.0706682
\(342\) 0 0
\(343\) 0 0
\(344\) −640.761 −0.100429
\(345\) 0 0
\(346\) −3865.76 −0.600649
\(347\) −1603.13 −0.248013 −0.124006 0.992281i \(-0.539574\pi\)
−0.124006 + 0.992281i \(0.539574\pi\)
\(348\) 0 0
\(349\) 2238.34 0.343311 0.171656 0.985157i \(-0.445088\pi\)
0.171656 + 0.985157i \(0.445088\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 379.984 0.0575376
\(353\) −9507.71 −1.43355 −0.716777 0.697303i \(-0.754383\pi\)
−0.716777 + 0.697303i \(0.754383\pi\)
\(354\) 0 0
\(355\) −1537.99 −0.229938
\(356\) −4400.17 −0.655081
\(357\) 0 0
\(358\) −12126.9 −1.79030
\(359\) −7856.96 −1.15508 −0.577541 0.816361i \(-0.695988\pi\)
−0.577541 + 0.816361i \(0.695988\pi\)
\(360\) 0 0
\(361\) −2300.28 −0.335366
\(362\) 5508.06 0.799716
\(363\) 0 0
\(364\) 0 0
\(365\) 1398.84 0.200599
\(366\) 0 0
\(367\) 2258.91 0.321292 0.160646 0.987012i \(-0.448642\pi\)
0.160646 + 0.987012i \(0.448642\pi\)
\(368\) −2409.50 −0.341314
\(369\) 0 0
\(370\) −4737.41 −0.665639
\(371\) 0 0
\(372\) 0 0
\(373\) 1789.23 0.248372 0.124186 0.992259i \(-0.460368\pi\)
0.124186 + 0.992259i \(0.460368\pi\)
\(374\) −370.608 −0.0512398
\(375\) 0 0
\(376\) 2702.29 0.370638
\(377\) 689.630 0.0942116
\(378\) 0 0
\(379\) −7021.61 −0.951651 −0.475826 0.879540i \(-0.657851\pi\)
−0.475826 + 0.879540i \(0.657851\pi\)
\(380\) −1762.04 −0.237870
\(381\) 0 0
\(382\) 17044.3 2.28289
\(383\) −9614.42 −1.28270 −0.641350 0.767248i \(-0.721625\pi\)
−0.641350 + 0.767248i \(0.721625\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11471.0 1.51259
\(387\) 0 0
\(388\) 4535.98 0.593504
\(389\) 12211.5 1.59164 0.795822 0.605530i \(-0.207039\pi\)
0.795822 + 0.605530i \(0.207039\pi\)
\(390\) 0 0
\(391\) 1405.47 0.181785
\(392\) 0 0
\(393\) 0 0
\(394\) 3546.43 0.453468
\(395\) −1589.20 −0.202434
\(396\) 0 0
\(397\) −10404.7 −1.31535 −0.657677 0.753300i \(-0.728461\pi\)
−0.657677 + 0.753300i \(0.728461\pi\)
\(398\) −2752.17 −0.346618
\(399\) 0 0
\(400\) 6561.49 0.820186
\(401\) 789.887 0.0983667 0.0491834 0.998790i \(-0.484338\pi\)
0.0491834 + 0.998790i \(0.484338\pi\)
\(402\) 0 0
\(403\) −5553.33 −0.686429
\(404\) 5378.63 0.662369
\(405\) 0 0
\(406\) 0 0
\(407\) −479.018 −0.0583391
\(408\) 0 0
\(409\) 8685.05 1.05000 0.524998 0.851104i \(-0.324066\pi\)
0.524998 + 0.851104i \(0.324066\pi\)
\(410\) −5317.89 −0.640565
\(411\) 0 0
\(412\) 112.963 0.0135080
\(413\) 0 0
\(414\) 0 0
\(415\) −8770.76 −1.03745
\(416\) 4742.02 0.558886
\(417\) 0 0
\(418\) −536.230 −0.0627461
\(419\) 1296.36 0.151148 0.0755741 0.997140i \(-0.475921\pi\)
0.0755741 + 0.997140i \(0.475921\pi\)
\(420\) 0 0
\(421\) 1303.36 0.150884 0.0754418 0.997150i \(-0.475963\pi\)
0.0754418 + 0.997150i \(0.475963\pi\)
\(422\) −2945.45 −0.339768
\(423\) 0 0
\(424\) 3083.42 0.353170
\(425\) −3827.36 −0.436833
\(426\) 0 0
\(427\) 0 0
\(428\) −6175.21 −0.697407
\(429\) 0 0
\(430\) −1045.15 −0.117214
\(431\) 70.6768 0.00789880 0.00394940 0.999992i \(-0.498743\pi\)
0.00394940 + 0.999992i \(0.498743\pi\)
\(432\) 0 0
\(433\) 6842.92 0.759468 0.379734 0.925096i \(-0.376016\pi\)
0.379734 + 0.925096i \(0.376016\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5038.33 −0.553423
\(437\) 2033.57 0.222606
\(438\) 0 0
\(439\) −18342.5 −1.99417 −0.997084 0.0763102i \(-0.975686\pi\)
−0.997084 + 0.0763102i \(0.975686\pi\)
\(440\) −209.277 −0.0226748
\(441\) 0 0
\(442\) −4625.00 −0.497713
\(443\) 10938.1 1.17310 0.586552 0.809911i \(-0.300485\pi\)
0.586552 + 0.809911i \(0.300485\pi\)
\(444\) 0 0
\(445\) 7246.91 0.771992
\(446\) 14554.3 1.54522
\(447\) 0 0
\(448\) 0 0
\(449\) −10816.8 −1.13692 −0.568461 0.822710i \(-0.692461\pi\)
−0.568461 + 0.822710i \(0.692461\pi\)
\(450\) 0 0
\(451\) −537.712 −0.0561416
\(452\) 1912.34 0.199002
\(453\) 0 0
\(454\) −17996.4 −1.86038
\(455\) 0 0
\(456\) 0 0
\(457\) 4525.45 0.463220 0.231610 0.972809i \(-0.425601\pi\)
0.231610 + 0.972809i \(0.425601\pi\)
\(458\) 4697.96 0.479304
\(459\) 0 0
\(460\) −786.018 −0.0796701
\(461\) 11088.4 1.12025 0.560126 0.828407i \(-0.310753\pi\)
0.560126 + 0.828407i \(0.310753\pi\)
\(462\) 0 0
\(463\) 17567.2 1.76332 0.881660 0.471884i \(-0.156426\pi\)
0.881660 + 0.471884i \(0.156426\pi\)
\(464\) 1926.71 0.192770
\(465\) 0 0
\(466\) −23232.3 −2.30947
\(467\) −6326.26 −0.626862 −0.313431 0.949611i \(-0.601478\pi\)
−0.313431 + 0.949611i \(0.601478\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4407.74 0.432582
\(471\) 0 0
\(472\) −9888.04 −0.964266
\(473\) −105.680 −0.0102730
\(474\) 0 0
\(475\) −5537.78 −0.534928
\(476\) 0 0
\(477\) 0 0
\(478\) 6406.05 0.612983
\(479\) −375.365 −0.0358055 −0.0179028 0.999840i \(-0.505699\pi\)
−0.0179028 + 0.999840i \(0.505699\pi\)
\(480\) 0 0
\(481\) −5977.91 −0.566672
\(482\) 16838.4 1.59122
\(483\) 0 0
\(484\) −5277.31 −0.495615
\(485\) −7470.57 −0.699425
\(486\) 0 0
\(487\) 25.9467 0.00241429 0.00120714 0.999999i \(-0.499616\pi\)
0.00120714 + 0.999999i \(0.499616\pi\)
\(488\) −8821.86 −0.818333
\(489\) 0 0
\(490\) 0 0
\(491\) 6282.99 0.577490 0.288745 0.957406i \(-0.406762\pi\)
0.288745 + 0.957406i \(0.406762\pi\)
\(492\) 0 0
\(493\) −1123.87 −0.102670
\(494\) −6691.89 −0.609479
\(495\) 0 0
\(496\) −15515.1 −1.40453
\(497\) 0 0
\(498\) 0 0
\(499\) −2371.78 −0.212776 −0.106388 0.994325i \(-0.533929\pi\)
−0.106388 + 0.994325i \(0.533929\pi\)
\(500\) 5402.62 0.483225
\(501\) 0 0
\(502\) −6579.96 −0.585016
\(503\) 11080.3 0.982201 0.491100 0.871103i \(-0.336595\pi\)
0.491100 + 0.871103i \(0.336595\pi\)
\(504\) 0 0
\(505\) −8858.39 −0.780580
\(506\) −239.204 −0.0210156
\(507\) 0 0
\(508\) 7315.36 0.638910
\(509\) −10063.7 −0.876355 −0.438178 0.898888i \(-0.644376\pi\)
−0.438178 + 0.898888i \(0.644376\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 4344.69 0.375020
\(513\) 0 0
\(514\) −5781.52 −0.496132
\(515\) −186.046 −0.0159187
\(516\) 0 0
\(517\) 445.683 0.0379132
\(518\) 0 0
\(519\) 0 0
\(520\) −2611.68 −0.220249
\(521\) 9181.24 0.772048 0.386024 0.922489i \(-0.373848\pi\)
0.386024 + 0.922489i \(0.373848\pi\)
\(522\) 0 0
\(523\) −9392.06 −0.785250 −0.392625 0.919699i \(-0.628433\pi\)
−0.392625 + 0.919699i \(0.628433\pi\)
\(524\) −4769.74 −0.397647
\(525\) 0 0
\(526\) 13127.2 1.08816
\(527\) 9050.06 0.748058
\(528\) 0 0
\(529\) −11259.9 −0.925442
\(530\) 5029.42 0.412196
\(531\) 0 0
\(532\) 0 0
\(533\) −6710.38 −0.545326
\(534\) 0 0
\(535\) 10170.3 0.821871
\(536\) −3751.71 −0.302330
\(537\) 0 0
\(538\) −27426.0 −2.19780
\(539\) 0 0
\(540\) 0 0
\(541\) 4114.52 0.326982 0.163491 0.986545i \(-0.447725\pi\)
0.163491 + 0.986545i \(0.447725\pi\)
\(542\) 21947.3 1.73933
\(543\) 0 0
\(544\) −7727.90 −0.609064
\(545\) 8297.92 0.652191
\(546\) 0 0
\(547\) −9796.38 −0.765746 −0.382873 0.923801i \(-0.625065\pi\)
−0.382873 + 0.923801i \(0.625065\pi\)
\(548\) 8040.26 0.626757
\(549\) 0 0
\(550\) 651.394 0.0505010
\(551\) −1626.11 −0.125726
\(552\) 0 0
\(553\) 0 0
\(554\) −10969.4 −0.841236
\(555\) 0 0
\(556\) 9235.16 0.704421
\(557\) 4197.53 0.319309 0.159655 0.987173i \(-0.448962\pi\)
0.159655 + 0.987173i \(0.448962\pi\)
\(558\) 0 0
\(559\) −1318.83 −0.0997863
\(560\) 0 0
\(561\) 0 0
\(562\) −12089.9 −0.907441
\(563\) 10742.4 0.804151 0.402075 0.915607i \(-0.368289\pi\)
0.402075 + 0.915607i \(0.368289\pi\)
\(564\) 0 0
\(565\) −3149.54 −0.234517
\(566\) 6591.15 0.489482
\(567\) 0 0
\(568\) −3263.69 −0.241094
\(569\) −7915.86 −0.583216 −0.291608 0.956538i \(-0.594190\pi\)
−0.291608 + 0.956538i \(0.594190\pi\)
\(570\) 0 0
\(571\) 16923.1 1.24030 0.620149 0.784484i \(-0.287072\pi\)
0.620149 + 0.784484i \(0.287072\pi\)
\(572\) 261.536 0.0191178
\(573\) 0 0
\(574\) 0 0
\(575\) −2470.32 −0.179164
\(576\) 0 0
\(577\) 24108.2 1.73941 0.869704 0.493573i \(-0.164310\pi\)
0.869704 + 0.493573i \(0.164310\pi\)
\(578\) −9468.21 −0.681360
\(579\) 0 0
\(580\) 628.526 0.0449968
\(581\) 0 0
\(582\) 0 0
\(583\) 508.543 0.0361264
\(584\) 2968.41 0.210332
\(585\) 0 0
\(586\) −13806.5 −0.973279
\(587\) 13259.2 0.932308 0.466154 0.884704i \(-0.345639\pi\)
0.466154 + 0.884704i \(0.345639\pi\)
\(588\) 0 0
\(589\) 13094.5 0.916041
\(590\) −16128.5 −1.12542
\(591\) 0 0
\(592\) −16701.3 −1.15949
\(593\) −18789.8 −1.30119 −0.650596 0.759424i \(-0.725481\pi\)
−0.650596 + 0.759424i \(0.725481\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4898.49 −0.336661
\(597\) 0 0
\(598\) −2985.14 −0.204133
\(599\) −7105.41 −0.484673 −0.242337 0.970192i \(-0.577914\pi\)
−0.242337 + 0.970192i \(0.577914\pi\)
\(600\) 0 0
\(601\) −800.460 −0.0543286 −0.0271643 0.999631i \(-0.508648\pi\)
−0.0271643 + 0.999631i \(0.508648\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 122.752 0.00826935
\(605\) 8691.51 0.584066
\(606\) 0 0
\(607\) −8771.51 −0.586532 −0.293266 0.956031i \(-0.594742\pi\)
−0.293266 + 0.956031i \(0.594742\pi\)
\(608\) −11181.5 −0.745835
\(609\) 0 0
\(610\) −14389.5 −0.955102
\(611\) 5561.90 0.368266
\(612\) 0 0
\(613\) −2533.30 −0.166915 −0.0834577 0.996511i \(-0.526596\pi\)
−0.0834577 + 0.996511i \(0.526596\pi\)
\(614\) 4899.78 0.322050
\(615\) 0 0
\(616\) 0 0
\(617\) 1464.17 0.0955350 0.0477675 0.998858i \(-0.484789\pi\)
0.0477675 + 0.998858i \(0.484789\pi\)
\(618\) 0 0
\(619\) 18519.8 1.20254 0.601271 0.799045i \(-0.294661\pi\)
0.601271 + 0.799045i \(0.294661\pi\)
\(620\) −5061.28 −0.327848
\(621\) 0 0
\(622\) −30489.2 −1.96544
\(623\) 0 0
\(624\) 0 0
\(625\) 1354.48 0.0866867
\(626\) 15016.3 0.958739
\(627\) 0 0
\(628\) −9317.23 −0.592035
\(629\) 9741.98 0.617549
\(630\) 0 0
\(631\) 5128.62 0.323562 0.161781 0.986827i \(-0.448276\pi\)
0.161781 + 0.986827i \(0.448276\pi\)
\(632\) −3372.38 −0.212256
\(633\) 0 0
\(634\) 30847.1 1.93232
\(635\) −12048.1 −0.752935
\(636\) 0 0
\(637\) 0 0
\(638\) 191.275 0.0118694
\(639\) 0 0
\(640\) −10201.2 −0.630057
\(641\) −20864.3 −1.28563 −0.642817 0.766020i \(-0.722234\pi\)
−0.642817 + 0.766020i \(0.722234\pi\)
\(642\) 0 0
\(643\) 9799.87 0.601040 0.300520 0.953775i \(-0.402840\pi\)
0.300520 + 0.953775i \(0.402840\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 10905.5 0.664199
\(647\) 8180.42 0.497072 0.248536 0.968623i \(-0.420051\pi\)
0.248536 + 0.968623i \(0.420051\pi\)
\(648\) 0 0
\(649\) −1630.81 −0.0986365
\(650\) 8129.08 0.490537
\(651\) 0 0
\(652\) 8477.86 0.509231
\(653\) 13509.9 0.809619 0.404810 0.914401i \(-0.367338\pi\)
0.404810 + 0.914401i \(0.367338\pi\)
\(654\) 0 0
\(655\) 7855.56 0.468614
\(656\) −18747.7 −1.11582
\(657\) 0 0
\(658\) 0 0
\(659\) 18426.1 1.08919 0.544597 0.838698i \(-0.316683\pi\)
0.544597 + 0.838698i \(0.316683\pi\)
\(660\) 0 0
\(661\) 12328.0 0.725424 0.362712 0.931901i \(-0.381851\pi\)
0.362712 + 0.931901i \(0.381851\pi\)
\(662\) 29092.8 1.70804
\(663\) 0 0
\(664\) −18612.0 −1.08778
\(665\) 0 0
\(666\) 0 0
\(667\) −725.383 −0.0421094
\(668\) 631.498 0.0365769
\(669\) 0 0
\(670\) −6119.46 −0.352859
\(671\) −1454.97 −0.0837087
\(672\) 0 0
\(673\) −20866.3 −1.19515 −0.597575 0.801813i \(-0.703869\pi\)
−0.597575 + 0.801813i \(0.703869\pi\)
\(674\) 25894.4 1.47984
\(675\) 0 0
\(676\) −5481.68 −0.311884
\(677\) −638.005 −0.0362194 −0.0181097 0.999836i \(-0.505765\pi\)
−0.0181097 + 0.999836i \(0.505765\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4256.16 0.240024
\(681\) 0 0
\(682\) −1540.27 −0.0864808
\(683\) 25045.2 1.40312 0.701558 0.712612i \(-0.252488\pi\)
0.701558 + 0.712612i \(0.252488\pi\)
\(684\) 0 0
\(685\) −13242.0 −0.738613
\(686\) 0 0
\(687\) 0 0
\(688\) −3684.59 −0.204177
\(689\) 6346.37 0.350911
\(690\) 0 0
\(691\) −3371.26 −0.185599 −0.0927994 0.995685i \(-0.529582\pi\)
−0.0927994 + 0.995685i \(0.529582\pi\)
\(692\) −4445.80 −0.244225
\(693\) 0 0
\(694\) −5548.93 −0.303508
\(695\) −15209.9 −0.830138
\(696\) 0 0
\(697\) 10935.7 0.594286
\(698\) 7747.59 0.420130
\(699\) 0 0
\(700\) 0 0
\(701\) −24430.3 −1.31629 −0.658146 0.752890i \(-0.728659\pi\)
−0.658146 + 0.752890i \(0.728659\pi\)
\(702\) 0 0
\(703\) 14095.6 0.756225
\(704\) −153.233 −0.00820340
\(705\) 0 0
\(706\) −32909.1 −1.75432
\(707\) 0 0
\(708\) 0 0
\(709\) 24270.6 1.28562 0.642809 0.766026i \(-0.277769\pi\)
0.642809 + 0.766026i \(0.277769\pi\)
\(710\) −5323.45 −0.281388
\(711\) 0 0
\(712\) 15378.3 0.809448
\(713\) 5841.23 0.306811
\(714\) 0 0
\(715\) −430.739 −0.0225297
\(716\) −13946.5 −0.727941
\(717\) 0 0
\(718\) −27195.4 −1.41354
\(719\) 6891.17 0.357437 0.178718 0.983900i \(-0.442805\pi\)
0.178718 + 0.983900i \(0.442805\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −7961.97 −0.410407
\(723\) 0 0
\(724\) 6334.53 0.325167
\(725\) 1975.35 0.101190
\(726\) 0 0
\(727\) 4904.38 0.250197 0.125099 0.992144i \(-0.460075\pi\)
0.125099 + 0.992144i \(0.460075\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 4841.82 0.245485
\(731\) 2149.25 0.108745
\(732\) 0 0
\(733\) 6610.71 0.333114 0.166557 0.986032i \(-0.446735\pi\)
0.166557 + 0.986032i \(0.446735\pi\)
\(734\) 7818.78 0.393183
\(735\) 0 0
\(736\) −4987.86 −0.249803
\(737\) −618.762 −0.0309259
\(738\) 0 0
\(739\) −27941.3 −1.39085 −0.695425 0.718599i \(-0.744784\pi\)
−0.695425 + 0.718599i \(0.744784\pi\)
\(740\) −5448.24 −0.270651
\(741\) 0 0
\(742\) 0 0
\(743\) 29535.5 1.45835 0.729174 0.684328i \(-0.239905\pi\)
0.729174 + 0.684328i \(0.239905\pi\)
\(744\) 0 0
\(745\) 8067.61 0.396744
\(746\) 6193.07 0.303947
\(747\) 0 0
\(748\) −426.216 −0.0208342
\(749\) 0 0
\(750\) 0 0
\(751\) −35047.9 −1.70295 −0.851475 0.524395i \(-0.824291\pi\)
−0.851475 + 0.524395i \(0.824291\pi\)
\(752\) 15539.1 0.753525
\(753\) 0 0
\(754\) 2387.02 0.115292
\(755\) −202.167 −0.00974517
\(756\) 0 0
\(757\) 19501.6 0.936326 0.468163 0.883642i \(-0.344916\pi\)
0.468163 + 0.883642i \(0.344916\pi\)
\(758\) −24304.0 −1.16459
\(759\) 0 0
\(760\) 6158.21 0.293923
\(761\) 22813.5 1.08672 0.543358 0.839501i \(-0.317153\pi\)
0.543358 + 0.839501i \(0.317153\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 19601.7 0.928228
\(765\) 0 0
\(766\) −33278.5 −1.56971
\(767\) −20351.8 −0.958096
\(768\) 0 0
\(769\) −23272.0 −1.09130 −0.545650 0.838013i \(-0.683717\pi\)
−0.545650 + 0.838013i \(0.683717\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13192.2 0.615023
\(773\) −29648.9 −1.37956 −0.689778 0.724021i \(-0.742292\pi\)
−0.689778 + 0.724021i \(0.742292\pi\)
\(774\) 0 0
\(775\) −15906.7 −0.737273
\(776\) −15853.0 −0.733361
\(777\) 0 0
\(778\) 42267.9 1.94779
\(779\) 15822.7 0.727739
\(780\) 0 0
\(781\) −538.274 −0.0246619
\(782\) 4864.78 0.222461
\(783\) 0 0
\(784\) 0 0
\(785\) 15345.1 0.697694
\(786\) 0 0
\(787\) 19003.2 0.860726 0.430363 0.902656i \(-0.358386\pi\)
0.430363 + 0.902656i \(0.358386\pi\)
\(788\) 4078.56 0.184381
\(789\) 0 0
\(790\) −5500.73 −0.247731
\(791\) 0 0
\(792\) 0 0
\(793\) −18157.3 −0.813097
\(794\) −36013.8 −1.60968
\(795\) 0 0
\(796\) −3165.12 −0.140936
\(797\) −19286.8 −0.857182 −0.428591 0.903499i \(-0.640990\pi\)
−0.428591 + 0.903499i \(0.640990\pi\)
\(798\) 0 0
\(799\) −9064.03 −0.401330
\(800\) 13582.8 0.600283
\(801\) 0 0
\(802\) 2734.04 0.120377
\(803\) 489.575 0.0215152
\(804\) 0 0
\(805\) 0 0
\(806\) −19221.8 −0.840023
\(807\) 0 0
\(808\) −18798.0 −0.818453
\(809\) 26463.5 1.15007 0.575034 0.818129i \(-0.304989\pi\)
0.575034 + 0.818129i \(0.304989\pi\)
\(810\) 0 0
\(811\) 28814.1 1.24759 0.623797 0.781586i \(-0.285589\pi\)
0.623797 + 0.781586i \(0.285589\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1658.03 −0.0713930
\(815\) −13962.7 −0.600113
\(816\) 0 0
\(817\) 3109.73 0.133165
\(818\) 30061.6 1.28494
\(819\) 0 0
\(820\) −6115.81 −0.260455
\(821\) −34564.5 −1.46932 −0.734658 0.678437i \(-0.762658\pi\)
−0.734658 + 0.678437i \(0.762658\pi\)
\(822\) 0 0
\(823\) 10429.7 0.441746 0.220873 0.975303i \(-0.429109\pi\)
0.220873 + 0.975303i \(0.429109\pi\)
\(824\) −394.799 −0.0166911
\(825\) 0 0
\(826\) 0 0
\(827\) −33622.9 −1.41376 −0.706881 0.707332i \(-0.749899\pi\)
−0.706881 + 0.707332i \(0.749899\pi\)
\(828\) 0 0
\(829\) 37426.6 1.56801 0.784004 0.620756i \(-0.213174\pi\)
0.784004 + 0.620756i \(0.213174\pi\)
\(830\) −30358.3 −1.26958
\(831\) 0 0
\(832\) −1912.28 −0.0796830
\(833\) 0 0
\(834\) 0 0
\(835\) −1040.05 −0.0431047
\(836\) −616.689 −0.0255127
\(837\) 0 0
\(838\) 4487.09 0.184969
\(839\) −20073.3 −0.825993 −0.412996 0.910733i \(-0.635518\pi\)
−0.412996 + 0.910733i \(0.635518\pi\)
\(840\) 0 0
\(841\) −23809.0 −0.976217
\(842\) 4511.34 0.184645
\(843\) 0 0
\(844\) −3387.40 −0.138151
\(845\) 9028.10 0.367546
\(846\) 0 0
\(847\) 0 0
\(848\) 17730.7 0.718014
\(849\) 0 0
\(850\) −13247.7 −0.534578
\(851\) 6287.82 0.253283
\(852\) 0 0
\(853\) 31621.1 1.26927 0.634635 0.772812i \(-0.281151\pi\)
0.634635 + 0.772812i \(0.281151\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 21581.9 0.861747
\(857\) 5655.26 0.225414 0.112707 0.993628i \(-0.464048\pi\)
0.112707 + 0.993628i \(0.464048\pi\)
\(858\) 0 0
\(859\) −25859.7 −1.02715 −0.513574 0.858045i \(-0.671679\pi\)
−0.513574 + 0.858045i \(0.671679\pi\)
\(860\) −1201.98 −0.0476593
\(861\) 0 0
\(862\) 244.634 0.00966621
\(863\) 12328.5 0.486288 0.243144 0.969990i \(-0.421821\pi\)
0.243144 + 0.969990i \(0.421821\pi\)
\(864\) 0 0
\(865\) 7322.05 0.287812
\(866\) 23685.5 0.929405
\(867\) 0 0
\(868\) 0 0
\(869\) −556.200 −0.0217121
\(870\) 0 0
\(871\) −7721.84 −0.300396
\(872\) 17608.6 0.683834
\(873\) 0 0
\(874\) 7038.82 0.272416
\(875\) 0 0
\(876\) 0 0
\(877\) −18980.7 −0.730825 −0.365412 0.930846i \(-0.619072\pi\)
−0.365412 + 0.930846i \(0.619072\pi\)
\(878\) −63489.1 −2.44038
\(879\) 0 0
\(880\) −1203.42 −0.0460990
\(881\) −38081.2 −1.45629 −0.728144 0.685424i \(-0.759617\pi\)
−0.728144 + 0.685424i \(0.759617\pi\)
\(882\) 0 0
\(883\) 6338.38 0.241567 0.120783 0.992679i \(-0.461459\pi\)
0.120783 + 0.992679i \(0.461459\pi\)
\(884\) −5318.97 −0.202371
\(885\) 0 0
\(886\) 37860.2 1.43560
\(887\) 22874.3 0.865889 0.432944 0.901421i \(-0.357475\pi\)
0.432944 + 0.901421i \(0.357475\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 25083.8 0.944731
\(891\) 0 0
\(892\) 16738.1 0.628290
\(893\) −13114.7 −0.491452
\(894\) 0 0
\(895\) 22969.4 0.857856
\(896\) 0 0
\(897\) 0 0
\(898\) −37440.4 −1.39132
\(899\) −4670.85 −0.173283
\(900\) 0 0
\(901\) −10342.4 −0.382416
\(902\) −1861.19 −0.0687037
\(903\) 0 0
\(904\) −6683.49 −0.245896
\(905\) −10432.7 −0.383199
\(906\) 0 0
\(907\) −33888.9 −1.24064 −0.620320 0.784349i \(-0.712997\pi\)
−0.620320 + 0.784349i \(0.712997\pi\)
\(908\) −20696.6 −0.756434
\(909\) 0 0
\(910\) 0 0
\(911\) 10145.9 0.368990 0.184495 0.982833i \(-0.440935\pi\)
0.184495 + 0.982833i \(0.440935\pi\)
\(912\) 0 0
\(913\) −3069.65 −0.111271
\(914\) 15664.0 0.566870
\(915\) 0 0
\(916\) 5402.87 0.194886
\(917\) 0 0
\(918\) 0 0
\(919\) 30423.3 1.09203 0.546013 0.837777i \(-0.316145\pi\)
0.546013 + 0.837777i \(0.316145\pi\)
\(920\) 2747.08 0.0984440
\(921\) 0 0
\(922\) 38380.3 1.37092
\(923\) −6717.40 −0.239551
\(924\) 0 0
\(925\) −17122.9 −0.608645
\(926\) 60805.6 2.15788
\(927\) 0 0
\(928\) 3988.47 0.141086
\(929\) 18206.1 0.642976 0.321488 0.946914i \(-0.395817\pi\)
0.321488 + 0.946914i \(0.395817\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −26718.2 −0.939037
\(933\) 0 0
\(934\) −21897.2 −0.767127
\(935\) 701.960 0.0245525
\(936\) 0 0
\(937\) 15511.4 0.540806 0.270403 0.962747i \(-0.412843\pi\)
0.270403 + 0.962747i \(0.412843\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 5069.10 0.175889
\(941\) −90.6984 −0.00314206 −0.00157103 0.999999i \(-0.500500\pi\)
−0.00157103 + 0.999999i \(0.500500\pi\)
\(942\) 0 0
\(943\) 7058.27 0.243742
\(944\) −56859.5 −1.96040
\(945\) 0 0
\(946\) −365.790 −0.0125717
\(947\) −35516.0 −1.21871 −0.609354 0.792899i \(-0.708571\pi\)
−0.609354 + 0.792899i \(0.708571\pi\)
\(948\) 0 0
\(949\) 6109.66 0.208986
\(950\) −19168.0 −0.654622
\(951\) 0 0
\(952\) 0 0
\(953\) −22433.4 −0.762526 −0.381263 0.924467i \(-0.624511\pi\)
−0.381263 + 0.924467i \(0.624511\pi\)
\(954\) 0 0
\(955\) −32283.3 −1.09389
\(956\) 7367.25 0.249241
\(957\) 0 0
\(958\) −1299.25 −0.0438173
\(959\) 0 0
\(960\) 0 0
\(961\) 7821.56 0.262548
\(962\) −20691.4 −0.693469
\(963\) 0 0
\(964\) 19364.9 0.646994
\(965\) −21727.0 −0.724785
\(966\) 0 0
\(967\) 2753.37 0.0915639 0.0457820 0.998951i \(-0.485422\pi\)
0.0457820 + 0.998951i \(0.485422\pi\)
\(968\) 18443.8 0.612405
\(969\) 0 0
\(970\) −25858.0 −0.855927
\(971\) 46754.1 1.54522 0.772611 0.634880i \(-0.218950\pi\)
0.772611 + 0.634880i \(0.218950\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 89.8096 0.00295450
\(975\) 0 0
\(976\) −50728.7 −1.66371
\(977\) −34781.1 −1.13894 −0.569471 0.822011i \(-0.692852\pi\)
−0.569471 + 0.822011i \(0.692852\pi\)
\(978\) 0 0
\(979\) 2536.32 0.0827998
\(980\) 0 0
\(981\) 0 0
\(982\) 21747.4 0.706708
\(983\) −29661.0 −0.962401 −0.481200 0.876611i \(-0.659799\pi\)
−0.481200 + 0.876611i \(0.659799\pi\)
\(984\) 0 0
\(985\) −6717.22 −0.217288
\(986\) −3890.05 −0.125643
\(987\) 0 0
\(988\) −7695.98 −0.247816
\(989\) 1387.20 0.0446011
\(990\) 0 0
\(991\) −13621.6 −0.436636 −0.218318 0.975878i \(-0.570057\pi\)
−0.218318 + 0.975878i \(0.570057\pi\)
\(992\) −32117.6 −1.02796
\(993\) 0 0
\(994\) 0 0
\(995\) 5212.83 0.166088
\(996\) 0 0
\(997\) 9439.71 0.299858 0.149929 0.988697i \(-0.452095\pi\)
0.149929 + 0.988697i \(0.452095\pi\)
\(998\) −8209.46 −0.260387
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bg.1.5 yes 6
3.2 odd 2 inner 1323.4.a.bg.1.2 yes 6
7.6 odd 2 1323.4.a.bf.1.5 yes 6
21.20 even 2 1323.4.a.bf.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bf.1.2 6 21.20 even 2
1323.4.a.bf.1.5 yes 6 7.6 odd 2
1323.4.a.bg.1.2 yes 6 3.2 odd 2 inner
1323.4.a.bg.1.5 yes 6 1.1 even 1 trivial