Properties

Label 1323.4.a.bf.1.6
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 42x^{4} + 369x^{2} - 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(5.45019\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.45019 q^{2} +21.7046 q^{4} -19.3432 q^{5} +74.6929 q^{8} +O(q^{10})\) \(q+5.45019 q^{2} +21.7046 q^{4} -19.3432 q^{5} +74.6929 q^{8} -105.424 q^{10} -11.2132 q^{11} -46.3102 q^{13} +233.454 q^{16} +97.6541 q^{17} -98.9176 q^{19} -419.836 q^{20} -61.1139 q^{22} -138.173 q^{23} +249.158 q^{25} -252.400 q^{26} -180.123 q^{29} -31.9046 q^{31} +674.825 q^{32} +532.234 q^{34} -205.452 q^{37} -539.120 q^{38} -1444.80 q^{40} -234.404 q^{41} -320.568 q^{43} -243.377 q^{44} -753.067 q^{46} +312.715 q^{47} +1357.96 q^{50} -1005.15 q^{52} -53.7942 q^{53} +216.898 q^{55} -981.706 q^{58} -400.291 q^{59} -97.3536 q^{61} -173.886 q^{62} +1810.30 q^{64} +895.786 q^{65} +257.525 q^{67} +2119.55 q^{68} -253.601 q^{71} -1161.99 q^{73} -1119.75 q^{74} -2146.97 q^{76} -1070.16 q^{79} -4515.73 q^{80} -1277.55 q^{82} +889.495 q^{83} -1888.94 q^{85} -1747.16 q^{86} -837.543 q^{88} +647.303 q^{89} -2998.98 q^{92} +1704.36 q^{94} +1913.38 q^{95} +673.379 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 36 q^{4} - 180 q^{10} - 108 q^{13} + 420 q^{16} - 198 q^{19} - 84 q^{22} + 420 q^{25} + 90 q^{31} + 648 q^{34} - 402 q^{37} - 2844 q^{40} - 660 q^{43} - 1332 q^{46} - 1224 q^{52} - 846 q^{55} - 1800 q^{58} - 1152 q^{61} + 2964 q^{64} + 924 q^{67} - 1260 q^{73} - 5868 q^{76} - 1500 q^{79} - 4500 q^{82} - 2232 q^{85} - 2460 q^{88} + 4968 q^{94} - 3312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.45019 1.92693 0.963467 0.267826i \(-0.0863051\pi\)
0.963467 + 0.267826i \(0.0863051\pi\)
\(3\) 0 0
\(4\) 21.7046 2.71308
\(5\) −19.3432 −1.73011 −0.865053 0.501681i \(-0.832715\pi\)
−0.865053 + 0.501681i \(0.832715\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 74.6929 3.30099
\(9\) 0 0
\(10\) −105.424 −3.33380
\(11\) −11.2132 −0.307354 −0.153677 0.988121i \(-0.549112\pi\)
−0.153677 + 0.988121i \(0.549112\pi\)
\(12\) 0 0
\(13\) −46.3102 −0.988010 −0.494005 0.869459i \(-0.664468\pi\)
−0.494005 + 0.869459i \(0.664468\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 233.454 3.64771
\(17\) 97.6541 1.39321 0.696606 0.717454i \(-0.254693\pi\)
0.696606 + 0.717454i \(0.254693\pi\)
\(18\) 0 0
\(19\) −98.9176 −1.19438 −0.597191 0.802099i \(-0.703716\pi\)
−0.597191 + 0.802099i \(0.703716\pi\)
\(20\) −419.836 −4.69391
\(21\) 0 0
\(22\) −61.1139 −0.592251
\(23\) −138.173 −1.25265 −0.626325 0.779562i \(-0.715442\pi\)
−0.626325 + 0.779562i \(0.715442\pi\)
\(24\) 0 0
\(25\) 249.158 1.99327
\(26\) −252.400 −1.90383
\(27\) 0 0
\(28\) 0 0
\(29\) −180.123 −1.15338 −0.576690 0.816963i \(-0.695656\pi\)
−0.576690 + 0.816963i \(0.695656\pi\)
\(30\) 0 0
\(31\) −31.9046 −0.184846 −0.0924230 0.995720i \(-0.529461\pi\)
−0.0924230 + 0.995720i \(0.529461\pi\)
\(32\) 674.825 3.72792
\(33\) 0 0
\(34\) 532.234 2.68463
\(35\) 0 0
\(36\) 0 0
\(37\) −205.452 −0.912867 −0.456433 0.889758i \(-0.650873\pi\)
−0.456433 + 0.889758i \(0.650873\pi\)
\(38\) −539.120 −2.30149
\(39\) 0 0
\(40\) −1444.80 −5.71106
\(41\) −234.404 −0.892874 −0.446437 0.894815i \(-0.647307\pi\)
−0.446437 + 0.894815i \(0.647307\pi\)
\(42\) 0 0
\(43\) −320.568 −1.13689 −0.568443 0.822723i \(-0.692454\pi\)
−0.568443 + 0.822723i \(0.692454\pi\)
\(44\) −243.377 −0.833875
\(45\) 0 0
\(46\) −753.067 −2.41378
\(47\) 312.715 0.970516 0.485258 0.874371i \(-0.338726\pi\)
0.485258 + 0.874371i \(0.338726\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1357.96 3.84089
\(51\) 0 0
\(52\) −1005.15 −2.68055
\(53\) −53.7942 −0.139419 −0.0697094 0.997567i \(-0.522207\pi\)
−0.0697094 + 0.997567i \(0.522207\pi\)
\(54\) 0 0
\(55\) 216.898 0.531755
\(56\) 0 0
\(57\) 0 0
\(58\) −981.706 −2.22249
\(59\) −400.291 −0.883278 −0.441639 0.897193i \(-0.645603\pi\)
−0.441639 + 0.897193i \(0.645603\pi\)
\(60\) 0 0
\(61\) −97.3536 −0.204342 −0.102171 0.994767i \(-0.532579\pi\)
−0.102171 + 0.994767i \(0.532579\pi\)
\(62\) −173.886 −0.356186
\(63\) 0 0
\(64\) 1810.30 3.53574
\(65\) 895.786 1.70936
\(66\) 0 0
\(67\) 257.525 0.469577 0.234789 0.972046i \(-0.424560\pi\)
0.234789 + 0.972046i \(0.424560\pi\)
\(68\) 2119.55 3.77989
\(69\) 0 0
\(70\) 0 0
\(71\) −253.601 −0.423900 −0.211950 0.977280i \(-0.567981\pi\)
−0.211950 + 0.977280i \(0.567981\pi\)
\(72\) 0 0
\(73\) −1161.99 −1.86303 −0.931514 0.363706i \(-0.881511\pi\)
−0.931514 + 0.363706i \(0.881511\pi\)
\(74\) −1119.75 −1.75904
\(75\) 0 0
\(76\) −2146.97 −3.24045
\(77\) 0 0
\(78\) 0 0
\(79\) −1070.16 −1.52408 −0.762039 0.647531i \(-0.775802\pi\)
−0.762039 + 0.647531i \(0.775802\pi\)
\(80\) −4515.73 −6.31093
\(81\) 0 0
\(82\) −1277.55 −1.72051
\(83\) 889.495 1.17632 0.588161 0.808744i \(-0.299852\pi\)
0.588161 + 0.808744i \(0.299852\pi\)
\(84\) 0 0
\(85\) −1888.94 −2.41040
\(86\) −1747.16 −2.19070
\(87\) 0 0
\(88\) −837.543 −1.01457
\(89\) 647.303 0.770943 0.385472 0.922720i \(-0.374039\pi\)
0.385472 + 0.922720i \(0.374039\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2998.98 −3.39854
\(93\) 0 0
\(94\) 1704.36 1.87012
\(95\) 1913.38 2.06641
\(96\) 0 0
\(97\) 673.379 0.704859 0.352429 0.935838i \(-0.385356\pi\)
0.352429 + 0.935838i \(0.385356\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5407.89 5.40789
\(101\) 243.254 0.239650 0.119825 0.992795i \(-0.461767\pi\)
0.119825 + 0.992795i \(0.461767\pi\)
\(102\) 0 0
\(103\) 486.156 0.465072 0.232536 0.972588i \(-0.425298\pi\)
0.232536 + 0.972588i \(0.425298\pi\)
\(104\) −3459.04 −3.26141
\(105\) 0 0
\(106\) −293.189 −0.268651
\(107\) 384.679 0.347555 0.173777 0.984785i \(-0.444403\pi\)
0.173777 + 0.984785i \(0.444403\pi\)
\(108\) 0 0
\(109\) 994.781 0.874153 0.437077 0.899424i \(-0.356014\pi\)
0.437077 + 0.899424i \(0.356014\pi\)
\(110\) 1182.14 1.02466
\(111\) 0 0
\(112\) 0 0
\(113\) −189.932 −0.158118 −0.0790589 0.996870i \(-0.525192\pi\)
−0.0790589 + 0.996870i \(0.525192\pi\)
\(114\) 0 0
\(115\) 2672.70 2.16722
\(116\) −3909.50 −3.12921
\(117\) 0 0
\(118\) −2181.66 −1.70202
\(119\) 0 0
\(120\) 0 0
\(121\) −1205.27 −0.905534
\(122\) −530.596 −0.393754
\(123\) 0 0
\(124\) −692.476 −0.501502
\(125\) −2401.62 −1.71846
\(126\) 0 0
\(127\) 1679.82 1.17370 0.586851 0.809695i \(-0.300367\pi\)
0.586851 + 0.809695i \(0.300367\pi\)
\(128\) 4467.88 3.08522
\(129\) 0 0
\(130\) 4882.21 3.29383
\(131\) −237.457 −0.158372 −0.0791859 0.996860i \(-0.525232\pi\)
−0.0791859 + 0.996860i \(0.525232\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1403.56 0.904845
\(135\) 0 0
\(136\) 7294.07 4.59898
\(137\) 526.657 0.328433 0.164217 0.986424i \(-0.447490\pi\)
0.164217 + 0.986424i \(0.447490\pi\)
\(138\) 0 0
\(139\) 580.607 0.354291 0.177145 0.984185i \(-0.443314\pi\)
0.177145 + 0.984185i \(0.443314\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1382.18 −0.816828
\(143\) 519.283 0.303669
\(144\) 0 0
\(145\) 3484.15 1.99547
\(146\) −6333.09 −3.58993
\(147\) 0 0
\(148\) −4459.26 −2.47668
\(149\) 2781.48 1.52931 0.764657 0.644438i \(-0.222909\pi\)
0.764657 + 0.644438i \(0.222909\pi\)
\(150\) 0 0
\(151\) −1413.35 −0.761702 −0.380851 0.924636i \(-0.624369\pi\)
−0.380851 + 0.924636i \(0.624369\pi\)
\(152\) −7388.44 −3.94264
\(153\) 0 0
\(154\) 0 0
\(155\) 617.135 0.319803
\(156\) 0 0
\(157\) −2356.59 −1.19794 −0.598970 0.800772i \(-0.704423\pi\)
−0.598970 + 0.800772i \(0.704423\pi\)
\(158\) −5832.57 −2.93680
\(159\) 0 0
\(160\) −13053.3 −6.44969
\(161\) 0 0
\(162\) 0 0
\(163\) 1309.51 0.629255 0.314627 0.949215i \(-0.398120\pi\)
0.314627 + 0.949215i \(0.398120\pi\)
\(164\) −5087.66 −2.42244
\(165\) 0 0
\(166\) 4847.92 2.26670
\(167\) −1623.77 −0.752401 −0.376201 0.926538i \(-0.622770\pi\)
−0.376201 + 0.926538i \(0.622770\pi\)
\(168\) 0 0
\(169\) −52.3668 −0.0238356
\(170\) −10295.1 −4.64469
\(171\) 0 0
\(172\) −6957.80 −3.08446
\(173\) 2219.78 0.975529 0.487765 0.872975i \(-0.337812\pi\)
0.487765 + 0.872975i \(0.337812\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2617.75 −1.12114
\(177\) 0 0
\(178\) 3527.92 1.48556
\(179\) 1124.59 0.469584 0.234792 0.972046i \(-0.424559\pi\)
0.234792 + 0.972046i \(0.424559\pi\)
\(180\) 0 0
\(181\) −3951.04 −1.62253 −0.811267 0.584676i \(-0.801222\pi\)
−0.811267 + 0.584676i \(0.801222\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −10320.5 −4.13499
\(185\) 3974.09 1.57936
\(186\) 0 0
\(187\) −1095.01 −0.428209
\(188\) 6787.37 2.63308
\(189\) 0 0
\(190\) 10428.3 3.98183
\(191\) 1177.40 0.446039 0.223019 0.974814i \(-0.428409\pi\)
0.223019 + 0.974814i \(0.428409\pi\)
\(192\) 0 0
\(193\) −1772.08 −0.660917 −0.330458 0.943821i \(-0.607203\pi\)
−0.330458 + 0.943821i \(0.607203\pi\)
\(194\) 3670.05 1.35822
\(195\) 0 0
\(196\) 0 0
\(197\) −794.274 −0.287257 −0.143629 0.989632i \(-0.545877\pi\)
−0.143629 + 0.989632i \(0.545877\pi\)
\(198\) 0 0
\(199\) −3662.14 −1.30453 −0.652267 0.757990i \(-0.726182\pi\)
−0.652267 + 0.757990i \(0.726182\pi\)
\(200\) 18610.3 6.57975
\(201\) 0 0
\(202\) 1325.78 0.461791
\(203\) 0 0
\(204\) 0 0
\(205\) 4534.12 1.54477
\(206\) 2649.64 0.896162
\(207\) 0 0
\(208\) −10811.3 −3.60398
\(209\) 1109.18 0.367098
\(210\) 0 0
\(211\) 2063.69 0.673318 0.336659 0.941627i \(-0.390703\pi\)
0.336659 + 0.941627i \(0.390703\pi\)
\(212\) −1167.58 −0.378254
\(213\) 0 0
\(214\) 2096.58 0.669715
\(215\) 6200.79 1.96693
\(216\) 0 0
\(217\) 0 0
\(218\) 5421.75 1.68444
\(219\) 0 0
\(220\) 4707.69 1.44269
\(221\) −4522.38 −1.37651
\(222\) 0 0
\(223\) 3728.28 1.11957 0.559784 0.828638i \(-0.310884\pi\)
0.559784 + 0.828638i \(0.310884\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1035.17 −0.304683
\(227\) 4558.22 1.33277 0.666387 0.745606i \(-0.267840\pi\)
0.666387 + 0.745606i \(0.267840\pi\)
\(228\) 0 0
\(229\) −2068.22 −0.596819 −0.298410 0.954438i \(-0.596456\pi\)
−0.298410 + 0.954438i \(0.596456\pi\)
\(230\) 14566.7 4.17609
\(231\) 0 0
\(232\) −13453.9 −3.80730
\(233\) 1459.56 0.410383 0.205191 0.978722i \(-0.434218\pi\)
0.205191 + 0.978722i \(0.434218\pi\)
\(234\) 0 0
\(235\) −6048.91 −1.67909
\(236\) −8688.16 −2.39640
\(237\) 0 0
\(238\) 0 0
\(239\) −2220.74 −0.601035 −0.300518 0.953776i \(-0.597159\pi\)
−0.300518 + 0.953776i \(0.597159\pi\)
\(240\) 0 0
\(241\) 5064.37 1.35363 0.676815 0.736153i \(-0.263360\pi\)
0.676815 + 0.736153i \(0.263360\pi\)
\(242\) −6568.93 −1.74490
\(243\) 0 0
\(244\) −2113.02 −0.554395
\(245\) 0 0
\(246\) 0 0
\(247\) 4580.89 1.18006
\(248\) −2383.04 −0.610175
\(249\) 0 0
\(250\) −13089.3 −3.31135
\(251\) 1797.86 0.452112 0.226056 0.974114i \(-0.427417\pi\)
0.226056 + 0.974114i \(0.427417\pi\)
\(252\) 0 0
\(253\) 1549.35 0.385007
\(254\) 9155.37 2.26165
\(255\) 0 0
\(256\) 9868.42 2.40928
\(257\) 2734.28 0.663656 0.331828 0.943340i \(-0.392335\pi\)
0.331828 + 0.943340i \(0.392335\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 19442.7 4.63763
\(261\) 0 0
\(262\) −1294.19 −0.305172
\(263\) 8197.71 1.92203 0.961013 0.276504i \(-0.0891758\pi\)
0.961013 + 0.276504i \(0.0891758\pi\)
\(264\) 0 0
\(265\) 1040.55 0.241209
\(266\) 0 0
\(267\) 0 0
\(268\) 5589.48 1.27400
\(269\) −237.512 −0.0538342 −0.0269171 0.999638i \(-0.508569\pi\)
−0.0269171 + 0.999638i \(0.508569\pi\)
\(270\) 0 0
\(271\) 4349.95 0.975057 0.487528 0.873107i \(-0.337899\pi\)
0.487528 + 0.873107i \(0.337899\pi\)
\(272\) 22797.7 5.08204
\(273\) 0 0
\(274\) 2870.38 0.632869
\(275\) −2793.85 −0.612638
\(276\) 0 0
\(277\) 6228.51 1.35103 0.675515 0.737347i \(-0.263921\pi\)
0.675515 + 0.737347i \(0.263921\pi\)
\(278\) 3164.42 0.682695
\(279\) 0 0
\(280\) 0 0
\(281\) −3360.95 −0.713515 −0.356757 0.934197i \(-0.616118\pi\)
−0.356757 + 0.934197i \(0.616118\pi\)
\(282\) 0 0
\(283\) −8009.37 −1.68236 −0.841180 0.540755i \(-0.818138\pi\)
−0.841180 + 0.540755i \(0.818138\pi\)
\(284\) −5504.32 −1.15007
\(285\) 0 0
\(286\) 2830.19 0.585150
\(287\) 0 0
\(288\) 0 0
\(289\) 4623.33 0.941041
\(290\) 18989.3 3.84514
\(291\) 0 0
\(292\) −25220.6 −5.05454
\(293\) −9247.12 −1.84376 −0.921881 0.387472i \(-0.873348\pi\)
−0.921881 + 0.387472i \(0.873348\pi\)
\(294\) 0 0
\(295\) 7742.89 1.52816
\(296\) −15345.8 −3.01336
\(297\) 0 0
\(298\) 15159.6 2.94689
\(299\) 6398.80 1.23763
\(300\) 0 0
\(301\) 0 0
\(302\) −7703.04 −1.46775
\(303\) 0 0
\(304\) −23092.7 −4.35676
\(305\) 1883.13 0.353533
\(306\) 0 0
\(307\) −3367.11 −0.625965 −0.312983 0.949759i \(-0.601328\pi\)
−0.312983 + 0.949759i \(0.601328\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3363.51 0.616240
\(311\) 6555.92 1.19534 0.597672 0.801740i \(-0.296092\pi\)
0.597672 + 0.801740i \(0.296092\pi\)
\(312\) 0 0
\(313\) 616.028 0.111246 0.0556229 0.998452i \(-0.482286\pi\)
0.0556229 + 0.998452i \(0.482286\pi\)
\(314\) −12843.9 −2.30835
\(315\) 0 0
\(316\) −23227.4 −4.13494
\(317\) 3481.49 0.616845 0.308422 0.951250i \(-0.400199\pi\)
0.308422 + 0.951250i \(0.400199\pi\)
\(318\) 0 0
\(319\) 2019.75 0.354496
\(320\) −35016.9 −6.11720
\(321\) 0 0
\(322\) 0 0
\(323\) −9659.71 −1.66403
\(324\) 0 0
\(325\) −11538.6 −1.96937
\(326\) 7137.07 1.21253
\(327\) 0 0
\(328\) −17508.3 −2.94737
\(329\) 0 0
\(330\) 0 0
\(331\) −7187.44 −1.19353 −0.596763 0.802417i \(-0.703547\pi\)
−0.596763 + 0.802417i \(0.703547\pi\)
\(332\) 19306.2 3.19145
\(333\) 0 0
\(334\) −8849.86 −1.44983
\(335\) −4981.35 −0.812418
\(336\) 0 0
\(337\) 3575.89 0.578015 0.289007 0.957327i \(-0.406675\pi\)
0.289007 + 0.957327i \(0.406675\pi\)
\(338\) −285.410 −0.0459297
\(339\) 0 0
\(340\) −40998.8 −6.53962
\(341\) 357.751 0.0568131
\(342\) 0 0
\(343\) 0 0
\(344\) −23944.1 −3.75285
\(345\) 0 0
\(346\) 12098.2 1.87978
\(347\) −574.458 −0.0888719 −0.0444359 0.999012i \(-0.514149\pi\)
−0.0444359 + 0.999012i \(0.514149\pi\)
\(348\) 0 0
\(349\) 11491.0 1.76246 0.881229 0.472689i \(-0.156717\pi\)
0.881229 + 0.472689i \(0.156717\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −7566.92 −1.14579
\(353\) 1369.32 0.206464 0.103232 0.994657i \(-0.467082\pi\)
0.103232 + 0.994657i \(0.467082\pi\)
\(354\) 0 0
\(355\) 4905.45 0.733392
\(356\) 14049.5 2.09163
\(357\) 0 0
\(358\) 6129.21 0.904857
\(359\) −12915.0 −1.89868 −0.949339 0.314254i \(-0.898246\pi\)
−0.949339 + 0.314254i \(0.898246\pi\)
\(360\) 0 0
\(361\) 2925.68 0.426546
\(362\) −21533.9 −3.12652
\(363\) 0 0
\(364\) 0 0
\(365\) 22476.6 3.22323
\(366\) 0 0
\(367\) −1186.30 −0.168731 −0.0843653 0.996435i \(-0.526886\pi\)
−0.0843653 + 0.996435i \(0.526886\pi\)
\(368\) −32256.9 −4.56931
\(369\) 0 0
\(370\) 21659.6 3.04332
\(371\) 0 0
\(372\) 0 0
\(373\) −6462.68 −0.897117 −0.448559 0.893753i \(-0.648062\pi\)
−0.448559 + 0.893753i \(0.648062\pi\)
\(374\) −5968.02 −0.825131
\(375\) 0 0
\(376\) 23357.6 3.20366
\(377\) 8341.54 1.13955
\(378\) 0 0
\(379\) −8555.31 −1.15952 −0.579758 0.814789i \(-0.696853\pi\)
−0.579758 + 0.814789i \(0.696853\pi\)
\(380\) 41529.2 5.60632
\(381\) 0 0
\(382\) 6417.04 0.859488
\(383\) −570.982 −0.0761770 −0.0380885 0.999274i \(-0.512127\pi\)
−0.0380885 + 0.999274i \(0.512127\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9658.17 −1.27354
\(387\) 0 0
\(388\) 14615.4 1.91234
\(389\) −14437.2 −1.88174 −0.940869 0.338771i \(-0.889989\pi\)
−0.940869 + 0.338771i \(0.889989\pi\)
\(390\) 0 0
\(391\) −13493.1 −1.74521
\(392\) 0 0
\(393\) 0 0
\(394\) −4328.95 −0.553526
\(395\) 20700.3 2.63682
\(396\) 0 0
\(397\) −9384.81 −1.18642 −0.593212 0.805047i \(-0.702140\pi\)
−0.593212 + 0.805047i \(0.702140\pi\)
\(398\) −19959.4 −2.51375
\(399\) 0 0
\(400\) 58166.9 7.27086
\(401\) 8167.50 1.01712 0.508560 0.861026i \(-0.330178\pi\)
0.508560 + 0.861026i \(0.330178\pi\)
\(402\) 0 0
\(403\) 1477.51 0.182630
\(404\) 5279.74 0.650190
\(405\) 0 0
\(406\) 0 0
\(407\) 2303.76 0.280573
\(408\) 0 0
\(409\) 11655.7 1.40913 0.704567 0.709637i \(-0.251141\pi\)
0.704567 + 0.709637i \(0.251141\pi\)
\(410\) 24711.9 2.97666
\(411\) 0 0
\(412\) 10551.8 1.26178
\(413\) 0 0
\(414\) 0 0
\(415\) −17205.7 −2.03516
\(416\) −31251.3 −3.68322
\(417\) 0 0
\(418\) 6045.23 0.707373
\(419\) −10257.6 −1.19598 −0.597992 0.801502i \(-0.704035\pi\)
−0.597992 + 0.801502i \(0.704035\pi\)
\(420\) 0 0
\(421\) −8160.70 −0.944723 −0.472361 0.881405i \(-0.656598\pi\)
−0.472361 + 0.881405i \(0.656598\pi\)
\(422\) 11247.5 1.29744
\(423\) 0 0
\(424\) −4018.04 −0.460220
\(425\) 24331.3 2.77704
\(426\) 0 0
\(427\) 0 0
\(428\) 8349.32 0.942943
\(429\) 0 0
\(430\) 33795.5 3.79015
\(431\) −8722.62 −0.974835 −0.487417 0.873169i \(-0.662061\pi\)
−0.487417 + 0.873169i \(0.662061\pi\)
\(432\) 0 0
\(433\) −12628.4 −1.40157 −0.700787 0.713371i \(-0.747168\pi\)
−0.700787 + 0.713371i \(0.747168\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 21591.3 2.37165
\(437\) 13667.7 1.49614
\(438\) 0 0
\(439\) 3487.47 0.379153 0.189576 0.981866i \(-0.439289\pi\)
0.189576 + 0.981866i \(0.439289\pi\)
\(440\) 16200.7 1.75532
\(441\) 0 0
\(442\) −24647.9 −2.65244
\(443\) −14138.0 −1.51629 −0.758144 0.652087i \(-0.773894\pi\)
−0.758144 + 0.652087i \(0.773894\pi\)
\(444\) 0 0
\(445\) −12520.9 −1.33381
\(446\) 20319.8 2.15734
\(447\) 0 0
\(448\) 0 0
\(449\) 14007.0 1.47223 0.736114 0.676858i \(-0.236659\pi\)
0.736114 + 0.676858i \(0.236659\pi\)
\(450\) 0 0
\(451\) 2628.41 0.274428
\(452\) −4122.40 −0.428986
\(453\) 0 0
\(454\) 24843.2 2.56817
\(455\) 0 0
\(456\) 0 0
\(457\) 4837.29 0.495140 0.247570 0.968870i \(-0.420368\pi\)
0.247570 + 0.968870i \(0.420368\pi\)
\(458\) −11272.2 −1.15003
\(459\) 0 0
\(460\) 58009.9 5.87983
\(461\) 10034.5 1.01378 0.506890 0.862011i \(-0.330795\pi\)
0.506890 + 0.862011i \(0.330795\pi\)
\(462\) 0 0
\(463\) −15501.9 −1.55602 −0.778008 0.628254i \(-0.783770\pi\)
−0.778008 + 0.628254i \(0.783770\pi\)
\(464\) −42050.4 −4.20720
\(465\) 0 0
\(466\) 7954.91 0.790781
\(467\) 9616.13 0.952851 0.476426 0.879215i \(-0.341932\pi\)
0.476426 + 0.879215i \(0.341932\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −32967.7 −3.23551
\(471\) 0 0
\(472\) −29898.8 −2.91569
\(473\) 3594.57 0.349426
\(474\) 0 0
\(475\) −24646.1 −2.38072
\(476\) 0 0
\(477\) 0 0
\(478\) −12103.4 −1.15816
\(479\) −14159.7 −1.35067 −0.675337 0.737509i \(-0.736002\pi\)
−0.675337 + 0.737509i \(0.736002\pi\)
\(480\) 0 0
\(481\) 9514.51 0.901922
\(482\) 27601.8 2.60836
\(483\) 0 0
\(484\) −26159.8 −2.45678
\(485\) −13025.3 −1.21948
\(486\) 0 0
\(487\) 15584.6 1.45012 0.725058 0.688688i \(-0.241813\pi\)
0.725058 + 0.688688i \(0.241813\pi\)
\(488\) −7271.62 −0.674530
\(489\) 0 0
\(490\) 0 0
\(491\) −12898.0 −1.18549 −0.592747 0.805389i \(-0.701957\pi\)
−0.592747 + 0.805389i \(0.701957\pi\)
\(492\) 0 0
\(493\) −17589.8 −1.60690
\(494\) 24966.7 2.27390
\(495\) 0 0
\(496\) −7448.23 −0.674265
\(497\) 0 0
\(498\) 0 0
\(499\) 6707.11 0.601707 0.300853 0.953670i \(-0.402729\pi\)
0.300853 + 0.953670i \(0.402729\pi\)
\(500\) −52126.1 −4.66230
\(501\) 0 0
\(502\) 9798.70 0.871190
\(503\) −14186.3 −1.25753 −0.628763 0.777597i \(-0.716438\pi\)
−0.628763 + 0.777597i \(0.716438\pi\)
\(504\) 0 0
\(505\) −4705.31 −0.414620
\(506\) 8444.26 0.741884
\(507\) 0 0
\(508\) 36459.9 3.18435
\(509\) 12086.8 1.05253 0.526263 0.850322i \(-0.323593\pi\)
0.526263 + 0.850322i \(0.323593\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 18041.8 1.55731
\(513\) 0 0
\(514\) 14902.3 1.27882
\(515\) −9403.80 −0.804623
\(516\) 0 0
\(517\) −3506.53 −0.298292
\(518\) 0 0
\(519\) 0 0
\(520\) 66908.8 5.64259
\(521\) −12142.6 −1.02107 −0.510534 0.859857i \(-0.670552\pi\)
−0.510534 + 0.859857i \(0.670552\pi\)
\(522\) 0 0
\(523\) 3408.38 0.284967 0.142484 0.989797i \(-0.454491\pi\)
0.142484 + 0.989797i \(0.454491\pi\)
\(524\) −5153.91 −0.429675
\(525\) 0 0
\(526\) 44679.1 3.70362
\(527\) −3115.61 −0.257530
\(528\) 0 0
\(529\) 6924.66 0.569135
\(530\) 5671.20 0.464795
\(531\) 0 0
\(532\) 0 0
\(533\) 10855.3 0.882168
\(534\) 0 0
\(535\) −7440.92 −0.601306
\(536\) 19235.3 1.55007
\(537\) 0 0
\(538\) −1294.49 −0.103735
\(539\) 0 0
\(540\) 0 0
\(541\) −16737.5 −1.33013 −0.665066 0.746785i \(-0.731597\pi\)
−0.665066 + 0.746785i \(0.731597\pi\)
\(542\) 23708.1 1.87887
\(543\) 0 0
\(544\) 65899.5 5.19378
\(545\) −19242.2 −1.51238
\(546\) 0 0
\(547\) −13940.6 −1.08968 −0.544840 0.838540i \(-0.683410\pi\)
−0.544840 + 0.838540i \(0.683410\pi\)
\(548\) 11430.9 0.891065
\(549\) 0 0
\(550\) −15227.0 −1.18051
\(551\) 17817.3 1.37758
\(552\) 0 0
\(553\) 0 0
\(554\) 33946.6 2.60335
\(555\) 0 0
\(556\) 12601.8 0.961218
\(557\) 818.376 0.0622544 0.0311272 0.999515i \(-0.490090\pi\)
0.0311272 + 0.999515i \(0.490090\pi\)
\(558\) 0 0
\(559\) 14845.5 1.12325
\(560\) 0 0
\(561\) 0 0
\(562\) −18317.9 −1.37490
\(563\) 8957.98 0.670575 0.335288 0.942116i \(-0.391166\pi\)
0.335288 + 0.942116i \(0.391166\pi\)
\(564\) 0 0
\(565\) 3673.89 0.273560
\(566\) −43652.6 −3.24180
\(567\) 0 0
\(568\) −18942.2 −1.39929
\(569\) 19997.8 1.47338 0.736688 0.676233i \(-0.236389\pi\)
0.736688 + 0.676233i \(0.236389\pi\)
\(570\) 0 0
\(571\) −3391.26 −0.248546 −0.124273 0.992248i \(-0.539660\pi\)
−0.124273 + 0.992248i \(0.539660\pi\)
\(572\) 11270.8 0.823877
\(573\) 0 0
\(574\) 0 0
\(575\) −34426.8 −2.49687
\(576\) 0 0
\(577\) 3957.72 0.285549 0.142775 0.989755i \(-0.454398\pi\)
0.142775 + 0.989755i \(0.454398\pi\)
\(578\) 25198.1 1.81332
\(579\) 0 0
\(580\) 75622.2 5.41387
\(581\) 0 0
\(582\) 0 0
\(583\) 603.202 0.0428509
\(584\) −86792.6 −6.14983
\(585\) 0 0
\(586\) −50398.6 −3.55281
\(587\) 12647.3 0.889283 0.444642 0.895709i \(-0.353331\pi\)
0.444642 + 0.895709i \(0.353331\pi\)
\(588\) 0 0
\(589\) 3155.92 0.220777
\(590\) 42200.3 2.94467
\(591\) 0 0
\(592\) −47963.5 −3.32988
\(593\) 3910.60 0.270808 0.135404 0.990790i \(-0.456767\pi\)
0.135404 + 0.990790i \(0.456767\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 60371.0 4.14915
\(597\) 0 0
\(598\) 34874.7 2.38484
\(599\) −13933.9 −0.950455 −0.475228 0.879863i \(-0.657634\pi\)
−0.475228 + 0.879863i \(0.657634\pi\)
\(600\) 0 0
\(601\) −16095.1 −1.09240 −0.546202 0.837654i \(-0.683927\pi\)
−0.546202 + 0.837654i \(0.683927\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −30676.3 −2.06656
\(605\) 23313.7 1.56667
\(606\) 0 0
\(607\) 3050.91 0.204008 0.102004 0.994784i \(-0.467475\pi\)
0.102004 + 0.994784i \(0.467475\pi\)
\(608\) −66752.0 −4.45255
\(609\) 0 0
\(610\) 10263.4 0.681235
\(611\) −14481.9 −0.958879
\(612\) 0 0
\(613\) −1512.24 −0.0996394 −0.0498197 0.998758i \(-0.515865\pi\)
−0.0498197 + 0.998758i \(0.515865\pi\)
\(614\) −18351.4 −1.20619
\(615\) 0 0
\(616\) 0 0
\(617\) 23466.1 1.53114 0.765569 0.643354i \(-0.222458\pi\)
0.765569 + 0.643354i \(0.222458\pi\)
\(618\) 0 0
\(619\) −20736.1 −1.34645 −0.673226 0.739437i \(-0.735092\pi\)
−0.673226 + 0.739437i \(0.735092\pi\)
\(620\) 13394.7 0.867651
\(621\) 0 0
\(622\) 35731.1 2.30335
\(623\) 0 0
\(624\) 0 0
\(625\) 15310.1 0.979844
\(626\) 3357.47 0.214364
\(627\) 0 0
\(628\) −51148.9 −3.25010
\(629\) −20063.2 −1.27182
\(630\) 0 0
\(631\) 15623.5 0.985673 0.492837 0.870122i \(-0.335960\pi\)
0.492837 + 0.870122i \(0.335960\pi\)
\(632\) −79933.2 −5.03097
\(633\) 0 0
\(634\) 18974.8 1.18862
\(635\) −32493.1 −2.03063
\(636\) 0 0
\(637\) 0 0
\(638\) 11008.0 0.683091
\(639\) 0 0
\(640\) −86423.0 −5.33776
\(641\) 12284.6 0.756961 0.378481 0.925609i \(-0.376447\pi\)
0.378481 + 0.925609i \(0.376447\pi\)
\(642\) 0 0
\(643\) 924.041 0.0566728 0.0283364 0.999598i \(-0.490979\pi\)
0.0283364 + 0.999598i \(0.490979\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −52647.3 −3.20647
\(647\) 10330.2 0.627701 0.313850 0.949472i \(-0.398381\pi\)
0.313850 + 0.949472i \(0.398381\pi\)
\(648\) 0 0
\(649\) 4488.52 0.271479
\(650\) −62887.4 −3.79484
\(651\) 0 0
\(652\) 28422.4 1.70722
\(653\) 3064.12 0.183627 0.0918134 0.995776i \(-0.470734\pi\)
0.0918134 + 0.995776i \(0.470734\pi\)
\(654\) 0 0
\(655\) 4593.17 0.274000
\(656\) −54722.6 −3.25695
\(657\) 0 0
\(658\) 0 0
\(659\) −9157.78 −0.541330 −0.270665 0.962674i \(-0.587244\pi\)
−0.270665 + 0.962674i \(0.587244\pi\)
\(660\) 0 0
\(661\) −23367.4 −1.37502 −0.687508 0.726177i \(-0.741295\pi\)
−0.687508 + 0.726177i \(0.741295\pi\)
\(662\) −39172.9 −2.29985
\(663\) 0 0
\(664\) 66438.9 3.88303
\(665\) 0 0
\(666\) 0 0
\(667\) 24888.1 1.44478
\(668\) −35243.3 −2.04132
\(669\) 0 0
\(670\) −27149.3 −1.56548
\(671\) 1091.64 0.0628053
\(672\) 0 0
\(673\) 34214.8 1.95971 0.979853 0.199719i \(-0.0640029\pi\)
0.979853 + 0.199719i \(0.0640029\pi\)
\(674\) 19489.3 1.11380
\(675\) 0 0
\(676\) −1136.60 −0.0646679
\(677\) −19288.8 −1.09502 −0.547511 0.836799i \(-0.684424\pi\)
−0.547511 + 0.836799i \(0.684424\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −141090. −7.95672
\(681\) 0 0
\(682\) 1949.81 0.109475
\(683\) 31119.7 1.74343 0.871714 0.490015i \(-0.163009\pi\)
0.871714 + 0.490015i \(0.163009\pi\)
\(684\) 0 0
\(685\) −10187.2 −0.568224
\(686\) 0 0
\(687\) 0 0
\(688\) −74837.7 −4.14703
\(689\) 2491.22 0.137747
\(690\) 0 0
\(691\) −12732.5 −0.700967 −0.350483 0.936569i \(-0.613983\pi\)
−0.350483 + 0.936569i \(0.613983\pi\)
\(692\) 48179.4 2.64669
\(693\) 0 0
\(694\) −3130.91 −0.171250
\(695\) −11230.8 −0.612961
\(696\) 0 0
\(697\) −22890.6 −1.24396
\(698\) 62628.1 3.39614
\(699\) 0 0
\(700\) 0 0
\(701\) −9506.11 −0.512184 −0.256092 0.966652i \(-0.582435\pi\)
−0.256092 + 0.966652i \(0.582435\pi\)
\(702\) 0 0
\(703\) 20322.8 1.09031
\(704\) −20299.2 −1.08672
\(705\) 0 0
\(706\) 7463.08 0.397842
\(707\) 0 0
\(708\) 0 0
\(709\) 2500.48 0.132450 0.0662252 0.997805i \(-0.478904\pi\)
0.0662252 + 0.997805i \(0.478904\pi\)
\(710\) 26735.7 1.41320
\(711\) 0 0
\(712\) 48348.9 2.54487
\(713\) 4408.33 0.231548
\(714\) 0 0
\(715\) −10044.6 −0.525379
\(716\) 24408.7 1.27402
\(717\) 0 0
\(718\) −70389.0 −3.65863
\(719\) 19519.3 1.01245 0.506223 0.862403i \(-0.331041\pi\)
0.506223 + 0.862403i \(0.331041\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15945.5 0.821927
\(723\) 0 0
\(724\) −85755.9 −4.40206
\(725\) −44879.2 −2.29899
\(726\) 0 0
\(727\) −35008.3 −1.78595 −0.892975 0.450105i \(-0.851386\pi\)
−0.892975 + 0.450105i \(0.851386\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 122502. 6.21096
\(731\) −31304.7 −1.58392
\(732\) 0 0
\(733\) −33284.0 −1.67718 −0.838590 0.544763i \(-0.816619\pi\)
−0.838590 + 0.544763i \(0.816619\pi\)
\(734\) −6465.54 −0.325133
\(735\) 0 0
\(736\) −93242.3 −4.66978
\(737\) −2887.67 −0.144326
\(738\) 0 0
\(739\) −25554.2 −1.27203 −0.636013 0.771678i \(-0.719418\pi\)
−0.636013 + 0.771678i \(0.719418\pi\)
\(740\) 86256.1 4.28492
\(741\) 0 0
\(742\) 0 0
\(743\) 3926.32 0.193867 0.0969333 0.995291i \(-0.469097\pi\)
0.0969333 + 0.995291i \(0.469097\pi\)
\(744\) 0 0
\(745\) −53802.6 −2.64587
\(746\) −35222.8 −1.72869
\(747\) 0 0
\(748\) −23766.8 −1.16177
\(749\) 0 0
\(750\) 0 0
\(751\) 2496.80 0.121318 0.0606589 0.998159i \(-0.480680\pi\)
0.0606589 + 0.998159i \(0.480680\pi\)
\(752\) 73004.6 3.54016
\(753\) 0 0
\(754\) 45463.0 2.19584
\(755\) 27338.7 1.31782
\(756\) 0 0
\(757\) 9014.06 0.432789 0.216395 0.976306i \(-0.430570\pi\)
0.216395 + 0.976306i \(0.430570\pi\)
\(758\) −46628.1 −2.23431
\(759\) 0 0
\(760\) 142916. 6.82118
\(761\) −2393.59 −0.114018 −0.0570089 0.998374i \(-0.518156\pi\)
−0.0570089 + 0.998374i \(0.518156\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 25554.9 1.21014
\(765\) 0 0
\(766\) −3111.96 −0.146788
\(767\) 18537.5 0.872688
\(768\) 0 0
\(769\) −9474.06 −0.444270 −0.222135 0.975016i \(-0.571303\pi\)
−0.222135 + 0.975016i \(0.571303\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −38462.3 −1.79312
\(773\) −12878.4 −0.599231 −0.299615 0.954060i \(-0.596858\pi\)
−0.299615 + 0.954060i \(0.596858\pi\)
\(774\) 0 0
\(775\) −7949.28 −0.368447
\(776\) 50296.6 2.32673
\(777\) 0 0
\(778\) −78685.6 −3.62599
\(779\) 23186.7 1.06643
\(780\) 0 0
\(781\) 2843.67 0.130287
\(782\) −73540.2 −3.36290
\(783\) 0 0
\(784\) 0 0
\(785\) 45584.0 2.07256
\(786\) 0 0
\(787\) 16966.5 0.768477 0.384239 0.923234i \(-0.374464\pi\)
0.384239 + 0.923234i \(0.374464\pi\)
\(788\) −17239.4 −0.779351
\(789\) 0 0
\(790\) 112820. 5.08097
\(791\) 0 0
\(792\) 0 0
\(793\) 4508.46 0.201892
\(794\) −51149.0 −2.28616
\(795\) 0 0
\(796\) −79485.3 −3.53930
\(797\) −21.6935 −0.000964143 0 −0.000482072 1.00000i \(-0.500153\pi\)
−0.000482072 1.00000i \(0.500153\pi\)
\(798\) 0 0
\(799\) 30538.0 1.35213
\(800\) 168138. 7.43073
\(801\) 0 0
\(802\) 44514.5 1.95993
\(803\) 13029.6 0.572609
\(804\) 0 0
\(805\) 0 0
\(806\) 8052.69 0.351916
\(807\) 0 0
\(808\) 18169.3 0.791083
\(809\) 31766.3 1.38052 0.690262 0.723560i \(-0.257495\pi\)
0.690262 + 0.723560i \(0.257495\pi\)
\(810\) 0 0
\(811\) 31081.1 1.34575 0.672875 0.739756i \(-0.265059\pi\)
0.672875 + 0.739756i \(0.265059\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 12556.0 0.540646
\(815\) −25330.0 −1.08868
\(816\) 0 0
\(817\) 31709.8 1.35788
\(818\) 63525.7 2.71531
\(819\) 0 0
\(820\) 98411.5 4.19107
\(821\) 5021.74 0.213472 0.106736 0.994287i \(-0.465960\pi\)
0.106736 + 0.994287i \(0.465960\pi\)
\(822\) 0 0
\(823\) 13443.5 0.569394 0.284697 0.958617i \(-0.408107\pi\)
0.284697 + 0.958617i \(0.408107\pi\)
\(824\) 36312.4 1.53520
\(825\) 0 0
\(826\) 0 0
\(827\) −37439.2 −1.57423 −0.787116 0.616805i \(-0.788427\pi\)
−0.787116 + 0.616805i \(0.788427\pi\)
\(828\) 0 0
\(829\) −3890.21 −0.162982 −0.0814912 0.996674i \(-0.525968\pi\)
−0.0814912 + 0.996674i \(0.525968\pi\)
\(830\) −93774.2 −3.92162
\(831\) 0 0
\(832\) −83835.3 −3.49335
\(833\) 0 0
\(834\) 0 0
\(835\) 31408.9 1.30173
\(836\) 24074.3 0.995965
\(837\) 0 0
\(838\) −55906.0 −2.30458
\(839\) −15062.0 −0.619783 −0.309891 0.950772i \(-0.600293\pi\)
−0.309891 + 0.950772i \(0.600293\pi\)
\(840\) 0 0
\(841\) 8055.35 0.330286
\(842\) −44477.4 −1.82042
\(843\) 0 0
\(844\) 44791.5 1.82676
\(845\) 1012.94 0.0412381
\(846\) 0 0
\(847\) 0 0
\(848\) −12558.4 −0.508560
\(849\) 0 0
\(850\) 132611. 5.35118
\(851\) 28387.8 1.14350
\(852\) 0 0
\(853\) −39207.9 −1.57380 −0.786900 0.617081i \(-0.788315\pi\)
−0.786900 + 0.617081i \(0.788315\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 28732.8 1.14727
\(857\) 37029.6 1.47597 0.737986 0.674816i \(-0.235777\pi\)
0.737986 + 0.674816i \(0.235777\pi\)
\(858\) 0 0
\(859\) 37646.3 1.49531 0.747657 0.664085i \(-0.231179\pi\)
0.747657 + 0.664085i \(0.231179\pi\)
\(860\) 134586. 5.33644
\(861\) 0 0
\(862\) −47540.0 −1.87844
\(863\) −26698.1 −1.05309 −0.526543 0.850149i \(-0.676512\pi\)
−0.526543 + 0.850149i \(0.676512\pi\)
\(864\) 0 0
\(865\) −42937.5 −1.68777
\(866\) −68827.2 −2.70074
\(867\) 0 0
\(868\) 0 0
\(869\) 11999.8 0.468431
\(870\) 0 0
\(871\) −11926.0 −0.463947
\(872\) 74303.0 2.88557
\(873\) 0 0
\(874\) 74491.6 2.88297
\(875\) 0 0
\(876\) 0 0
\(877\) −22177.5 −0.853912 −0.426956 0.904272i \(-0.640414\pi\)
−0.426956 + 0.904272i \(0.640414\pi\)
\(878\) 19007.4 0.730602
\(879\) 0 0
\(880\) 50635.6 1.93969
\(881\) 11503.1 0.439898 0.219949 0.975511i \(-0.429411\pi\)
0.219949 + 0.975511i \(0.429411\pi\)
\(882\) 0 0
\(883\) 41751.6 1.59123 0.795613 0.605806i \(-0.207149\pi\)
0.795613 + 0.605806i \(0.207149\pi\)
\(884\) −98156.6 −3.73457
\(885\) 0 0
\(886\) −77054.7 −2.92179
\(887\) 4670.18 0.176786 0.0883930 0.996086i \(-0.471827\pi\)
0.0883930 + 0.996086i \(0.471827\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −68241.3 −2.57017
\(891\) 0 0
\(892\) 80920.8 3.03748
\(893\) −30933.0 −1.15917
\(894\) 0 0
\(895\) −21753.1 −0.812430
\(896\) 0 0
\(897\) 0 0
\(898\) 76340.8 2.83689
\(899\) 5746.75 0.213198
\(900\) 0 0
\(901\) −5253.22 −0.194240
\(902\) 14325.4 0.528805
\(903\) 0 0
\(904\) −14186.6 −0.521945
\(905\) 76425.7 2.80715
\(906\) 0 0
\(907\) 33783.8 1.23679 0.618397 0.785866i \(-0.287782\pi\)
0.618397 + 0.785866i \(0.287782\pi\)
\(908\) 98934.5 3.61592
\(909\) 0 0
\(910\) 0 0
\(911\) −34880.5 −1.26854 −0.634271 0.773111i \(-0.718700\pi\)
−0.634271 + 0.773111i \(0.718700\pi\)
\(912\) 0 0
\(913\) −9974.04 −0.361547
\(914\) 26364.2 0.954102
\(915\) 0 0
\(916\) −44889.9 −1.61922
\(917\) 0 0
\(918\) 0 0
\(919\) −5964.51 −0.214092 −0.107046 0.994254i \(-0.534139\pi\)
−0.107046 + 0.994254i \(0.534139\pi\)
\(920\) 199631. 7.15397
\(921\) 0 0
\(922\) 54689.9 1.95349
\(923\) 11744.3 0.418818
\(924\) 0 0
\(925\) −51190.0 −1.81959
\(926\) −84488.5 −2.99834
\(927\) 0 0
\(928\) −121552. −4.29971
\(929\) −54065.1 −1.90939 −0.954693 0.297594i \(-0.903816\pi\)
−0.954693 + 0.297594i \(0.903816\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 31679.3 1.11340
\(933\) 0 0
\(934\) 52409.8 1.83608
\(935\) 21181.0 0.740847
\(936\) 0 0
\(937\) −14678.5 −0.511766 −0.255883 0.966708i \(-0.582366\pi\)
−0.255883 + 0.966708i \(0.582366\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −131289. −4.55551
\(941\) −22198.8 −0.769032 −0.384516 0.923118i \(-0.625632\pi\)
−0.384516 + 0.923118i \(0.625632\pi\)
\(942\) 0 0
\(943\) 32388.3 1.11846
\(944\) −93449.3 −3.22194
\(945\) 0 0
\(946\) 19591.1 0.673322
\(947\) 3314.30 0.113728 0.0568639 0.998382i \(-0.481890\pi\)
0.0568639 + 0.998382i \(0.481890\pi\)
\(948\) 0 0
\(949\) 53812.1 1.84069
\(950\) −134326. −4.58749
\(951\) 0 0
\(952\) 0 0
\(953\) −45137.3 −1.53425 −0.767125 0.641498i \(-0.778313\pi\)
−0.767125 + 0.641498i \(0.778313\pi\)
\(954\) 0 0
\(955\) −22774.6 −0.771694
\(956\) −48200.2 −1.63066
\(957\) 0 0
\(958\) −77173.1 −2.60266
\(959\) 0 0
\(960\) 0 0
\(961\) −28773.1 −0.965832
\(962\) 51856.0 1.73794
\(963\) 0 0
\(964\) 109920. 3.67250
\(965\) 34277.6 1.14346
\(966\) 0 0
\(967\) 13423.9 0.446416 0.223208 0.974771i \(-0.428347\pi\)
0.223208 + 0.974771i \(0.428347\pi\)
\(968\) −90024.7 −2.98916
\(969\) 0 0
\(970\) −70990.4 −2.34986
\(971\) −50282.5 −1.66183 −0.830917 0.556396i \(-0.812184\pi\)
−0.830917 + 0.556396i \(0.812184\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 84939.2 2.79428
\(975\) 0 0
\(976\) −22727.6 −0.745381
\(977\) 24918.5 0.815980 0.407990 0.912986i \(-0.366230\pi\)
0.407990 + 0.912986i \(0.366230\pi\)
\(978\) 0 0
\(979\) −7258.30 −0.236952
\(980\) 0 0
\(981\) 0 0
\(982\) −70296.5 −2.28437
\(983\) 5830.48 0.189179 0.0945897 0.995516i \(-0.469846\pi\)
0.0945897 + 0.995516i \(0.469846\pi\)
\(984\) 0 0
\(985\) 15363.8 0.496986
\(986\) −95867.7 −3.09640
\(987\) 0 0
\(988\) 99426.5 3.20160
\(989\) 44293.6 1.42412
\(990\) 0 0
\(991\) 15669.9 0.502293 0.251146 0.967949i \(-0.419192\pi\)
0.251146 + 0.967949i \(0.419192\pi\)
\(992\) −21530.0 −0.689091
\(993\) 0 0
\(994\) 0 0
\(995\) 70837.4 2.25698
\(996\) 0 0
\(997\) 11367.5 0.361095 0.180548 0.983566i \(-0.442213\pi\)
0.180548 + 0.983566i \(0.442213\pi\)
\(998\) 36555.1 1.15945
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bf.1.6 yes 6
3.2 odd 2 inner 1323.4.a.bf.1.1 6
7.6 odd 2 1323.4.a.bg.1.6 yes 6
21.20 even 2 1323.4.a.bg.1.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bf.1.1 6 3.2 odd 2 inner
1323.4.a.bf.1.6 yes 6 1.1 even 1 trivial
1323.4.a.bg.1.1 yes 6 21.20 even 2
1323.4.a.bg.1.6 yes 6 7.6 odd 2