Properties

Label 1323.4.a.bg.1.1
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 42x^{4} + 369x^{2} - 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.45019\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.45019 q^{2} +21.7046 q^{4} -19.3432 q^{5} -74.6929 q^{8} +O(q^{10})\) \(q-5.45019 q^{2} +21.7046 q^{4} -19.3432 q^{5} -74.6929 q^{8} +105.424 q^{10} +11.2132 q^{11} +46.3102 q^{13} +233.454 q^{16} +97.6541 q^{17} +98.9176 q^{19} -419.836 q^{20} -61.1139 q^{22} +138.173 q^{23} +249.158 q^{25} -252.400 q^{26} +180.123 q^{29} +31.9046 q^{31} -674.825 q^{32} -532.234 q^{34} -205.452 q^{37} -539.120 q^{38} +1444.80 q^{40} -234.404 q^{41} -320.568 q^{43} +243.377 q^{44} -753.067 q^{46} +312.715 q^{47} -1357.96 q^{50} +1005.15 q^{52} +53.7942 q^{53} -216.898 q^{55} -981.706 q^{58} -400.291 q^{59} +97.3536 q^{61} -173.886 q^{62} +1810.30 q^{64} -895.786 q^{65} +257.525 q^{67} +2119.55 q^{68} +253.601 q^{71} +1161.99 q^{73} +1119.75 q^{74} +2146.97 q^{76} -1070.16 q^{79} -4515.73 q^{80} +1277.55 q^{82} +889.495 q^{83} -1888.94 q^{85} +1747.16 q^{86} -837.543 q^{88} +647.303 q^{89} +2998.98 q^{92} -1704.36 q^{94} -1913.38 q^{95} -673.379 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 36 q^{4} + 180 q^{10} + 108 q^{13} + 420 q^{16} + 198 q^{19} - 84 q^{22} + 420 q^{25} - 90 q^{31} - 648 q^{34} - 402 q^{37} + 2844 q^{40} - 660 q^{43} - 1332 q^{46} + 1224 q^{52} + 846 q^{55} - 1800 q^{58} + 1152 q^{61} + 2964 q^{64} + 924 q^{67} + 1260 q^{73} + 5868 q^{76} - 1500 q^{79} + 4500 q^{82} - 2232 q^{85} - 2460 q^{88} - 4968 q^{94} + 3312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.45019 −1.92693 −0.963467 0.267826i \(-0.913695\pi\)
−0.963467 + 0.267826i \(0.913695\pi\)
\(3\) 0 0
\(4\) 21.7046 2.71308
\(5\) −19.3432 −1.73011 −0.865053 0.501681i \(-0.832715\pi\)
−0.865053 + 0.501681i \(0.832715\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −74.6929 −3.30099
\(9\) 0 0
\(10\) 105.424 3.33380
\(11\) 11.2132 0.307354 0.153677 0.988121i \(-0.450888\pi\)
0.153677 + 0.988121i \(0.450888\pi\)
\(12\) 0 0
\(13\) 46.3102 0.988010 0.494005 0.869459i \(-0.335532\pi\)
0.494005 + 0.869459i \(0.335532\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 233.454 3.64771
\(17\) 97.6541 1.39321 0.696606 0.717454i \(-0.254693\pi\)
0.696606 + 0.717454i \(0.254693\pi\)
\(18\) 0 0
\(19\) 98.9176 1.19438 0.597191 0.802099i \(-0.296284\pi\)
0.597191 + 0.802099i \(0.296284\pi\)
\(20\) −419.836 −4.69391
\(21\) 0 0
\(22\) −61.1139 −0.592251
\(23\) 138.173 1.25265 0.626325 0.779562i \(-0.284558\pi\)
0.626325 + 0.779562i \(0.284558\pi\)
\(24\) 0 0
\(25\) 249.158 1.99327
\(26\) −252.400 −1.90383
\(27\) 0 0
\(28\) 0 0
\(29\) 180.123 1.15338 0.576690 0.816963i \(-0.304344\pi\)
0.576690 + 0.816963i \(0.304344\pi\)
\(30\) 0 0
\(31\) 31.9046 0.184846 0.0924230 0.995720i \(-0.470539\pi\)
0.0924230 + 0.995720i \(0.470539\pi\)
\(32\) −674.825 −3.72792
\(33\) 0 0
\(34\) −532.234 −2.68463
\(35\) 0 0
\(36\) 0 0
\(37\) −205.452 −0.912867 −0.456433 0.889758i \(-0.650873\pi\)
−0.456433 + 0.889758i \(0.650873\pi\)
\(38\) −539.120 −2.30149
\(39\) 0 0
\(40\) 1444.80 5.71106
\(41\) −234.404 −0.892874 −0.446437 0.894815i \(-0.647307\pi\)
−0.446437 + 0.894815i \(0.647307\pi\)
\(42\) 0 0
\(43\) −320.568 −1.13689 −0.568443 0.822723i \(-0.692454\pi\)
−0.568443 + 0.822723i \(0.692454\pi\)
\(44\) 243.377 0.833875
\(45\) 0 0
\(46\) −753.067 −2.41378
\(47\) 312.715 0.970516 0.485258 0.874371i \(-0.338726\pi\)
0.485258 + 0.874371i \(0.338726\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1357.96 −3.84089
\(51\) 0 0
\(52\) 1005.15 2.68055
\(53\) 53.7942 0.139419 0.0697094 0.997567i \(-0.477793\pi\)
0.0697094 + 0.997567i \(0.477793\pi\)
\(54\) 0 0
\(55\) −216.898 −0.531755
\(56\) 0 0
\(57\) 0 0
\(58\) −981.706 −2.22249
\(59\) −400.291 −0.883278 −0.441639 0.897193i \(-0.645603\pi\)
−0.441639 + 0.897193i \(0.645603\pi\)
\(60\) 0 0
\(61\) 97.3536 0.204342 0.102171 0.994767i \(-0.467421\pi\)
0.102171 + 0.994767i \(0.467421\pi\)
\(62\) −173.886 −0.356186
\(63\) 0 0
\(64\) 1810.30 3.53574
\(65\) −895.786 −1.70936
\(66\) 0 0
\(67\) 257.525 0.469577 0.234789 0.972046i \(-0.424560\pi\)
0.234789 + 0.972046i \(0.424560\pi\)
\(68\) 2119.55 3.77989
\(69\) 0 0
\(70\) 0 0
\(71\) 253.601 0.423900 0.211950 0.977280i \(-0.432019\pi\)
0.211950 + 0.977280i \(0.432019\pi\)
\(72\) 0 0
\(73\) 1161.99 1.86303 0.931514 0.363706i \(-0.118489\pi\)
0.931514 + 0.363706i \(0.118489\pi\)
\(74\) 1119.75 1.75904
\(75\) 0 0
\(76\) 2146.97 3.24045
\(77\) 0 0
\(78\) 0 0
\(79\) −1070.16 −1.52408 −0.762039 0.647531i \(-0.775802\pi\)
−0.762039 + 0.647531i \(0.775802\pi\)
\(80\) −4515.73 −6.31093
\(81\) 0 0
\(82\) 1277.55 1.72051
\(83\) 889.495 1.17632 0.588161 0.808744i \(-0.299852\pi\)
0.588161 + 0.808744i \(0.299852\pi\)
\(84\) 0 0
\(85\) −1888.94 −2.41040
\(86\) 1747.16 2.19070
\(87\) 0 0
\(88\) −837.543 −1.01457
\(89\) 647.303 0.770943 0.385472 0.922720i \(-0.374039\pi\)
0.385472 + 0.922720i \(0.374039\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2998.98 3.39854
\(93\) 0 0
\(94\) −1704.36 −1.87012
\(95\) −1913.38 −2.06641
\(96\) 0 0
\(97\) −673.379 −0.704859 −0.352429 0.935838i \(-0.614644\pi\)
−0.352429 + 0.935838i \(0.614644\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5407.89 5.40789
\(101\) 243.254 0.239650 0.119825 0.992795i \(-0.461767\pi\)
0.119825 + 0.992795i \(0.461767\pi\)
\(102\) 0 0
\(103\) −486.156 −0.465072 −0.232536 0.972588i \(-0.574702\pi\)
−0.232536 + 0.972588i \(0.574702\pi\)
\(104\) −3459.04 −3.26141
\(105\) 0 0
\(106\) −293.189 −0.268651
\(107\) −384.679 −0.347555 −0.173777 0.984785i \(-0.555597\pi\)
−0.173777 + 0.984785i \(0.555597\pi\)
\(108\) 0 0
\(109\) 994.781 0.874153 0.437077 0.899424i \(-0.356014\pi\)
0.437077 + 0.899424i \(0.356014\pi\)
\(110\) 1182.14 1.02466
\(111\) 0 0
\(112\) 0 0
\(113\) 189.932 0.158118 0.0790589 0.996870i \(-0.474808\pi\)
0.0790589 + 0.996870i \(0.474808\pi\)
\(114\) 0 0
\(115\) −2672.70 −2.16722
\(116\) 3909.50 3.12921
\(117\) 0 0
\(118\) 2181.66 1.70202
\(119\) 0 0
\(120\) 0 0
\(121\) −1205.27 −0.905534
\(122\) −530.596 −0.393754
\(123\) 0 0
\(124\) 692.476 0.501502
\(125\) −2401.62 −1.71846
\(126\) 0 0
\(127\) 1679.82 1.17370 0.586851 0.809695i \(-0.300367\pi\)
0.586851 + 0.809695i \(0.300367\pi\)
\(128\) −4467.88 −3.08522
\(129\) 0 0
\(130\) 4882.21 3.29383
\(131\) −237.457 −0.158372 −0.0791859 0.996860i \(-0.525232\pi\)
−0.0791859 + 0.996860i \(0.525232\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1403.56 −0.904845
\(135\) 0 0
\(136\) −7294.07 −4.59898
\(137\) −526.657 −0.328433 −0.164217 0.986424i \(-0.552510\pi\)
−0.164217 + 0.986424i \(0.552510\pi\)
\(138\) 0 0
\(139\) −580.607 −0.354291 −0.177145 0.984185i \(-0.556686\pi\)
−0.177145 + 0.984185i \(0.556686\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1382.18 −0.816828
\(143\) 519.283 0.303669
\(144\) 0 0
\(145\) −3484.15 −1.99547
\(146\) −6333.09 −3.58993
\(147\) 0 0
\(148\) −4459.26 −2.47668
\(149\) −2781.48 −1.52931 −0.764657 0.644438i \(-0.777091\pi\)
−0.764657 + 0.644438i \(0.777091\pi\)
\(150\) 0 0
\(151\) −1413.35 −0.761702 −0.380851 0.924636i \(-0.624369\pi\)
−0.380851 + 0.924636i \(0.624369\pi\)
\(152\) −7388.44 −3.94264
\(153\) 0 0
\(154\) 0 0
\(155\) −617.135 −0.319803
\(156\) 0 0
\(157\) 2356.59 1.19794 0.598970 0.800772i \(-0.295577\pi\)
0.598970 + 0.800772i \(0.295577\pi\)
\(158\) 5832.57 2.93680
\(159\) 0 0
\(160\) 13053.3 6.44969
\(161\) 0 0
\(162\) 0 0
\(163\) 1309.51 0.629255 0.314627 0.949215i \(-0.398120\pi\)
0.314627 + 0.949215i \(0.398120\pi\)
\(164\) −5087.66 −2.42244
\(165\) 0 0
\(166\) −4847.92 −2.26670
\(167\) −1623.77 −0.752401 −0.376201 0.926538i \(-0.622770\pi\)
−0.376201 + 0.926538i \(0.622770\pi\)
\(168\) 0 0
\(169\) −52.3668 −0.0238356
\(170\) 10295.1 4.64469
\(171\) 0 0
\(172\) −6957.80 −3.08446
\(173\) 2219.78 0.975529 0.487765 0.872975i \(-0.337812\pi\)
0.487765 + 0.872975i \(0.337812\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2617.75 1.12114
\(177\) 0 0
\(178\) −3527.92 −1.48556
\(179\) −1124.59 −0.469584 −0.234792 0.972046i \(-0.575441\pi\)
−0.234792 + 0.972046i \(0.575441\pi\)
\(180\) 0 0
\(181\) 3951.04 1.62253 0.811267 0.584676i \(-0.198778\pi\)
0.811267 + 0.584676i \(0.198778\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −10320.5 −4.13499
\(185\) 3974.09 1.57936
\(186\) 0 0
\(187\) 1095.01 0.428209
\(188\) 6787.37 2.63308
\(189\) 0 0
\(190\) 10428.3 3.98183
\(191\) −1177.40 −0.446039 −0.223019 0.974814i \(-0.571591\pi\)
−0.223019 + 0.974814i \(0.571591\pi\)
\(192\) 0 0
\(193\) −1772.08 −0.660917 −0.330458 0.943821i \(-0.607203\pi\)
−0.330458 + 0.943821i \(0.607203\pi\)
\(194\) 3670.05 1.35822
\(195\) 0 0
\(196\) 0 0
\(197\) 794.274 0.287257 0.143629 0.989632i \(-0.454123\pi\)
0.143629 + 0.989632i \(0.454123\pi\)
\(198\) 0 0
\(199\) 3662.14 1.30453 0.652267 0.757990i \(-0.273818\pi\)
0.652267 + 0.757990i \(0.273818\pi\)
\(200\) −18610.3 −6.57975
\(201\) 0 0
\(202\) −1325.78 −0.461791
\(203\) 0 0
\(204\) 0 0
\(205\) 4534.12 1.54477
\(206\) 2649.64 0.896162
\(207\) 0 0
\(208\) 10811.3 3.60398
\(209\) 1109.18 0.367098
\(210\) 0 0
\(211\) 2063.69 0.673318 0.336659 0.941627i \(-0.390703\pi\)
0.336659 + 0.941627i \(0.390703\pi\)
\(212\) 1167.58 0.378254
\(213\) 0 0
\(214\) 2096.58 0.669715
\(215\) 6200.79 1.96693
\(216\) 0 0
\(217\) 0 0
\(218\) −5421.75 −1.68444
\(219\) 0 0
\(220\) −4707.69 −1.44269
\(221\) 4522.38 1.37651
\(222\) 0 0
\(223\) −3728.28 −1.11957 −0.559784 0.828638i \(-0.689116\pi\)
−0.559784 + 0.828638i \(0.689116\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1035.17 −0.304683
\(227\) 4558.22 1.33277 0.666387 0.745606i \(-0.267840\pi\)
0.666387 + 0.745606i \(0.267840\pi\)
\(228\) 0 0
\(229\) 2068.22 0.596819 0.298410 0.954438i \(-0.403544\pi\)
0.298410 + 0.954438i \(0.403544\pi\)
\(230\) 14566.7 4.17609
\(231\) 0 0
\(232\) −13453.9 −3.80730
\(233\) −1459.56 −0.410383 −0.205191 0.978722i \(-0.565782\pi\)
−0.205191 + 0.978722i \(0.565782\pi\)
\(234\) 0 0
\(235\) −6048.91 −1.67909
\(236\) −8688.16 −2.39640
\(237\) 0 0
\(238\) 0 0
\(239\) 2220.74 0.601035 0.300518 0.953776i \(-0.402841\pi\)
0.300518 + 0.953776i \(0.402841\pi\)
\(240\) 0 0
\(241\) −5064.37 −1.35363 −0.676815 0.736153i \(-0.736640\pi\)
−0.676815 + 0.736153i \(0.736640\pi\)
\(242\) 6568.93 1.74490
\(243\) 0 0
\(244\) 2113.02 0.554395
\(245\) 0 0
\(246\) 0 0
\(247\) 4580.89 1.18006
\(248\) −2383.04 −0.610175
\(249\) 0 0
\(250\) 13089.3 3.31135
\(251\) 1797.86 0.452112 0.226056 0.974114i \(-0.427417\pi\)
0.226056 + 0.974114i \(0.427417\pi\)
\(252\) 0 0
\(253\) 1549.35 0.385007
\(254\) −9155.37 −2.26165
\(255\) 0 0
\(256\) 9868.42 2.40928
\(257\) 2734.28 0.663656 0.331828 0.943340i \(-0.392335\pi\)
0.331828 + 0.943340i \(0.392335\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −19442.7 −4.63763
\(261\) 0 0
\(262\) 1294.19 0.305172
\(263\) −8197.71 −1.92203 −0.961013 0.276504i \(-0.910824\pi\)
−0.961013 + 0.276504i \(0.910824\pi\)
\(264\) 0 0
\(265\) −1040.55 −0.241209
\(266\) 0 0
\(267\) 0 0
\(268\) 5589.48 1.27400
\(269\) −237.512 −0.0538342 −0.0269171 0.999638i \(-0.508569\pi\)
−0.0269171 + 0.999638i \(0.508569\pi\)
\(270\) 0 0
\(271\) −4349.95 −0.975057 −0.487528 0.873107i \(-0.662101\pi\)
−0.487528 + 0.873107i \(0.662101\pi\)
\(272\) 22797.7 5.08204
\(273\) 0 0
\(274\) 2870.38 0.632869
\(275\) 2793.85 0.612638
\(276\) 0 0
\(277\) 6228.51 1.35103 0.675515 0.737347i \(-0.263921\pi\)
0.675515 + 0.737347i \(0.263921\pi\)
\(278\) 3164.42 0.682695
\(279\) 0 0
\(280\) 0 0
\(281\) 3360.95 0.713515 0.356757 0.934197i \(-0.383882\pi\)
0.356757 + 0.934197i \(0.383882\pi\)
\(282\) 0 0
\(283\) 8009.37 1.68236 0.841180 0.540755i \(-0.181862\pi\)
0.841180 + 0.540755i \(0.181862\pi\)
\(284\) 5504.32 1.15007
\(285\) 0 0
\(286\) −2830.19 −0.585150
\(287\) 0 0
\(288\) 0 0
\(289\) 4623.33 0.941041
\(290\) 18989.3 3.84514
\(291\) 0 0
\(292\) 25220.6 5.05454
\(293\) −9247.12 −1.84376 −0.921881 0.387472i \(-0.873348\pi\)
−0.921881 + 0.387472i \(0.873348\pi\)
\(294\) 0 0
\(295\) 7742.89 1.52816
\(296\) 15345.8 3.01336
\(297\) 0 0
\(298\) 15159.6 2.94689
\(299\) 6398.80 1.23763
\(300\) 0 0
\(301\) 0 0
\(302\) 7703.04 1.46775
\(303\) 0 0
\(304\) 23092.7 4.35676
\(305\) −1883.13 −0.353533
\(306\) 0 0
\(307\) 3367.11 0.625965 0.312983 0.949759i \(-0.398672\pi\)
0.312983 + 0.949759i \(0.398672\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3363.51 0.616240
\(311\) 6555.92 1.19534 0.597672 0.801740i \(-0.296092\pi\)
0.597672 + 0.801740i \(0.296092\pi\)
\(312\) 0 0
\(313\) −616.028 −0.111246 −0.0556229 0.998452i \(-0.517714\pi\)
−0.0556229 + 0.998452i \(0.517714\pi\)
\(314\) −12843.9 −2.30835
\(315\) 0 0
\(316\) −23227.4 −4.13494
\(317\) −3481.49 −0.616845 −0.308422 0.951250i \(-0.599801\pi\)
−0.308422 + 0.951250i \(0.599801\pi\)
\(318\) 0 0
\(319\) 2019.75 0.354496
\(320\) −35016.9 −6.11720
\(321\) 0 0
\(322\) 0 0
\(323\) 9659.71 1.66403
\(324\) 0 0
\(325\) 11538.6 1.96937
\(326\) −7137.07 −1.21253
\(327\) 0 0
\(328\) 17508.3 2.94737
\(329\) 0 0
\(330\) 0 0
\(331\) −7187.44 −1.19353 −0.596763 0.802417i \(-0.703547\pi\)
−0.596763 + 0.802417i \(0.703547\pi\)
\(332\) 19306.2 3.19145
\(333\) 0 0
\(334\) 8849.86 1.44983
\(335\) −4981.35 −0.812418
\(336\) 0 0
\(337\) 3575.89 0.578015 0.289007 0.957327i \(-0.406675\pi\)
0.289007 + 0.957327i \(0.406675\pi\)
\(338\) 285.410 0.0459297
\(339\) 0 0
\(340\) −40998.8 −6.53962
\(341\) 357.751 0.0568131
\(342\) 0 0
\(343\) 0 0
\(344\) 23944.1 3.75285
\(345\) 0 0
\(346\) −12098.2 −1.87978
\(347\) 574.458 0.0888719 0.0444359 0.999012i \(-0.485851\pi\)
0.0444359 + 0.999012i \(0.485851\pi\)
\(348\) 0 0
\(349\) −11491.0 −1.76246 −0.881229 0.472689i \(-0.843283\pi\)
−0.881229 + 0.472689i \(0.843283\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −7566.92 −1.14579
\(353\) 1369.32 0.206464 0.103232 0.994657i \(-0.467082\pi\)
0.103232 + 0.994657i \(0.467082\pi\)
\(354\) 0 0
\(355\) −4905.45 −0.733392
\(356\) 14049.5 2.09163
\(357\) 0 0
\(358\) 6129.21 0.904857
\(359\) 12915.0 1.89868 0.949339 0.314254i \(-0.101754\pi\)
0.949339 + 0.314254i \(0.101754\pi\)
\(360\) 0 0
\(361\) 2925.68 0.426546
\(362\) −21533.9 −3.12652
\(363\) 0 0
\(364\) 0 0
\(365\) −22476.6 −3.22323
\(366\) 0 0
\(367\) 1186.30 0.168731 0.0843653 0.996435i \(-0.473114\pi\)
0.0843653 + 0.996435i \(0.473114\pi\)
\(368\) 32256.9 4.56931
\(369\) 0 0
\(370\) −21659.6 −3.04332
\(371\) 0 0
\(372\) 0 0
\(373\) −6462.68 −0.897117 −0.448559 0.893753i \(-0.648062\pi\)
−0.448559 + 0.893753i \(0.648062\pi\)
\(374\) −5968.02 −0.825131
\(375\) 0 0
\(376\) −23357.6 −3.20366
\(377\) 8341.54 1.13955
\(378\) 0 0
\(379\) −8555.31 −1.15952 −0.579758 0.814789i \(-0.696853\pi\)
−0.579758 + 0.814789i \(0.696853\pi\)
\(380\) −41529.2 −5.60632
\(381\) 0 0
\(382\) 6417.04 0.859488
\(383\) −570.982 −0.0761770 −0.0380885 0.999274i \(-0.512127\pi\)
−0.0380885 + 0.999274i \(0.512127\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9658.17 1.27354
\(387\) 0 0
\(388\) −14615.4 −1.91234
\(389\) 14437.2 1.88174 0.940869 0.338771i \(-0.110011\pi\)
0.940869 + 0.338771i \(0.110011\pi\)
\(390\) 0 0
\(391\) 13493.1 1.74521
\(392\) 0 0
\(393\) 0 0
\(394\) −4328.95 −0.553526
\(395\) 20700.3 2.63682
\(396\) 0 0
\(397\) 9384.81 1.18642 0.593212 0.805047i \(-0.297860\pi\)
0.593212 + 0.805047i \(0.297860\pi\)
\(398\) −19959.4 −2.51375
\(399\) 0 0
\(400\) 58166.9 7.27086
\(401\) −8167.50 −1.01712 −0.508560 0.861026i \(-0.669822\pi\)
−0.508560 + 0.861026i \(0.669822\pi\)
\(402\) 0 0
\(403\) 1477.51 0.182630
\(404\) 5279.74 0.650190
\(405\) 0 0
\(406\) 0 0
\(407\) −2303.76 −0.280573
\(408\) 0 0
\(409\) −11655.7 −1.40913 −0.704567 0.709637i \(-0.748859\pi\)
−0.704567 + 0.709637i \(0.748859\pi\)
\(410\) −24711.9 −2.97666
\(411\) 0 0
\(412\) −10551.8 −1.26178
\(413\) 0 0
\(414\) 0 0
\(415\) −17205.7 −2.03516
\(416\) −31251.3 −3.68322
\(417\) 0 0
\(418\) −6045.23 −0.707373
\(419\) −10257.6 −1.19598 −0.597992 0.801502i \(-0.704035\pi\)
−0.597992 + 0.801502i \(0.704035\pi\)
\(420\) 0 0
\(421\) −8160.70 −0.944723 −0.472361 0.881405i \(-0.656598\pi\)
−0.472361 + 0.881405i \(0.656598\pi\)
\(422\) −11247.5 −1.29744
\(423\) 0 0
\(424\) −4018.04 −0.460220
\(425\) 24331.3 2.77704
\(426\) 0 0
\(427\) 0 0
\(428\) −8349.32 −0.942943
\(429\) 0 0
\(430\) −33795.5 −3.79015
\(431\) 8722.62 0.974835 0.487417 0.873169i \(-0.337939\pi\)
0.487417 + 0.873169i \(0.337939\pi\)
\(432\) 0 0
\(433\) 12628.4 1.40157 0.700787 0.713371i \(-0.252832\pi\)
0.700787 + 0.713371i \(0.252832\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 21591.3 2.37165
\(437\) 13667.7 1.49614
\(438\) 0 0
\(439\) −3487.47 −0.379153 −0.189576 0.981866i \(-0.560711\pi\)
−0.189576 + 0.981866i \(0.560711\pi\)
\(440\) 16200.7 1.75532
\(441\) 0 0
\(442\) −24647.9 −2.65244
\(443\) 14138.0 1.51629 0.758144 0.652087i \(-0.226106\pi\)
0.758144 + 0.652087i \(0.226106\pi\)
\(444\) 0 0
\(445\) −12520.9 −1.33381
\(446\) 20319.8 2.15734
\(447\) 0 0
\(448\) 0 0
\(449\) −14007.0 −1.47223 −0.736114 0.676858i \(-0.763341\pi\)
−0.736114 + 0.676858i \(0.763341\pi\)
\(450\) 0 0
\(451\) −2628.41 −0.274428
\(452\) 4122.40 0.428986
\(453\) 0 0
\(454\) −24843.2 −2.56817
\(455\) 0 0
\(456\) 0 0
\(457\) 4837.29 0.495140 0.247570 0.968870i \(-0.420368\pi\)
0.247570 + 0.968870i \(0.420368\pi\)
\(458\) −11272.2 −1.15003
\(459\) 0 0
\(460\) −58009.9 −5.87983
\(461\) 10034.5 1.01378 0.506890 0.862011i \(-0.330795\pi\)
0.506890 + 0.862011i \(0.330795\pi\)
\(462\) 0 0
\(463\) −15501.9 −1.55602 −0.778008 0.628254i \(-0.783770\pi\)
−0.778008 + 0.628254i \(0.783770\pi\)
\(464\) 42050.4 4.20720
\(465\) 0 0
\(466\) 7954.91 0.790781
\(467\) 9616.13 0.952851 0.476426 0.879215i \(-0.341932\pi\)
0.476426 + 0.879215i \(0.341932\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 32967.7 3.23551
\(471\) 0 0
\(472\) 29898.8 2.91569
\(473\) −3594.57 −0.349426
\(474\) 0 0
\(475\) 24646.1 2.38072
\(476\) 0 0
\(477\) 0 0
\(478\) −12103.4 −1.15816
\(479\) −14159.7 −1.35067 −0.675337 0.737509i \(-0.736002\pi\)
−0.675337 + 0.737509i \(0.736002\pi\)
\(480\) 0 0
\(481\) −9514.51 −0.901922
\(482\) 27601.8 2.60836
\(483\) 0 0
\(484\) −26159.8 −2.45678
\(485\) 13025.3 1.21948
\(486\) 0 0
\(487\) 15584.6 1.45012 0.725058 0.688688i \(-0.241813\pi\)
0.725058 + 0.688688i \(0.241813\pi\)
\(488\) −7271.62 −0.674530
\(489\) 0 0
\(490\) 0 0
\(491\) 12898.0 1.18549 0.592747 0.805389i \(-0.298043\pi\)
0.592747 + 0.805389i \(0.298043\pi\)
\(492\) 0 0
\(493\) 17589.8 1.60690
\(494\) −24966.7 −2.27390
\(495\) 0 0
\(496\) 7448.23 0.674265
\(497\) 0 0
\(498\) 0 0
\(499\) 6707.11 0.601707 0.300853 0.953670i \(-0.402729\pi\)
0.300853 + 0.953670i \(0.402729\pi\)
\(500\) −52126.1 −4.66230
\(501\) 0 0
\(502\) −9798.70 −0.871190
\(503\) −14186.3 −1.25753 −0.628763 0.777597i \(-0.716438\pi\)
−0.628763 + 0.777597i \(0.716438\pi\)
\(504\) 0 0
\(505\) −4705.31 −0.414620
\(506\) −8444.26 −0.741884
\(507\) 0 0
\(508\) 36459.9 3.18435
\(509\) 12086.8 1.05253 0.526263 0.850322i \(-0.323593\pi\)
0.526263 + 0.850322i \(0.323593\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −18041.8 −1.55731
\(513\) 0 0
\(514\) −14902.3 −1.27882
\(515\) 9403.80 0.804623
\(516\) 0 0
\(517\) 3506.53 0.298292
\(518\) 0 0
\(519\) 0 0
\(520\) 66908.8 5.64259
\(521\) −12142.6 −1.02107 −0.510534 0.859857i \(-0.670552\pi\)
−0.510534 + 0.859857i \(0.670552\pi\)
\(522\) 0 0
\(523\) −3408.38 −0.284967 −0.142484 0.989797i \(-0.545509\pi\)
−0.142484 + 0.989797i \(0.545509\pi\)
\(524\) −5153.91 −0.429675
\(525\) 0 0
\(526\) 44679.1 3.70362
\(527\) 3115.61 0.257530
\(528\) 0 0
\(529\) 6924.66 0.569135
\(530\) 5671.20 0.464795
\(531\) 0 0
\(532\) 0 0
\(533\) −10855.3 −0.882168
\(534\) 0 0
\(535\) 7440.92 0.601306
\(536\) −19235.3 −1.55007
\(537\) 0 0
\(538\) 1294.49 0.103735
\(539\) 0 0
\(540\) 0 0
\(541\) −16737.5 −1.33013 −0.665066 0.746785i \(-0.731597\pi\)
−0.665066 + 0.746785i \(0.731597\pi\)
\(542\) 23708.1 1.87887
\(543\) 0 0
\(544\) −65899.5 −5.19378
\(545\) −19242.2 −1.51238
\(546\) 0 0
\(547\) −13940.6 −1.08968 −0.544840 0.838540i \(-0.683410\pi\)
−0.544840 + 0.838540i \(0.683410\pi\)
\(548\) −11430.9 −0.891065
\(549\) 0 0
\(550\) −15227.0 −1.18051
\(551\) 17817.3 1.37758
\(552\) 0 0
\(553\) 0 0
\(554\) −33946.6 −2.60335
\(555\) 0 0
\(556\) −12601.8 −0.961218
\(557\) −818.376 −0.0622544 −0.0311272 0.999515i \(-0.509910\pi\)
−0.0311272 + 0.999515i \(0.509910\pi\)
\(558\) 0 0
\(559\) −14845.5 −1.12325
\(560\) 0 0
\(561\) 0 0
\(562\) −18317.9 −1.37490
\(563\) 8957.98 0.670575 0.335288 0.942116i \(-0.391166\pi\)
0.335288 + 0.942116i \(0.391166\pi\)
\(564\) 0 0
\(565\) −3673.89 −0.273560
\(566\) −43652.6 −3.24180
\(567\) 0 0
\(568\) −18942.2 −1.39929
\(569\) −19997.8 −1.47338 −0.736688 0.676233i \(-0.763611\pi\)
−0.736688 + 0.676233i \(0.763611\pi\)
\(570\) 0 0
\(571\) −3391.26 −0.248546 −0.124273 0.992248i \(-0.539660\pi\)
−0.124273 + 0.992248i \(0.539660\pi\)
\(572\) 11270.8 0.823877
\(573\) 0 0
\(574\) 0 0
\(575\) 34426.8 2.49687
\(576\) 0 0
\(577\) −3957.72 −0.285549 −0.142775 0.989755i \(-0.545602\pi\)
−0.142775 + 0.989755i \(0.545602\pi\)
\(578\) −25198.1 −1.81332
\(579\) 0 0
\(580\) −75622.2 −5.41387
\(581\) 0 0
\(582\) 0 0
\(583\) 603.202 0.0428509
\(584\) −86792.6 −6.14983
\(585\) 0 0
\(586\) 50398.6 3.55281
\(587\) 12647.3 0.889283 0.444642 0.895709i \(-0.353331\pi\)
0.444642 + 0.895709i \(0.353331\pi\)
\(588\) 0 0
\(589\) 3155.92 0.220777
\(590\) −42200.3 −2.94467
\(591\) 0 0
\(592\) −47963.5 −3.32988
\(593\) 3910.60 0.270808 0.135404 0.990790i \(-0.456767\pi\)
0.135404 + 0.990790i \(0.456767\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −60371.0 −4.14915
\(597\) 0 0
\(598\) −34874.7 −2.38484
\(599\) 13933.9 0.950455 0.475228 0.879863i \(-0.342366\pi\)
0.475228 + 0.879863i \(0.342366\pi\)
\(600\) 0 0
\(601\) 16095.1 1.09240 0.546202 0.837654i \(-0.316073\pi\)
0.546202 + 0.837654i \(0.316073\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −30676.3 −2.06656
\(605\) 23313.7 1.56667
\(606\) 0 0
\(607\) −3050.91 −0.204008 −0.102004 0.994784i \(-0.532525\pi\)
−0.102004 + 0.994784i \(0.532525\pi\)
\(608\) −66752.0 −4.45255
\(609\) 0 0
\(610\) 10263.4 0.681235
\(611\) 14481.9 0.958879
\(612\) 0 0
\(613\) −1512.24 −0.0996394 −0.0498197 0.998758i \(-0.515865\pi\)
−0.0498197 + 0.998758i \(0.515865\pi\)
\(614\) −18351.4 −1.20619
\(615\) 0 0
\(616\) 0 0
\(617\) −23466.1 −1.53114 −0.765569 0.643354i \(-0.777542\pi\)
−0.765569 + 0.643354i \(0.777542\pi\)
\(618\) 0 0
\(619\) 20736.1 1.34645 0.673226 0.739437i \(-0.264908\pi\)
0.673226 + 0.739437i \(0.264908\pi\)
\(620\) −13394.7 −0.867651
\(621\) 0 0
\(622\) −35731.1 −2.30335
\(623\) 0 0
\(624\) 0 0
\(625\) 15310.1 0.979844
\(626\) 3357.47 0.214364
\(627\) 0 0
\(628\) 51148.9 3.25010
\(629\) −20063.2 −1.27182
\(630\) 0 0
\(631\) 15623.5 0.985673 0.492837 0.870122i \(-0.335960\pi\)
0.492837 + 0.870122i \(0.335960\pi\)
\(632\) 79933.2 5.03097
\(633\) 0 0
\(634\) 18974.8 1.18862
\(635\) −32493.1 −2.03063
\(636\) 0 0
\(637\) 0 0
\(638\) −11008.0 −0.683091
\(639\) 0 0
\(640\) 86423.0 5.33776
\(641\) −12284.6 −0.756961 −0.378481 0.925609i \(-0.623553\pi\)
−0.378481 + 0.925609i \(0.623553\pi\)
\(642\) 0 0
\(643\) −924.041 −0.0566728 −0.0283364 0.999598i \(-0.509021\pi\)
−0.0283364 + 0.999598i \(0.509021\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −52647.3 −3.20647
\(647\) 10330.2 0.627701 0.313850 0.949472i \(-0.398381\pi\)
0.313850 + 0.949472i \(0.398381\pi\)
\(648\) 0 0
\(649\) −4488.52 −0.271479
\(650\) −62887.4 −3.79484
\(651\) 0 0
\(652\) 28422.4 1.70722
\(653\) −3064.12 −0.183627 −0.0918134 0.995776i \(-0.529266\pi\)
−0.0918134 + 0.995776i \(0.529266\pi\)
\(654\) 0 0
\(655\) 4593.17 0.274000
\(656\) −54722.6 −3.25695
\(657\) 0 0
\(658\) 0 0
\(659\) 9157.78 0.541330 0.270665 0.962674i \(-0.412756\pi\)
0.270665 + 0.962674i \(0.412756\pi\)
\(660\) 0 0
\(661\) 23367.4 1.37502 0.687508 0.726177i \(-0.258705\pi\)
0.687508 + 0.726177i \(0.258705\pi\)
\(662\) 39172.9 2.29985
\(663\) 0 0
\(664\) −66438.9 −3.88303
\(665\) 0 0
\(666\) 0 0
\(667\) 24888.1 1.44478
\(668\) −35243.3 −2.04132
\(669\) 0 0
\(670\) 27149.3 1.56548
\(671\) 1091.64 0.0628053
\(672\) 0 0
\(673\) 34214.8 1.95971 0.979853 0.199719i \(-0.0640029\pi\)
0.979853 + 0.199719i \(0.0640029\pi\)
\(674\) −19489.3 −1.11380
\(675\) 0 0
\(676\) −1136.60 −0.0646679
\(677\) −19288.8 −1.09502 −0.547511 0.836799i \(-0.684424\pi\)
−0.547511 + 0.836799i \(0.684424\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 141090. 7.95672
\(681\) 0 0
\(682\) −1949.81 −0.109475
\(683\) −31119.7 −1.74343 −0.871714 0.490015i \(-0.836991\pi\)
−0.871714 + 0.490015i \(0.836991\pi\)
\(684\) 0 0
\(685\) 10187.2 0.568224
\(686\) 0 0
\(687\) 0 0
\(688\) −74837.7 −4.14703
\(689\) 2491.22 0.137747
\(690\) 0 0
\(691\) 12732.5 0.700967 0.350483 0.936569i \(-0.386017\pi\)
0.350483 + 0.936569i \(0.386017\pi\)
\(692\) 48179.4 2.64669
\(693\) 0 0
\(694\) −3130.91 −0.171250
\(695\) 11230.8 0.612961
\(696\) 0 0
\(697\) −22890.6 −1.24396
\(698\) 62628.1 3.39614
\(699\) 0 0
\(700\) 0 0
\(701\) 9506.11 0.512184 0.256092 0.966652i \(-0.417565\pi\)
0.256092 + 0.966652i \(0.417565\pi\)
\(702\) 0 0
\(703\) −20322.8 −1.09031
\(704\) 20299.2 1.08672
\(705\) 0 0
\(706\) −7463.08 −0.397842
\(707\) 0 0
\(708\) 0 0
\(709\) 2500.48 0.132450 0.0662252 0.997805i \(-0.478904\pi\)
0.0662252 + 0.997805i \(0.478904\pi\)
\(710\) 26735.7 1.41320
\(711\) 0 0
\(712\) −48348.9 −2.54487
\(713\) 4408.33 0.231548
\(714\) 0 0
\(715\) −10044.6 −0.525379
\(716\) −24408.7 −1.27402
\(717\) 0 0
\(718\) −70389.0 −3.65863
\(719\) 19519.3 1.01245 0.506223 0.862403i \(-0.331041\pi\)
0.506223 + 0.862403i \(0.331041\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15945.5 −0.821927
\(723\) 0 0
\(724\) 85755.9 4.40206
\(725\) 44879.2 2.29899
\(726\) 0 0
\(727\) 35008.3 1.78595 0.892975 0.450105i \(-0.148614\pi\)
0.892975 + 0.450105i \(0.148614\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 122502. 6.21096
\(731\) −31304.7 −1.58392
\(732\) 0 0
\(733\) 33284.0 1.67718 0.838590 0.544763i \(-0.183381\pi\)
0.838590 + 0.544763i \(0.183381\pi\)
\(734\) −6465.54 −0.325133
\(735\) 0 0
\(736\) −93242.3 −4.66978
\(737\) 2887.67 0.144326
\(738\) 0 0
\(739\) −25554.2 −1.27203 −0.636013 0.771678i \(-0.719418\pi\)
−0.636013 + 0.771678i \(0.719418\pi\)
\(740\) 86256.1 4.28492
\(741\) 0 0
\(742\) 0 0
\(743\) −3926.32 −0.193867 −0.0969333 0.995291i \(-0.530903\pi\)
−0.0969333 + 0.995291i \(0.530903\pi\)
\(744\) 0 0
\(745\) 53802.6 2.64587
\(746\) 35222.8 1.72869
\(747\) 0 0
\(748\) 23766.8 1.16177
\(749\) 0 0
\(750\) 0 0
\(751\) 2496.80 0.121318 0.0606589 0.998159i \(-0.480680\pi\)
0.0606589 + 0.998159i \(0.480680\pi\)
\(752\) 73004.6 3.54016
\(753\) 0 0
\(754\) −45463.0 −2.19584
\(755\) 27338.7 1.31782
\(756\) 0 0
\(757\) 9014.06 0.432789 0.216395 0.976306i \(-0.430570\pi\)
0.216395 + 0.976306i \(0.430570\pi\)
\(758\) 46628.1 2.23431
\(759\) 0 0
\(760\) 142916. 6.82118
\(761\) −2393.59 −0.114018 −0.0570089 0.998374i \(-0.518156\pi\)
−0.0570089 + 0.998374i \(0.518156\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −25554.9 −1.21014
\(765\) 0 0
\(766\) 3111.96 0.146788
\(767\) −18537.5 −0.872688
\(768\) 0 0
\(769\) 9474.06 0.444270 0.222135 0.975016i \(-0.428697\pi\)
0.222135 + 0.975016i \(0.428697\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −38462.3 −1.79312
\(773\) −12878.4 −0.599231 −0.299615 0.954060i \(-0.596858\pi\)
−0.299615 + 0.954060i \(0.596858\pi\)
\(774\) 0 0
\(775\) 7949.28 0.368447
\(776\) 50296.6 2.32673
\(777\) 0 0
\(778\) −78685.6 −3.62599
\(779\) −23186.7 −1.06643
\(780\) 0 0
\(781\) 2843.67 0.130287
\(782\) −73540.2 −3.36290
\(783\) 0 0
\(784\) 0 0
\(785\) −45584.0 −2.07256
\(786\) 0 0
\(787\) −16966.5 −0.768477 −0.384239 0.923234i \(-0.625536\pi\)
−0.384239 + 0.923234i \(0.625536\pi\)
\(788\) 17239.4 0.779351
\(789\) 0 0
\(790\) −112820. −5.08097
\(791\) 0 0
\(792\) 0 0
\(793\) 4508.46 0.201892
\(794\) −51149.0 −2.28616
\(795\) 0 0
\(796\) 79485.3 3.53930
\(797\) −21.6935 −0.000964143 0 −0.000482072 1.00000i \(-0.500153\pi\)
−0.000482072 1.00000i \(0.500153\pi\)
\(798\) 0 0
\(799\) 30538.0 1.35213
\(800\) −168138. −7.43073
\(801\) 0 0
\(802\) 44514.5 1.95993
\(803\) 13029.6 0.572609
\(804\) 0 0
\(805\) 0 0
\(806\) −8052.69 −0.351916
\(807\) 0 0
\(808\) −18169.3 −0.791083
\(809\) −31766.3 −1.38052 −0.690262 0.723560i \(-0.742505\pi\)
−0.690262 + 0.723560i \(0.742505\pi\)
\(810\) 0 0
\(811\) −31081.1 −1.34575 −0.672875 0.739756i \(-0.734941\pi\)
−0.672875 + 0.739756i \(0.734941\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 12556.0 0.540646
\(815\) −25330.0 −1.08868
\(816\) 0 0
\(817\) −31709.8 −1.35788
\(818\) 63525.7 2.71531
\(819\) 0 0
\(820\) 98411.5 4.19107
\(821\) −5021.74 −0.213472 −0.106736 0.994287i \(-0.534040\pi\)
−0.106736 + 0.994287i \(0.534040\pi\)
\(822\) 0 0
\(823\) 13443.5 0.569394 0.284697 0.958617i \(-0.408107\pi\)
0.284697 + 0.958617i \(0.408107\pi\)
\(824\) 36312.4 1.53520
\(825\) 0 0
\(826\) 0 0
\(827\) 37439.2 1.57423 0.787116 0.616805i \(-0.211573\pi\)
0.787116 + 0.616805i \(0.211573\pi\)
\(828\) 0 0
\(829\) 3890.21 0.162982 0.0814912 0.996674i \(-0.474032\pi\)
0.0814912 + 0.996674i \(0.474032\pi\)
\(830\) 93774.2 3.92162
\(831\) 0 0
\(832\) 83835.3 3.49335
\(833\) 0 0
\(834\) 0 0
\(835\) 31408.9 1.30173
\(836\) 24074.3 0.995965
\(837\) 0 0
\(838\) 55906.0 2.30458
\(839\) −15062.0 −0.619783 −0.309891 0.950772i \(-0.600293\pi\)
−0.309891 + 0.950772i \(0.600293\pi\)
\(840\) 0 0
\(841\) 8055.35 0.330286
\(842\) 44477.4 1.82042
\(843\) 0 0
\(844\) 44791.5 1.82676
\(845\) 1012.94 0.0412381
\(846\) 0 0
\(847\) 0 0
\(848\) 12558.4 0.508560
\(849\) 0 0
\(850\) −132611. −5.35118
\(851\) −28387.8 −1.14350
\(852\) 0 0
\(853\) 39207.9 1.57380 0.786900 0.617081i \(-0.211685\pi\)
0.786900 + 0.617081i \(0.211685\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 28732.8 1.14727
\(857\) 37029.6 1.47597 0.737986 0.674816i \(-0.235777\pi\)
0.737986 + 0.674816i \(0.235777\pi\)
\(858\) 0 0
\(859\) −37646.3 −1.49531 −0.747657 0.664085i \(-0.768821\pi\)
−0.747657 + 0.664085i \(0.768821\pi\)
\(860\) 134586. 5.33644
\(861\) 0 0
\(862\) −47540.0 −1.87844
\(863\) 26698.1 1.05309 0.526543 0.850149i \(-0.323488\pi\)
0.526543 + 0.850149i \(0.323488\pi\)
\(864\) 0 0
\(865\) −42937.5 −1.68777
\(866\) −68827.2 −2.70074
\(867\) 0 0
\(868\) 0 0
\(869\) −11999.8 −0.468431
\(870\) 0 0
\(871\) 11926.0 0.463947
\(872\) −74303.0 −2.88557
\(873\) 0 0
\(874\) −74491.6 −2.88297
\(875\) 0 0
\(876\) 0 0
\(877\) −22177.5 −0.853912 −0.426956 0.904272i \(-0.640414\pi\)
−0.426956 + 0.904272i \(0.640414\pi\)
\(878\) 19007.4 0.730602
\(879\) 0 0
\(880\) −50635.6 −1.93969
\(881\) 11503.1 0.439898 0.219949 0.975511i \(-0.429411\pi\)
0.219949 + 0.975511i \(0.429411\pi\)
\(882\) 0 0
\(883\) 41751.6 1.59123 0.795613 0.605806i \(-0.207149\pi\)
0.795613 + 0.605806i \(0.207149\pi\)
\(884\) 98156.6 3.73457
\(885\) 0 0
\(886\) −77054.7 −2.92179
\(887\) 4670.18 0.176786 0.0883930 0.996086i \(-0.471827\pi\)
0.0883930 + 0.996086i \(0.471827\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 68241.3 2.57017
\(891\) 0 0
\(892\) −80920.8 −3.03748
\(893\) 30933.0 1.15917
\(894\) 0 0
\(895\) 21753.1 0.812430
\(896\) 0 0
\(897\) 0 0
\(898\) 76340.8 2.83689
\(899\) 5746.75 0.213198
\(900\) 0 0
\(901\) 5253.22 0.194240
\(902\) 14325.4 0.528805
\(903\) 0 0
\(904\) −14186.6 −0.521945
\(905\) −76425.7 −2.80715
\(906\) 0 0
\(907\) 33783.8 1.23679 0.618397 0.785866i \(-0.287782\pi\)
0.618397 + 0.785866i \(0.287782\pi\)
\(908\) 98934.5 3.61592
\(909\) 0 0
\(910\) 0 0
\(911\) 34880.5 1.26854 0.634271 0.773111i \(-0.281300\pi\)
0.634271 + 0.773111i \(0.281300\pi\)
\(912\) 0 0
\(913\) 9974.04 0.361547
\(914\) −26364.2 −0.954102
\(915\) 0 0
\(916\) 44889.9 1.61922
\(917\) 0 0
\(918\) 0 0
\(919\) −5964.51 −0.214092 −0.107046 0.994254i \(-0.534139\pi\)
−0.107046 + 0.994254i \(0.534139\pi\)
\(920\) 199631. 7.15397
\(921\) 0 0
\(922\) −54689.9 −1.95349
\(923\) 11744.3 0.418818
\(924\) 0 0
\(925\) −51190.0 −1.81959
\(926\) 84488.5 2.99834
\(927\) 0 0
\(928\) −121552. −4.29971
\(929\) −54065.1 −1.90939 −0.954693 0.297594i \(-0.903816\pi\)
−0.954693 + 0.297594i \(0.903816\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −31679.3 −1.11340
\(933\) 0 0
\(934\) −52409.8 −1.83608
\(935\) −21181.0 −0.740847
\(936\) 0 0
\(937\) 14678.5 0.511766 0.255883 0.966708i \(-0.417634\pi\)
0.255883 + 0.966708i \(0.417634\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −131289. −4.55551
\(941\) −22198.8 −0.769032 −0.384516 0.923118i \(-0.625632\pi\)
−0.384516 + 0.923118i \(0.625632\pi\)
\(942\) 0 0
\(943\) −32388.3 −1.11846
\(944\) −93449.3 −3.22194
\(945\) 0 0
\(946\) 19591.1 0.673322
\(947\) −3314.30 −0.113728 −0.0568639 0.998382i \(-0.518110\pi\)
−0.0568639 + 0.998382i \(0.518110\pi\)
\(948\) 0 0
\(949\) 53812.1 1.84069
\(950\) −134326. −4.58749
\(951\) 0 0
\(952\) 0 0
\(953\) 45137.3 1.53425 0.767125 0.641498i \(-0.221687\pi\)
0.767125 + 0.641498i \(0.221687\pi\)
\(954\) 0 0
\(955\) 22774.6 0.771694
\(956\) 48200.2 1.63066
\(957\) 0 0
\(958\) 77173.1 2.60266
\(959\) 0 0
\(960\) 0 0
\(961\) −28773.1 −0.965832
\(962\) 51856.0 1.73794
\(963\) 0 0
\(964\) −109920. −3.67250
\(965\) 34277.6 1.14346
\(966\) 0 0
\(967\) 13423.9 0.446416 0.223208 0.974771i \(-0.428347\pi\)
0.223208 + 0.974771i \(0.428347\pi\)
\(968\) 90024.7 2.98916
\(969\) 0 0
\(970\) −70990.4 −2.34986
\(971\) −50282.5 −1.66183 −0.830917 0.556396i \(-0.812184\pi\)
−0.830917 + 0.556396i \(0.812184\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −84939.2 −2.79428
\(975\) 0 0
\(976\) 22727.6 0.745381
\(977\) −24918.5 −0.815980 −0.407990 0.912986i \(-0.633770\pi\)
−0.407990 + 0.912986i \(0.633770\pi\)
\(978\) 0 0
\(979\) 7258.30 0.236952
\(980\) 0 0
\(981\) 0 0
\(982\) −70296.5 −2.28437
\(983\) 5830.48 0.189179 0.0945897 0.995516i \(-0.469846\pi\)
0.0945897 + 0.995516i \(0.469846\pi\)
\(984\) 0 0
\(985\) −15363.8 −0.496986
\(986\) −95867.7 −3.09640
\(987\) 0 0
\(988\) 99426.5 3.20160
\(989\) −44293.6 −1.42412
\(990\) 0 0
\(991\) 15669.9 0.502293 0.251146 0.967949i \(-0.419192\pi\)
0.251146 + 0.967949i \(0.419192\pi\)
\(992\) −21530.0 −0.689091
\(993\) 0 0
\(994\) 0 0
\(995\) −70837.4 −2.25698
\(996\) 0 0
\(997\) −11367.5 −0.361095 −0.180548 0.983566i \(-0.557787\pi\)
−0.180548 + 0.983566i \(0.557787\pi\)
\(998\) −36555.1 −1.15945
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bg.1.1 yes 6
3.2 odd 2 inner 1323.4.a.bg.1.6 yes 6
7.6 odd 2 1323.4.a.bf.1.1 6
21.20 even 2 1323.4.a.bf.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bf.1.1 6 7.6 odd 2
1323.4.a.bf.1.6 yes 6 21.20 even 2
1323.4.a.bg.1.1 yes 6 1.1 even 1 trivial
1323.4.a.bg.1.6 yes 6 3.2 odd 2 inner