Properties

Label 1323.4.a.bf.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 42x^{4} + 369x^{2} - 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.46131\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46131 q^{2} +3.98067 q^{4} -6.55599 q^{5} +13.9122 q^{8} +O(q^{10})\) \(q-3.46131 q^{2} +3.98067 q^{4} -6.55599 q^{5} +13.9122 q^{8} +22.6923 q^{10} +2.29451 q^{11} +28.6343 q^{13} -79.9996 q^{16} +46.6643 q^{17} -67.5183 q^{19} -26.0972 q^{20} -7.94200 q^{22} -30.1188 q^{23} -82.0190 q^{25} -99.1122 q^{26} +24.0840 q^{29} -193.940 q^{31} +165.606 q^{32} -161.520 q^{34} +208.767 q^{37} +233.702 q^{38} -91.2080 q^{40} +234.347 q^{41} +46.0576 q^{43} +9.13366 q^{44} +104.251 q^{46} -194.239 q^{47} +283.893 q^{50} +113.984 q^{52} +221.635 q^{53} -15.0428 q^{55} -83.3623 q^{58} +710.748 q^{59} -634.111 q^{61} +671.285 q^{62} +66.7827 q^{64} -187.726 q^{65} +269.671 q^{67} +185.755 q^{68} -234.593 q^{71} +213.368 q^{73} -722.608 q^{74} -268.768 q^{76} +242.405 q^{79} +524.477 q^{80} -811.149 q^{82} +1337.82 q^{83} -305.931 q^{85} -159.420 q^{86} +31.9215 q^{88} -1105.39 q^{89} -119.893 q^{92} +672.322 q^{94} +442.650 q^{95} -1139.50 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 36 q^{4} - 180 q^{10} - 108 q^{13} + 420 q^{16} - 198 q^{19} - 84 q^{22} + 420 q^{25} + 90 q^{31} + 648 q^{34} - 402 q^{37} - 2844 q^{40} - 660 q^{43} - 1332 q^{46} - 1224 q^{52} - 846 q^{55} - 1800 q^{58} - 1152 q^{61} + 2964 q^{64} + 924 q^{67} - 1260 q^{73} - 5868 q^{76} - 1500 q^{79} - 4500 q^{82} - 2232 q^{85} - 2460 q^{88} + 4968 q^{94} - 3312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.46131 −1.22376 −0.611879 0.790951i \(-0.709586\pi\)
−0.611879 + 0.790951i \(0.709586\pi\)
\(3\) 0 0
\(4\) 3.98067 0.497583
\(5\) −6.55599 −0.586386 −0.293193 0.956053i \(-0.594718\pi\)
−0.293193 + 0.956053i \(0.594718\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 13.9122 0.614837
\(9\) 0 0
\(10\) 22.6923 0.717594
\(11\) 2.29451 0.0628927 0.0314463 0.999505i \(-0.489989\pi\)
0.0314463 + 0.999505i \(0.489989\pi\)
\(12\) 0 0
\(13\) 28.6343 0.610902 0.305451 0.952208i \(-0.401193\pi\)
0.305451 + 0.952208i \(0.401193\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −79.9996 −1.24999
\(17\) 46.6643 0.665750 0.332875 0.942971i \(-0.391981\pi\)
0.332875 + 0.942971i \(0.391981\pi\)
\(18\) 0 0
\(19\) −67.5183 −0.815251 −0.407625 0.913149i \(-0.633643\pi\)
−0.407625 + 0.913149i \(0.633643\pi\)
\(20\) −26.0972 −0.291776
\(21\) 0 0
\(22\) −7.94200 −0.0769654
\(23\) −30.1188 −0.273053 −0.136526 0.990636i \(-0.543594\pi\)
−0.136526 + 0.990636i \(0.543594\pi\)
\(24\) 0 0
\(25\) −82.0190 −0.656152
\(26\) −99.1122 −0.747597
\(27\) 0 0
\(28\) 0 0
\(29\) 24.0840 0.154217 0.0771085 0.997023i \(-0.475431\pi\)
0.0771085 + 0.997023i \(0.475431\pi\)
\(30\) 0 0
\(31\) −193.940 −1.12363 −0.561816 0.827262i \(-0.689897\pi\)
−0.561816 + 0.827262i \(0.689897\pi\)
\(32\) 165.606 0.914854
\(33\) 0 0
\(34\) −161.520 −0.814717
\(35\) 0 0
\(36\) 0 0
\(37\) 208.767 0.927598 0.463799 0.885940i \(-0.346486\pi\)
0.463799 + 0.885940i \(0.346486\pi\)
\(38\) 233.702 0.997669
\(39\) 0 0
\(40\) −91.2080 −0.360531
\(41\) 234.347 0.892656 0.446328 0.894869i \(-0.352731\pi\)
0.446328 + 0.894869i \(0.352731\pi\)
\(42\) 0 0
\(43\) 46.0576 0.163342 0.0816712 0.996659i \(-0.473974\pi\)
0.0816712 + 0.996659i \(0.473974\pi\)
\(44\) 9.13366 0.0312943
\(45\) 0 0
\(46\) 104.251 0.334150
\(47\) −194.239 −0.602823 −0.301412 0.953494i \(-0.597458\pi\)
−0.301412 + 0.953494i \(0.597458\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 283.893 0.802971
\(51\) 0 0
\(52\) 113.984 0.303975
\(53\) 221.635 0.574414 0.287207 0.957869i \(-0.407273\pi\)
0.287207 + 0.957869i \(0.407273\pi\)
\(54\) 0 0
\(55\) −15.0428 −0.0368794
\(56\) 0 0
\(57\) 0 0
\(58\) −83.3623 −0.188724
\(59\) 710.748 1.56833 0.784165 0.620552i \(-0.213092\pi\)
0.784165 + 0.620552i \(0.213092\pi\)
\(60\) 0 0
\(61\) −634.111 −1.33098 −0.665489 0.746408i \(-0.731777\pi\)
−0.665489 + 0.746408i \(0.731777\pi\)
\(62\) 671.285 1.37505
\(63\) 0 0
\(64\) 66.7827 0.130435
\(65\) −187.726 −0.358224
\(66\) 0 0
\(67\) 269.671 0.491725 0.245862 0.969305i \(-0.420929\pi\)
0.245862 + 0.969305i \(0.420929\pi\)
\(68\) 185.755 0.331266
\(69\) 0 0
\(70\) 0 0
\(71\) −234.593 −0.392127 −0.196063 0.980591i \(-0.562816\pi\)
−0.196063 + 0.980591i \(0.562816\pi\)
\(72\) 0 0
\(73\) 213.368 0.342094 0.171047 0.985263i \(-0.445285\pi\)
0.171047 + 0.985263i \(0.445285\pi\)
\(74\) −722.608 −1.13516
\(75\) 0 0
\(76\) −268.768 −0.405655
\(77\) 0 0
\(78\) 0 0
\(79\) 242.405 0.345224 0.172612 0.984990i \(-0.444779\pi\)
0.172612 + 0.984990i \(0.444779\pi\)
\(80\) 524.477 0.732979
\(81\) 0 0
\(82\) −811.149 −1.09240
\(83\) 1337.82 1.76922 0.884610 0.466332i \(-0.154425\pi\)
0.884610 + 0.466332i \(0.154425\pi\)
\(84\) 0 0
\(85\) −305.931 −0.390387
\(86\) −159.420 −0.199892
\(87\) 0 0
\(88\) 31.9215 0.0386687
\(89\) −1105.39 −1.31653 −0.658263 0.752788i \(-0.728708\pi\)
−0.658263 + 0.752788i \(0.728708\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −119.893 −0.135866
\(93\) 0 0
\(94\) 672.322 0.737709
\(95\) 442.650 0.478051
\(96\) 0 0
\(97\) −1139.50 −1.19277 −0.596387 0.802697i \(-0.703398\pi\)
−0.596387 + 0.802697i \(0.703398\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −326.490 −0.326490
\(101\) 1351.19 1.33117 0.665586 0.746321i \(-0.268182\pi\)
0.665586 + 0.746321i \(0.268182\pi\)
\(102\) 0 0
\(103\) −28.3780 −0.0271472 −0.0135736 0.999908i \(-0.504321\pi\)
−0.0135736 + 0.999908i \(0.504321\pi\)
\(104\) 398.365 0.375605
\(105\) 0 0
\(106\) −767.148 −0.702943
\(107\) 1551.30 1.40159 0.700794 0.713364i \(-0.252829\pi\)
0.700794 + 0.713364i \(0.252829\pi\)
\(108\) 0 0
\(109\) −1265.70 −1.11222 −0.556111 0.831108i \(-0.687707\pi\)
−0.556111 + 0.831108i \(0.687707\pi\)
\(110\) 52.0677 0.0451314
\(111\) 0 0
\(112\) 0 0
\(113\) −480.406 −0.399937 −0.199968 0.979802i \(-0.564084\pi\)
−0.199968 + 0.979802i \(0.564084\pi\)
\(114\) 0 0
\(115\) 197.459 0.160114
\(116\) 95.8705 0.0767358
\(117\) 0 0
\(118\) −2460.12 −1.91926
\(119\) 0 0
\(120\) 0 0
\(121\) −1325.74 −0.996045
\(122\) 2194.86 1.62879
\(123\) 0 0
\(124\) −772.009 −0.559100
\(125\) 1357.21 0.971144
\(126\) 0 0
\(127\) 1837.72 1.28403 0.642014 0.766693i \(-0.278099\pi\)
0.642014 + 0.766693i \(0.278099\pi\)
\(128\) −1556.01 −1.07447
\(129\) 0 0
\(130\) 649.779 0.438380
\(131\) −1198.23 −0.799157 −0.399578 0.916699i \(-0.630843\pi\)
−0.399578 + 0.916699i \(0.630843\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −933.415 −0.601752
\(135\) 0 0
\(136\) 649.201 0.409328
\(137\) −2019.83 −1.25960 −0.629802 0.776756i \(-0.716864\pi\)
−0.629802 + 0.776756i \(0.716864\pi\)
\(138\) 0 0
\(139\) −2320.01 −1.41569 −0.707843 0.706370i \(-0.750331\pi\)
−0.707843 + 0.706370i \(0.750331\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 811.997 0.479868
\(143\) 65.7016 0.0384213
\(144\) 0 0
\(145\) −157.895 −0.0904307
\(146\) −738.534 −0.418640
\(147\) 0 0
\(148\) 831.033 0.461557
\(149\) 1230.57 0.676592 0.338296 0.941040i \(-0.390149\pi\)
0.338296 + 0.941040i \(0.390149\pi\)
\(150\) 0 0
\(151\) 30.8369 0.0166190 0.00830952 0.999965i \(-0.497355\pi\)
0.00830952 + 0.999965i \(0.497355\pi\)
\(152\) −939.326 −0.501246
\(153\) 0 0
\(154\) 0 0
\(155\) 1271.47 0.658882
\(156\) 0 0
\(157\) 2340.62 1.18982 0.594910 0.803792i \(-0.297188\pi\)
0.594910 + 0.803792i \(0.297188\pi\)
\(158\) −839.038 −0.422470
\(159\) 0 0
\(160\) −1085.71 −0.536457
\(161\) 0 0
\(162\) 0 0
\(163\) 2129.76 1.02341 0.511705 0.859161i \(-0.329014\pi\)
0.511705 + 0.859161i \(0.329014\pi\)
\(164\) 932.859 0.444171
\(165\) 0 0
\(166\) −4630.62 −2.16510
\(167\) 158.641 0.0735092 0.0367546 0.999324i \(-0.488298\pi\)
0.0367546 + 0.999324i \(0.488298\pi\)
\(168\) 0 0
\(169\) −1377.08 −0.626798
\(170\) 1058.92 0.477739
\(171\) 0 0
\(172\) 183.340 0.0812764
\(173\) −1116.85 −0.490823 −0.245412 0.969419i \(-0.578923\pi\)
−0.245412 + 0.969419i \(0.578923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −183.560 −0.0786155
\(177\) 0 0
\(178\) 3826.09 1.61111
\(179\) 3503.57 1.46295 0.731477 0.681866i \(-0.238831\pi\)
0.731477 + 0.681866i \(0.238831\pi\)
\(180\) 0 0
\(181\) −1591.32 −0.653492 −0.326746 0.945112i \(-0.605952\pi\)
−0.326746 + 0.945112i \(0.605952\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −419.018 −0.167883
\(185\) −1368.68 −0.543930
\(186\) 0 0
\(187\) 107.072 0.0418708
\(188\) −773.201 −0.299955
\(189\) 0 0
\(190\) −1532.15 −0.585019
\(191\) −4924.24 −1.86547 −0.932737 0.360558i \(-0.882586\pi\)
−0.932737 + 0.360558i \(0.882586\pi\)
\(192\) 0 0
\(193\) 3314.07 1.23602 0.618011 0.786170i \(-0.287939\pi\)
0.618011 + 0.786170i \(0.287939\pi\)
\(194\) 3944.17 1.45967
\(195\) 0 0
\(196\) 0 0
\(197\) −1024.59 −0.370554 −0.185277 0.982686i \(-0.559318\pi\)
−0.185277 + 0.982686i \(0.559318\pi\)
\(198\) 0 0
\(199\) 795.124 0.283240 0.141620 0.989921i \(-0.454769\pi\)
0.141620 + 0.989921i \(0.454769\pi\)
\(200\) −1141.06 −0.403426
\(201\) 0 0
\(202\) −4676.89 −1.62903
\(203\) 0 0
\(204\) 0 0
\(205\) −1536.38 −0.523441
\(206\) 98.2249 0.0332216
\(207\) 0 0
\(208\) −2290.73 −0.763624
\(209\) −154.921 −0.0512733
\(210\) 0 0
\(211\) −850.964 −0.277644 −0.138822 0.990317i \(-0.544332\pi\)
−0.138822 + 0.990317i \(0.544332\pi\)
\(212\) 882.255 0.285819
\(213\) 0 0
\(214\) −5369.53 −1.71520
\(215\) −301.953 −0.0957817
\(216\) 0 0
\(217\) 0 0
\(218\) 4380.98 1.36109
\(219\) 0 0
\(220\) −59.8802 −0.0183506
\(221\) 1336.20 0.406708
\(222\) 0 0
\(223\) −4204.86 −1.26268 −0.631342 0.775505i \(-0.717495\pi\)
−0.631342 + 0.775505i \(0.717495\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1662.84 0.489426
\(227\) −5199.29 −1.52022 −0.760108 0.649796i \(-0.774854\pi\)
−0.760108 + 0.649796i \(0.774854\pi\)
\(228\) 0 0
\(229\) −1357.28 −0.391666 −0.195833 0.980637i \(-0.562741\pi\)
−0.195833 + 0.980637i \(0.562741\pi\)
\(230\) −683.466 −0.195941
\(231\) 0 0
\(232\) 335.061 0.0948183
\(233\) 6711.98 1.88720 0.943598 0.331093i \(-0.107417\pi\)
0.943598 + 0.331093i \(0.107417\pi\)
\(234\) 0 0
\(235\) 1273.43 0.353487
\(236\) 2829.25 0.780375
\(237\) 0 0
\(238\) 0 0
\(239\) −1850.76 −0.500902 −0.250451 0.968129i \(-0.580579\pi\)
−0.250451 + 0.968129i \(0.580579\pi\)
\(240\) 0 0
\(241\) −4864.74 −1.30027 −0.650136 0.759818i \(-0.725288\pi\)
−0.650136 + 0.759818i \(0.725288\pi\)
\(242\) 4588.78 1.21892
\(243\) 0 0
\(244\) −2524.18 −0.662272
\(245\) 0 0
\(246\) 0 0
\(247\) −1933.34 −0.498039
\(248\) −2698.12 −0.690850
\(249\) 0 0
\(250\) −4697.74 −1.18844
\(251\) −1901.00 −0.478049 −0.239024 0.971014i \(-0.576828\pi\)
−0.239024 + 0.971014i \(0.576828\pi\)
\(252\) 0 0
\(253\) −69.1078 −0.0171730
\(254\) −6360.93 −1.57134
\(255\) 0 0
\(256\) 4851.55 1.18446
\(257\) −1670.33 −0.405417 −0.202709 0.979239i \(-0.564974\pi\)
−0.202709 + 0.979239i \(0.564974\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −747.276 −0.178246
\(261\) 0 0
\(262\) 4147.43 0.977974
\(263\) −3792.54 −0.889195 −0.444597 0.895731i \(-0.646653\pi\)
−0.444597 + 0.895731i \(0.646653\pi\)
\(264\) 0 0
\(265\) −1453.04 −0.336828
\(266\) 0 0
\(267\) 0 0
\(268\) 1073.47 0.244674
\(269\) −7923.59 −1.79595 −0.897973 0.440050i \(-0.854961\pi\)
−0.897973 + 0.440050i \(0.854961\pi\)
\(270\) 0 0
\(271\) −6340.76 −1.42130 −0.710652 0.703543i \(-0.751600\pi\)
−0.710652 + 0.703543i \(0.751600\pi\)
\(272\) −3733.13 −0.832184
\(273\) 0 0
\(274\) 6991.25 1.54145
\(275\) −188.193 −0.0412671
\(276\) 0 0
\(277\) −3169.14 −0.687420 −0.343710 0.939076i \(-0.611684\pi\)
−0.343710 + 0.939076i \(0.611684\pi\)
\(278\) 8030.26 1.73246
\(279\) 0 0
\(280\) 0 0
\(281\) 3492.87 0.741520 0.370760 0.928729i \(-0.379097\pi\)
0.370760 + 0.928729i \(0.379097\pi\)
\(282\) 0 0
\(283\) −1904.23 −0.399982 −0.199991 0.979798i \(-0.564091\pi\)
−0.199991 + 0.979798i \(0.564091\pi\)
\(284\) −933.834 −0.195116
\(285\) 0 0
\(286\) −227.414 −0.0470184
\(287\) 0 0
\(288\) 0 0
\(289\) −2735.44 −0.556776
\(290\) 546.523 0.110665
\(291\) 0 0
\(292\) 849.348 0.170220
\(293\) −3988.81 −0.795320 −0.397660 0.917533i \(-0.630178\pi\)
−0.397660 + 0.917533i \(0.630178\pi\)
\(294\) 0 0
\(295\) −4659.66 −0.919646
\(296\) 2904.40 0.570321
\(297\) 0 0
\(298\) −4259.38 −0.827985
\(299\) −862.432 −0.166808
\(300\) 0 0
\(301\) 0 0
\(302\) −106.736 −0.0203377
\(303\) 0 0
\(304\) 5401.44 1.01906
\(305\) 4157.23 0.780466
\(306\) 0 0
\(307\) −1415.59 −0.263165 −0.131583 0.991305i \(-0.542006\pi\)
−0.131583 + 0.991305i \(0.542006\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4400.94 −0.806311
\(311\) −8808.57 −1.60607 −0.803036 0.595931i \(-0.796783\pi\)
−0.803036 + 0.595931i \(0.796783\pi\)
\(312\) 0 0
\(313\) −4338.32 −0.783439 −0.391719 0.920085i \(-0.628120\pi\)
−0.391719 + 0.920085i \(0.628120\pi\)
\(314\) −8101.61 −1.45605
\(315\) 0 0
\(316\) 964.933 0.171778
\(317\) −8911.96 −1.57901 −0.789504 0.613745i \(-0.789662\pi\)
−0.789504 + 0.613745i \(0.789662\pi\)
\(318\) 0 0
\(319\) 55.2610 0.00969913
\(320\) −437.827 −0.0764852
\(321\) 0 0
\(322\) 0 0
\(323\) −3150.69 −0.542753
\(324\) 0 0
\(325\) −2348.56 −0.400845
\(326\) −7371.76 −1.25240
\(327\) 0 0
\(328\) 3260.28 0.548838
\(329\) 0 0
\(330\) 0 0
\(331\) 8405.16 1.39574 0.697869 0.716226i \(-0.254132\pi\)
0.697869 + 0.716226i \(0.254132\pi\)
\(332\) 5325.43 0.880334
\(333\) 0 0
\(334\) −549.107 −0.0899574
\(335\) −1767.96 −0.288340
\(336\) 0 0
\(337\) 7481.10 1.20926 0.604631 0.796506i \(-0.293321\pi\)
0.604631 + 0.796506i \(0.293321\pi\)
\(338\) 4766.49 0.767049
\(339\) 0 0
\(340\) −1217.81 −0.194250
\(341\) −444.996 −0.0706682
\(342\) 0 0
\(343\) 0 0
\(344\) 640.761 0.100429
\(345\) 0 0
\(346\) 3865.76 0.600649
\(347\) 1603.13 0.248013 0.124006 0.992281i \(-0.460426\pi\)
0.124006 + 0.992281i \(0.460426\pi\)
\(348\) 0 0
\(349\) −2238.34 −0.343311 −0.171656 0.985157i \(-0.554912\pi\)
−0.171656 + 0.985157i \(0.554912\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 379.984 0.0575376
\(353\) −9507.71 −1.43355 −0.716777 0.697303i \(-0.754383\pi\)
−0.716777 + 0.697303i \(0.754383\pi\)
\(354\) 0 0
\(355\) 1537.99 0.229938
\(356\) −4400.17 −0.655081
\(357\) 0 0
\(358\) −12126.9 −1.79030
\(359\) 7856.96 1.15508 0.577541 0.816361i \(-0.304012\pi\)
0.577541 + 0.816361i \(0.304012\pi\)
\(360\) 0 0
\(361\) −2300.28 −0.335366
\(362\) 5508.06 0.799716
\(363\) 0 0
\(364\) 0 0
\(365\) −1398.84 −0.200599
\(366\) 0 0
\(367\) −2258.91 −0.321292 −0.160646 0.987012i \(-0.551358\pi\)
−0.160646 + 0.987012i \(0.551358\pi\)
\(368\) 2409.50 0.341314
\(369\) 0 0
\(370\) 4737.41 0.665639
\(371\) 0 0
\(372\) 0 0
\(373\) 1789.23 0.248372 0.124186 0.992259i \(-0.460368\pi\)
0.124186 + 0.992259i \(0.460368\pi\)
\(374\) −370.608 −0.0512398
\(375\) 0 0
\(376\) −2702.29 −0.370638
\(377\) 689.630 0.0942116
\(378\) 0 0
\(379\) −7021.61 −0.951651 −0.475826 0.879540i \(-0.657851\pi\)
−0.475826 + 0.879540i \(0.657851\pi\)
\(380\) 1762.04 0.237870
\(381\) 0 0
\(382\) 17044.3 2.28289
\(383\) −9614.42 −1.28270 −0.641350 0.767248i \(-0.721625\pi\)
−0.641350 + 0.767248i \(0.721625\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11471.0 −1.51259
\(387\) 0 0
\(388\) −4535.98 −0.593504
\(389\) −12211.5 −1.59164 −0.795822 0.605530i \(-0.792961\pi\)
−0.795822 + 0.605530i \(0.792961\pi\)
\(390\) 0 0
\(391\) −1405.47 −0.181785
\(392\) 0 0
\(393\) 0 0
\(394\) 3546.43 0.453468
\(395\) −1589.20 −0.202434
\(396\) 0 0
\(397\) 10404.7 1.31535 0.657677 0.753300i \(-0.271539\pi\)
0.657677 + 0.753300i \(0.271539\pi\)
\(398\) −2752.17 −0.346618
\(399\) 0 0
\(400\) 6561.49 0.820186
\(401\) −789.887 −0.0983667 −0.0491834 0.998790i \(-0.515662\pi\)
−0.0491834 + 0.998790i \(0.515662\pi\)
\(402\) 0 0
\(403\) −5553.33 −0.686429
\(404\) 5378.63 0.662369
\(405\) 0 0
\(406\) 0 0
\(407\) 479.018 0.0583391
\(408\) 0 0
\(409\) −8685.05 −1.05000 −0.524998 0.851104i \(-0.675934\pi\)
−0.524998 + 0.851104i \(0.675934\pi\)
\(410\) 5317.89 0.640565
\(411\) 0 0
\(412\) −112.963 −0.0135080
\(413\) 0 0
\(414\) 0 0
\(415\) −8770.76 −1.03745
\(416\) 4742.02 0.558886
\(417\) 0 0
\(418\) 536.230 0.0627461
\(419\) 1296.36 0.151148 0.0755741 0.997140i \(-0.475921\pi\)
0.0755741 + 0.997140i \(0.475921\pi\)
\(420\) 0 0
\(421\) 1303.36 0.150884 0.0754418 0.997150i \(-0.475963\pi\)
0.0754418 + 0.997150i \(0.475963\pi\)
\(422\) 2945.45 0.339768
\(423\) 0 0
\(424\) 3083.42 0.353170
\(425\) −3827.36 −0.436833
\(426\) 0 0
\(427\) 0 0
\(428\) 6175.21 0.697407
\(429\) 0 0
\(430\) 1045.15 0.117214
\(431\) −70.6768 −0.00789880 −0.00394940 0.999992i \(-0.501257\pi\)
−0.00394940 + 0.999992i \(0.501257\pi\)
\(432\) 0 0
\(433\) −6842.92 −0.759468 −0.379734 0.925096i \(-0.623984\pi\)
−0.379734 + 0.925096i \(0.623984\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5038.33 −0.553423
\(437\) 2033.57 0.222606
\(438\) 0 0
\(439\) 18342.5 1.99417 0.997084 0.0763102i \(-0.0243139\pi\)
0.997084 + 0.0763102i \(0.0243139\pi\)
\(440\) −209.277 −0.0226748
\(441\) 0 0
\(442\) −4625.00 −0.497713
\(443\) −10938.1 −1.17310 −0.586552 0.809911i \(-0.699515\pi\)
−0.586552 + 0.809911i \(0.699515\pi\)
\(444\) 0 0
\(445\) 7246.91 0.771992
\(446\) 14554.3 1.54522
\(447\) 0 0
\(448\) 0 0
\(449\) 10816.8 1.13692 0.568461 0.822710i \(-0.307539\pi\)
0.568461 + 0.822710i \(0.307539\pi\)
\(450\) 0 0
\(451\) 537.712 0.0561416
\(452\) −1912.34 −0.199002
\(453\) 0 0
\(454\) 17996.4 1.86038
\(455\) 0 0
\(456\) 0 0
\(457\) 4525.45 0.463220 0.231610 0.972809i \(-0.425601\pi\)
0.231610 + 0.972809i \(0.425601\pi\)
\(458\) 4697.96 0.479304
\(459\) 0 0
\(460\) 786.018 0.0796701
\(461\) 11088.4 1.12025 0.560126 0.828407i \(-0.310753\pi\)
0.560126 + 0.828407i \(0.310753\pi\)
\(462\) 0 0
\(463\) 17567.2 1.76332 0.881660 0.471884i \(-0.156426\pi\)
0.881660 + 0.471884i \(0.156426\pi\)
\(464\) −1926.71 −0.192770
\(465\) 0 0
\(466\) −23232.3 −2.30947
\(467\) −6326.26 −0.626862 −0.313431 0.949611i \(-0.601478\pi\)
−0.313431 + 0.949611i \(0.601478\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4407.74 −0.432582
\(471\) 0 0
\(472\) 9888.04 0.964266
\(473\) 105.680 0.0102730
\(474\) 0 0
\(475\) 5537.78 0.534928
\(476\) 0 0
\(477\) 0 0
\(478\) 6406.05 0.612983
\(479\) −375.365 −0.0358055 −0.0179028 0.999840i \(-0.505699\pi\)
−0.0179028 + 0.999840i \(0.505699\pi\)
\(480\) 0 0
\(481\) 5977.91 0.566672
\(482\) 16838.4 1.59122
\(483\) 0 0
\(484\) −5277.31 −0.495615
\(485\) 7470.57 0.699425
\(486\) 0 0
\(487\) 25.9467 0.00241429 0.00120714 0.999999i \(-0.499616\pi\)
0.00120714 + 0.999999i \(0.499616\pi\)
\(488\) −8821.86 −0.818333
\(489\) 0 0
\(490\) 0 0
\(491\) −6282.99 −0.577490 −0.288745 0.957406i \(-0.593238\pi\)
−0.288745 + 0.957406i \(0.593238\pi\)
\(492\) 0 0
\(493\) 1123.87 0.102670
\(494\) 6691.89 0.609479
\(495\) 0 0
\(496\) 15515.1 1.40453
\(497\) 0 0
\(498\) 0 0
\(499\) −2371.78 −0.212776 −0.106388 0.994325i \(-0.533929\pi\)
−0.106388 + 0.994325i \(0.533929\pi\)
\(500\) 5402.62 0.483225
\(501\) 0 0
\(502\) 6579.96 0.585016
\(503\) 11080.3 0.982201 0.491100 0.871103i \(-0.336595\pi\)
0.491100 + 0.871103i \(0.336595\pi\)
\(504\) 0 0
\(505\) −8858.39 −0.780580
\(506\) 239.204 0.0210156
\(507\) 0 0
\(508\) 7315.36 0.638910
\(509\) −10063.7 −0.876355 −0.438178 0.898888i \(-0.644376\pi\)
−0.438178 + 0.898888i \(0.644376\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −4344.69 −0.375020
\(513\) 0 0
\(514\) 5781.52 0.496132
\(515\) 186.046 0.0159187
\(516\) 0 0
\(517\) −445.683 −0.0379132
\(518\) 0 0
\(519\) 0 0
\(520\) −2611.68 −0.220249
\(521\) 9181.24 0.772048 0.386024 0.922489i \(-0.373848\pi\)
0.386024 + 0.922489i \(0.373848\pi\)
\(522\) 0 0
\(523\) 9392.06 0.785250 0.392625 0.919699i \(-0.371567\pi\)
0.392625 + 0.919699i \(0.371567\pi\)
\(524\) −4769.74 −0.397647
\(525\) 0 0
\(526\) 13127.2 1.08816
\(527\) −9050.06 −0.748058
\(528\) 0 0
\(529\) −11259.9 −0.925442
\(530\) 5029.42 0.412196
\(531\) 0 0
\(532\) 0 0
\(533\) 6710.38 0.545326
\(534\) 0 0
\(535\) −10170.3 −0.821871
\(536\) 3751.71 0.302330
\(537\) 0 0
\(538\) 27426.0 2.19780
\(539\) 0 0
\(540\) 0 0
\(541\) 4114.52 0.326982 0.163491 0.986545i \(-0.447725\pi\)
0.163491 + 0.986545i \(0.447725\pi\)
\(542\) 21947.3 1.73933
\(543\) 0 0
\(544\) 7727.90 0.609064
\(545\) 8297.92 0.652191
\(546\) 0 0
\(547\) −9796.38 −0.765746 −0.382873 0.923801i \(-0.625065\pi\)
−0.382873 + 0.923801i \(0.625065\pi\)
\(548\) −8040.26 −0.626757
\(549\) 0 0
\(550\) 651.394 0.0505010
\(551\) −1626.11 −0.125726
\(552\) 0 0
\(553\) 0 0
\(554\) 10969.4 0.841236
\(555\) 0 0
\(556\) −9235.16 −0.704421
\(557\) −4197.53 −0.319309 −0.159655 0.987173i \(-0.551038\pi\)
−0.159655 + 0.987173i \(0.551038\pi\)
\(558\) 0 0
\(559\) 1318.83 0.0997863
\(560\) 0 0
\(561\) 0 0
\(562\) −12089.9 −0.907441
\(563\) 10742.4 0.804151 0.402075 0.915607i \(-0.368289\pi\)
0.402075 + 0.915607i \(0.368289\pi\)
\(564\) 0 0
\(565\) 3149.54 0.234517
\(566\) 6591.15 0.489482
\(567\) 0 0
\(568\) −3263.69 −0.241094
\(569\) 7915.86 0.583216 0.291608 0.956538i \(-0.405810\pi\)
0.291608 + 0.956538i \(0.405810\pi\)
\(570\) 0 0
\(571\) 16923.1 1.24030 0.620149 0.784484i \(-0.287072\pi\)
0.620149 + 0.784484i \(0.287072\pi\)
\(572\) 261.536 0.0191178
\(573\) 0 0
\(574\) 0 0
\(575\) 2470.32 0.179164
\(576\) 0 0
\(577\) −24108.2 −1.73941 −0.869704 0.493573i \(-0.835690\pi\)
−0.869704 + 0.493573i \(0.835690\pi\)
\(578\) 9468.21 0.681360
\(579\) 0 0
\(580\) −628.526 −0.0449968
\(581\) 0 0
\(582\) 0 0
\(583\) 508.543 0.0361264
\(584\) 2968.41 0.210332
\(585\) 0 0
\(586\) 13806.5 0.973279
\(587\) 13259.2 0.932308 0.466154 0.884704i \(-0.345639\pi\)
0.466154 + 0.884704i \(0.345639\pi\)
\(588\) 0 0
\(589\) 13094.5 0.916041
\(590\) 16128.5 1.12542
\(591\) 0 0
\(592\) −16701.3 −1.15949
\(593\) −18789.8 −1.30119 −0.650596 0.759424i \(-0.725481\pi\)
−0.650596 + 0.759424i \(0.725481\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4898.49 0.336661
\(597\) 0 0
\(598\) 2985.14 0.204133
\(599\) 7105.41 0.484673 0.242337 0.970192i \(-0.422086\pi\)
0.242337 + 0.970192i \(0.422086\pi\)
\(600\) 0 0
\(601\) 800.460 0.0543286 0.0271643 0.999631i \(-0.491352\pi\)
0.0271643 + 0.999631i \(0.491352\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 122.752 0.00826935
\(605\) 8691.51 0.584066
\(606\) 0 0
\(607\) 8771.51 0.586532 0.293266 0.956031i \(-0.405258\pi\)
0.293266 + 0.956031i \(0.405258\pi\)
\(608\) −11181.5 −0.745835
\(609\) 0 0
\(610\) −14389.5 −0.955102
\(611\) −5561.90 −0.368266
\(612\) 0 0
\(613\) −2533.30 −0.166915 −0.0834577 0.996511i \(-0.526596\pi\)
−0.0834577 + 0.996511i \(0.526596\pi\)
\(614\) 4899.78 0.322050
\(615\) 0 0
\(616\) 0 0
\(617\) −1464.17 −0.0955350 −0.0477675 0.998858i \(-0.515211\pi\)
−0.0477675 + 0.998858i \(0.515211\pi\)
\(618\) 0 0
\(619\) −18519.8 −1.20254 −0.601271 0.799045i \(-0.705339\pi\)
−0.601271 + 0.799045i \(0.705339\pi\)
\(620\) 5061.28 0.327848
\(621\) 0 0
\(622\) 30489.2 1.96544
\(623\) 0 0
\(624\) 0 0
\(625\) 1354.48 0.0866867
\(626\) 15016.3 0.958739
\(627\) 0 0
\(628\) 9317.23 0.592035
\(629\) 9741.98 0.617549
\(630\) 0 0
\(631\) 5128.62 0.323562 0.161781 0.986827i \(-0.448276\pi\)
0.161781 + 0.986827i \(0.448276\pi\)
\(632\) 3372.38 0.212256
\(633\) 0 0
\(634\) 30847.1 1.93232
\(635\) −12048.1 −0.752935
\(636\) 0 0
\(637\) 0 0
\(638\) −191.275 −0.0118694
\(639\) 0 0
\(640\) 10201.2 0.630057
\(641\) 20864.3 1.28563 0.642817 0.766020i \(-0.277766\pi\)
0.642817 + 0.766020i \(0.277766\pi\)
\(642\) 0 0
\(643\) −9799.87 −0.601040 −0.300520 0.953775i \(-0.597160\pi\)
−0.300520 + 0.953775i \(0.597160\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 10905.5 0.664199
\(647\) 8180.42 0.497072 0.248536 0.968623i \(-0.420051\pi\)
0.248536 + 0.968623i \(0.420051\pi\)
\(648\) 0 0
\(649\) 1630.81 0.0986365
\(650\) 8129.08 0.490537
\(651\) 0 0
\(652\) 8477.86 0.509231
\(653\) −13509.9 −0.809619 −0.404810 0.914401i \(-0.632662\pi\)
−0.404810 + 0.914401i \(0.632662\pi\)
\(654\) 0 0
\(655\) 7855.56 0.468614
\(656\) −18747.7 −1.11582
\(657\) 0 0
\(658\) 0 0
\(659\) −18426.1 −1.08919 −0.544597 0.838698i \(-0.683317\pi\)
−0.544597 + 0.838698i \(0.683317\pi\)
\(660\) 0 0
\(661\) −12328.0 −0.725424 −0.362712 0.931901i \(-0.618149\pi\)
−0.362712 + 0.931901i \(0.618149\pi\)
\(662\) −29092.8 −1.70804
\(663\) 0 0
\(664\) 18612.0 1.08778
\(665\) 0 0
\(666\) 0 0
\(667\) −725.383 −0.0421094
\(668\) 631.498 0.0365769
\(669\) 0 0
\(670\) 6119.46 0.352859
\(671\) −1454.97 −0.0837087
\(672\) 0 0
\(673\) −20866.3 −1.19515 −0.597575 0.801813i \(-0.703869\pi\)
−0.597575 + 0.801813i \(0.703869\pi\)
\(674\) −25894.4 −1.47984
\(675\) 0 0
\(676\) −5481.68 −0.311884
\(677\) −638.005 −0.0362194 −0.0181097 0.999836i \(-0.505765\pi\)
−0.0181097 + 0.999836i \(0.505765\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4256.16 −0.240024
\(681\) 0 0
\(682\) 1540.27 0.0864808
\(683\) −25045.2 −1.40312 −0.701558 0.712612i \(-0.747512\pi\)
−0.701558 + 0.712612i \(0.747512\pi\)
\(684\) 0 0
\(685\) 13242.0 0.738613
\(686\) 0 0
\(687\) 0 0
\(688\) −3684.59 −0.204177
\(689\) 6346.37 0.350911
\(690\) 0 0
\(691\) 3371.26 0.185599 0.0927994 0.995685i \(-0.470418\pi\)
0.0927994 + 0.995685i \(0.470418\pi\)
\(692\) −4445.80 −0.244225
\(693\) 0 0
\(694\) −5548.93 −0.303508
\(695\) 15209.9 0.830138
\(696\) 0 0
\(697\) 10935.7 0.594286
\(698\) 7747.59 0.420130
\(699\) 0 0
\(700\) 0 0
\(701\) 24430.3 1.31629 0.658146 0.752890i \(-0.271341\pi\)
0.658146 + 0.752890i \(0.271341\pi\)
\(702\) 0 0
\(703\) −14095.6 −0.756225
\(704\) 153.233 0.00820340
\(705\) 0 0
\(706\) 32909.1 1.75432
\(707\) 0 0
\(708\) 0 0
\(709\) 24270.6 1.28562 0.642809 0.766026i \(-0.277769\pi\)
0.642809 + 0.766026i \(0.277769\pi\)
\(710\) −5323.45 −0.281388
\(711\) 0 0
\(712\) −15378.3 −0.809448
\(713\) 5841.23 0.306811
\(714\) 0 0
\(715\) −430.739 −0.0225297
\(716\) 13946.5 0.727941
\(717\) 0 0
\(718\) −27195.4 −1.41354
\(719\) 6891.17 0.357437 0.178718 0.983900i \(-0.442805\pi\)
0.178718 + 0.983900i \(0.442805\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 7961.97 0.410407
\(723\) 0 0
\(724\) −6334.53 −0.325167
\(725\) −1975.35 −0.101190
\(726\) 0 0
\(727\) −4904.38 −0.250197 −0.125099 0.992144i \(-0.539925\pi\)
−0.125099 + 0.992144i \(0.539925\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 4841.82 0.245485
\(731\) 2149.25 0.108745
\(732\) 0 0
\(733\) −6610.71 −0.333114 −0.166557 0.986032i \(-0.553265\pi\)
−0.166557 + 0.986032i \(0.553265\pi\)
\(734\) 7818.78 0.393183
\(735\) 0 0
\(736\) −4987.86 −0.249803
\(737\) 618.762 0.0309259
\(738\) 0 0
\(739\) −27941.3 −1.39085 −0.695425 0.718599i \(-0.744784\pi\)
−0.695425 + 0.718599i \(0.744784\pi\)
\(740\) −5448.24 −0.270651
\(741\) 0 0
\(742\) 0 0
\(743\) −29535.5 −1.45835 −0.729174 0.684328i \(-0.760095\pi\)
−0.729174 + 0.684328i \(0.760095\pi\)
\(744\) 0 0
\(745\) −8067.61 −0.396744
\(746\) −6193.07 −0.303947
\(747\) 0 0
\(748\) 426.216 0.0208342
\(749\) 0 0
\(750\) 0 0
\(751\) −35047.9 −1.70295 −0.851475 0.524395i \(-0.824291\pi\)
−0.851475 + 0.524395i \(0.824291\pi\)
\(752\) 15539.1 0.753525
\(753\) 0 0
\(754\) −2387.02 −0.115292
\(755\) −202.167 −0.00974517
\(756\) 0 0
\(757\) 19501.6 0.936326 0.468163 0.883642i \(-0.344916\pi\)
0.468163 + 0.883642i \(0.344916\pi\)
\(758\) 24304.0 1.16459
\(759\) 0 0
\(760\) 6158.21 0.293923
\(761\) 22813.5 1.08672 0.543358 0.839501i \(-0.317153\pi\)
0.543358 + 0.839501i \(0.317153\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −19601.7 −0.928228
\(765\) 0 0
\(766\) 33278.5 1.56971
\(767\) 20351.8 0.958096
\(768\) 0 0
\(769\) 23272.0 1.09130 0.545650 0.838013i \(-0.316283\pi\)
0.545650 + 0.838013i \(0.316283\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13192.2 0.615023
\(773\) −29648.9 −1.37956 −0.689778 0.724021i \(-0.742292\pi\)
−0.689778 + 0.724021i \(0.742292\pi\)
\(774\) 0 0
\(775\) 15906.7 0.737273
\(776\) −15853.0 −0.733361
\(777\) 0 0
\(778\) 42267.9 1.94779
\(779\) −15822.7 −0.727739
\(780\) 0 0
\(781\) −538.274 −0.0246619
\(782\) 4864.78 0.222461
\(783\) 0 0
\(784\) 0 0
\(785\) −15345.1 −0.697694
\(786\) 0 0
\(787\) −19003.2 −0.860726 −0.430363 0.902656i \(-0.641614\pi\)
−0.430363 + 0.902656i \(0.641614\pi\)
\(788\) −4078.56 −0.184381
\(789\) 0 0
\(790\) 5500.73 0.247731
\(791\) 0 0
\(792\) 0 0
\(793\) −18157.3 −0.813097
\(794\) −36013.8 −1.60968
\(795\) 0 0
\(796\) 3165.12 0.140936
\(797\) −19286.8 −0.857182 −0.428591 0.903499i \(-0.640990\pi\)
−0.428591 + 0.903499i \(0.640990\pi\)
\(798\) 0 0
\(799\) −9064.03 −0.401330
\(800\) −13582.8 −0.600283
\(801\) 0 0
\(802\) 2734.04 0.120377
\(803\) 489.575 0.0215152
\(804\) 0 0
\(805\) 0 0
\(806\) 19221.8 0.840023
\(807\) 0 0
\(808\) 18798.0 0.818453
\(809\) −26463.5 −1.15007 −0.575034 0.818129i \(-0.695011\pi\)
−0.575034 + 0.818129i \(0.695011\pi\)
\(810\) 0 0
\(811\) −28814.1 −1.24759 −0.623797 0.781586i \(-0.714411\pi\)
−0.623797 + 0.781586i \(0.714411\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1658.03 −0.0713930
\(815\) −13962.7 −0.600113
\(816\) 0 0
\(817\) −3109.73 −0.133165
\(818\) 30061.6 1.28494
\(819\) 0 0
\(820\) −6115.81 −0.260455
\(821\) 34564.5 1.46932 0.734658 0.678437i \(-0.237342\pi\)
0.734658 + 0.678437i \(0.237342\pi\)
\(822\) 0 0
\(823\) 10429.7 0.441746 0.220873 0.975303i \(-0.429109\pi\)
0.220873 + 0.975303i \(0.429109\pi\)
\(824\) −394.799 −0.0166911
\(825\) 0 0
\(826\) 0 0
\(827\) 33622.9 1.41376 0.706881 0.707332i \(-0.250101\pi\)
0.706881 + 0.707332i \(0.250101\pi\)
\(828\) 0 0
\(829\) −37426.6 −1.56801 −0.784004 0.620756i \(-0.786826\pi\)
−0.784004 + 0.620756i \(0.786826\pi\)
\(830\) 30358.3 1.26958
\(831\) 0 0
\(832\) 1912.28 0.0796830
\(833\) 0 0
\(834\) 0 0
\(835\) −1040.05 −0.0431047
\(836\) −616.689 −0.0255127
\(837\) 0 0
\(838\) −4487.09 −0.184969
\(839\) −20073.3 −0.825993 −0.412996 0.910733i \(-0.635518\pi\)
−0.412996 + 0.910733i \(0.635518\pi\)
\(840\) 0 0
\(841\) −23809.0 −0.976217
\(842\) −4511.34 −0.184645
\(843\) 0 0
\(844\) −3387.40 −0.138151
\(845\) 9028.10 0.367546
\(846\) 0 0
\(847\) 0 0
\(848\) −17730.7 −0.718014
\(849\) 0 0
\(850\) 13247.7 0.534578
\(851\) −6287.82 −0.253283
\(852\) 0 0
\(853\) −31621.1 −1.26927 −0.634635 0.772812i \(-0.718849\pi\)
−0.634635 + 0.772812i \(0.718849\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 21581.9 0.861747
\(857\) 5655.26 0.225414 0.112707 0.993628i \(-0.464048\pi\)
0.112707 + 0.993628i \(0.464048\pi\)
\(858\) 0 0
\(859\) 25859.7 1.02715 0.513574 0.858045i \(-0.328321\pi\)
0.513574 + 0.858045i \(0.328321\pi\)
\(860\) −1201.98 −0.0476593
\(861\) 0 0
\(862\) 244.634 0.00966621
\(863\) −12328.5 −0.486288 −0.243144 0.969990i \(-0.578179\pi\)
−0.243144 + 0.969990i \(0.578179\pi\)
\(864\) 0 0
\(865\) 7322.05 0.287812
\(866\) 23685.5 0.929405
\(867\) 0 0
\(868\) 0 0
\(869\) 556.200 0.0217121
\(870\) 0 0
\(871\) 7721.84 0.300396
\(872\) −17608.6 −0.683834
\(873\) 0 0
\(874\) −7038.82 −0.272416
\(875\) 0 0
\(876\) 0 0
\(877\) −18980.7 −0.730825 −0.365412 0.930846i \(-0.619072\pi\)
−0.365412 + 0.930846i \(0.619072\pi\)
\(878\) −63489.1 −2.44038
\(879\) 0 0
\(880\) 1203.42 0.0460990
\(881\) −38081.2 −1.45629 −0.728144 0.685424i \(-0.759617\pi\)
−0.728144 + 0.685424i \(0.759617\pi\)
\(882\) 0 0
\(883\) 6338.38 0.241567 0.120783 0.992679i \(-0.461459\pi\)
0.120783 + 0.992679i \(0.461459\pi\)
\(884\) 5318.97 0.202371
\(885\) 0 0
\(886\) 37860.2 1.43560
\(887\) 22874.3 0.865889 0.432944 0.901421i \(-0.357475\pi\)
0.432944 + 0.901421i \(0.357475\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −25083.8 −0.944731
\(891\) 0 0
\(892\) −16738.1 −0.628290
\(893\) 13114.7 0.491452
\(894\) 0 0
\(895\) −22969.4 −0.857856
\(896\) 0 0
\(897\) 0 0
\(898\) −37440.4 −1.39132
\(899\) −4670.85 −0.173283
\(900\) 0 0
\(901\) 10342.4 0.382416
\(902\) −1861.19 −0.0687037
\(903\) 0 0
\(904\) −6683.49 −0.245896
\(905\) 10432.7 0.383199
\(906\) 0 0
\(907\) −33888.9 −1.24064 −0.620320 0.784349i \(-0.712997\pi\)
−0.620320 + 0.784349i \(0.712997\pi\)
\(908\) −20696.6 −0.756434
\(909\) 0 0
\(910\) 0 0
\(911\) −10145.9 −0.368990 −0.184495 0.982833i \(-0.559065\pi\)
−0.184495 + 0.982833i \(0.559065\pi\)
\(912\) 0 0
\(913\) 3069.65 0.111271
\(914\) −15664.0 −0.566870
\(915\) 0 0
\(916\) −5402.87 −0.194886
\(917\) 0 0
\(918\) 0 0
\(919\) 30423.3 1.09203 0.546013 0.837777i \(-0.316145\pi\)
0.546013 + 0.837777i \(0.316145\pi\)
\(920\) 2747.08 0.0984440
\(921\) 0 0
\(922\) −38380.3 −1.37092
\(923\) −6717.40 −0.239551
\(924\) 0 0
\(925\) −17122.9 −0.608645
\(926\) −60805.6 −2.15788
\(927\) 0 0
\(928\) 3988.47 0.141086
\(929\) 18206.1 0.642976 0.321488 0.946914i \(-0.395817\pi\)
0.321488 + 0.946914i \(0.395817\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 26718.2 0.939037
\(933\) 0 0
\(934\) 21897.2 0.767127
\(935\) −701.960 −0.0245525
\(936\) 0 0
\(937\) −15511.4 −0.540806 −0.270403 0.962747i \(-0.587157\pi\)
−0.270403 + 0.962747i \(0.587157\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 5069.10 0.175889
\(941\) −90.6984 −0.00314206 −0.00157103 0.999999i \(-0.500500\pi\)
−0.00157103 + 0.999999i \(0.500500\pi\)
\(942\) 0 0
\(943\) −7058.27 −0.243742
\(944\) −56859.5 −1.96040
\(945\) 0 0
\(946\) −365.790 −0.0125717
\(947\) 35516.0 1.21871 0.609354 0.792899i \(-0.291429\pi\)
0.609354 + 0.792899i \(0.291429\pi\)
\(948\) 0 0
\(949\) 6109.66 0.208986
\(950\) −19168.0 −0.654622
\(951\) 0 0
\(952\) 0 0
\(953\) 22433.4 0.762526 0.381263 0.924467i \(-0.375489\pi\)
0.381263 + 0.924467i \(0.375489\pi\)
\(954\) 0 0
\(955\) 32283.3 1.09389
\(956\) −7367.25 −0.249241
\(957\) 0 0
\(958\) 1299.25 0.0438173
\(959\) 0 0
\(960\) 0 0
\(961\) 7821.56 0.262548
\(962\) −20691.4 −0.693469
\(963\) 0 0
\(964\) −19364.9 −0.646994
\(965\) −21727.0 −0.724785
\(966\) 0 0
\(967\) 2753.37 0.0915639 0.0457820 0.998951i \(-0.485422\pi\)
0.0457820 + 0.998951i \(0.485422\pi\)
\(968\) −18443.8 −0.612405
\(969\) 0 0
\(970\) −25858.0 −0.855927
\(971\) 46754.1 1.54522 0.772611 0.634880i \(-0.218950\pi\)
0.772611 + 0.634880i \(0.218950\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −89.8096 −0.00295450
\(975\) 0 0
\(976\) 50728.7 1.66371
\(977\) 34781.1 1.13894 0.569471 0.822011i \(-0.307148\pi\)
0.569471 + 0.822011i \(0.307148\pi\)
\(978\) 0 0
\(979\) −2536.32 −0.0827998
\(980\) 0 0
\(981\) 0 0
\(982\) 21747.4 0.706708
\(983\) −29661.0 −0.962401 −0.481200 0.876611i \(-0.659799\pi\)
−0.481200 + 0.876611i \(0.659799\pi\)
\(984\) 0 0
\(985\) 6717.22 0.217288
\(986\) −3890.05 −0.125643
\(987\) 0 0
\(988\) −7695.98 −0.247816
\(989\) −1387.20 −0.0446011
\(990\) 0 0
\(991\) −13621.6 −0.436636 −0.218318 0.975878i \(-0.570057\pi\)
−0.218318 + 0.975878i \(0.570057\pi\)
\(992\) −32117.6 −1.02796
\(993\) 0 0
\(994\) 0 0
\(995\) −5212.83 −0.166088
\(996\) 0 0
\(997\) −9439.71 −0.299858 −0.149929 0.988697i \(-0.547905\pi\)
−0.149929 + 0.988697i \(0.547905\pi\)
\(998\) 8209.46 0.260387
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bf.1.2 6
3.2 odd 2 inner 1323.4.a.bf.1.5 yes 6
7.6 odd 2 1323.4.a.bg.1.2 yes 6
21.20 even 2 1323.4.a.bg.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bf.1.2 6 1.1 even 1 trivial
1323.4.a.bf.1.5 yes 6 3.2 odd 2 inner
1323.4.a.bg.1.2 yes 6 7.6 odd 2
1323.4.a.bg.1.5 yes 6 21.20 even 2