Properties

Label 1323.4.a.be.1.5
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 40x^{4} + 453x^{2} - 1278 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.68757\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.68757 q^{2} +5.59820 q^{4} +11.8719 q^{5} -8.85681 q^{8} +O(q^{10})\) \(q+3.68757 q^{2} +5.59820 q^{4} +11.8719 q^{5} -8.85681 q^{8} +43.7785 q^{10} +22.2104 q^{11} -75.1040 q^{13} -77.4457 q^{16} -74.1097 q^{17} +7.41977 q^{19} +66.4612 q^{20} +81.9023 q^{22} -205.772 q^{23} +15.9417 q^{25} -276.952 q^{26} +148.304 q^{29} +164.438 q^{31} -214.732 q^{32} -273.285 q^{34} -205.239 q^{37} +27.3610 q^{38} -105.147 q^{40} -83.9896 q^{41} -368.677 q^{43} +124.338 q^{44} -758.800 q^{46} -98.3339 q^{47} +58.7864 q^{50} -420.448 q^{52} -293.897 q^{53} +263.679 q^{55} +546.883 q^{58} -509.272 q^{59} +696.384 q^{61} +606.376 q^{62} -172.276 q^{64} -891.627 q^{65} +370.879 q^{67} -414.881 q^{68} +121.723 q^{71} +682.103 q^{73} -756.832 q^{74} +41.5374 q^{76} -669.950 q^{79} -919.427 q^{80} -309.718 q^{82} +1182.06 q^{83} -879.823 q^{85} -1359.52 q^{86} -196.713 q^{88} +598.651 q^{89} -1151.95 q^{92} -362.614 q^{94} +88.0867 q^{95} +1037.20 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 32 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 32 q^{4} + 20 q^{10} - 52 q^{13} - 148 q^{16} + 62 q^{19} - 356 q^{22} - 46 q^{25} + 82 q^{31} - 420 q^{34} - 1132 q^{37} + 444 q^{40} - 1566 q^{43} - 888 q^{46} + 72 q^{52} - 224 q^{55} + 4 q^{58} - 886 q^{61} - 924 q^{64} - 2084 q^{67} + 2398 q^{73} - 3204 q^{76} + 984 q^{79} + 3892 q^{82} - 3600 q^{85} - 5796 q^{88} - 2772 q^{94} + 682 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.68757 1.30375 0.651877 0.758325i \(-0.273982\pi\)
0.651877 + 0.758325i \(0.273982\pi\)
\(3\) 0 0
\(4\) 5.59820 0.699775
\(5\) 11.8719 1.06185 0.530927 0.847418i \(-0.321844\pi\)
0.530927 + 0.847418i \(0.321844\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −8.85681 −0.391419
\(9\) 0 0
\(10\) 43.7785 1.38440
\(11\) 22.2104 0.608788 0.304394 0.952546i \(-0.401546\pi\)
0.304394 + 0.952546i \(0.401546\pi\)
\(12\) 0 0
\(13\) −75.1040 −1.60232 −0.801158 0.598453i \(-0.795782\pi\)
−0.801158 + 0.598453i \(0.795782\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −77.4457 −1.21009
\(17\) −74.1097 −1.05731 −0.528654 0.848837i \(-0.677303\pi\)
−0.528654 + 0.848837i \(0.677303\pi\)
\(18\) 0 0
\(19\) 7.41977 0.0895901 0.0447951 0.998996i \(-0.485737\pi\)
0.0447951 + 0.998996i \(0.485737\pi\)
\(20\) 66.4612 0.743059
\(21\) 0 0
\(22\) 81.9023 0.793711
\(23\) −205.772 −1.86550 −0.932749 0.360526i \(-0.882597\pi\)
−0.932749 + 0.360526i \(0.882597\pi\)
\(24\) 0 0
\(25\) 15.9417 0.127534
\(26\) −276.952 −2.08903
\(27\) 0 0
\(28\) 0 0
\(29\) 148.304 0.949636 0.474818 0.880084i \(-0.342514\pi\)
0.474818 + 0.880084i \(0.342514\pi\)
\(30\) 0 0
\(31\) 164.438 0.952705 0.476353 0.879254i \(-0.341959\pi\)
0.476353 + 0.879254i \(0.341959\pi\)
\(32\) −214.732 −1.18624
\(33\) 0 0
\(34\) −273.285 −1.37847
\(35\) 0 0
\(36\) 0 0
\(37\) −205.239 −0.911919 −0.455960 0.890001i \(-0.650704\pi\)
−0.455960 + 0.890001i \(0.650704\pi\)
\(38\) 27.3610 0.116803
\(39\) 0 0
\(40\) −105.147 −0.415630
\(41\) −83.9896 −0.319926 −0.159963 0.987123i \(-0.551137\pi\)
−0.159963 + 0.987123i \(0.551137\pi\)
\(42\) 0 0
\(43\) −368.677 −1.30751 −0.653753 0.756708i \(-0.726806\pi\)
−0.653753 + 0.756708i \(0.726806\pi\)
\(44\) 124.338 0.426015
\(45\) 0 0
\(46\) −758.800 −2.43215
\(47\) −98.3339 −0.305180 −0.152590 0.988290i \(-0.548761\pi\)
−0.152590 + 0.988290i \(0.548761\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 58.7864 0.166273
\(51\) 0 0
\(52\) −420.448 −1.12126
\(53\) −293.897 −0.761696 −0.380848 0.924638i \(-0.624368\pi\)
−0.380848 + 0.924638i \(0.624368\pi\)
\(54\) 0 0
\(55\) 263.679 0.646444
\(56\) 0 0
\(57\) 0 0
\(58\) 546.883 1.23809
\(59\) −509.272 −1.12376 −0.561878 0.827220i \(-0.689921\pi\)
−0.561878 + 0.827220i \(0.689921\pi\)
\(60\) 0 0
\(61\) 696.384 1.46169 0.730843 0.682546i \(-0.239127\pi\)
0.730843 + 0.682546i \(0.239127\pi\)
\(62\) 606.376 1.24209
\(63\) 0 0
\(64\) −172.276 −0.336477
\(65\) −891.627 −1.70143
\(66\) 0 0
\(67\) 370.879 0.676270 0.338135 0.941098i \(-0.390204\pi\)
0.338135 + 0.941098i \(0.390204\pi\)
\(68\) −414.881 −0.739879
\(69\) 0 0
\(70\) 0 0
\(71\) 121.723 0.203462 0.101731 0.994812i \(-0.467562\pi\)
0.101731 + 0.994812i \(0.467562\pi\)
\(72\) 0 0
\(73\) 682.103 1.09362 0.546809 0.837257i \(-0.315842\pi\)
0.546809 + 0.837257i \(0.315842\pi\)
\(74\) −756.832 −1.18892
\(75\) 0 0
\(76\) 41.5374 0.0626929
\(77\) 0 0
\(78\) 0 0
\(79\) −669.950 −0.954118 −0.477059 0.878871i \(-0.658297\pi\)
−0.477059 + 0.878871i \(0.658297\pi\)
\(80\) −919.427 −1.28494
\(81\) 0 0
\(82\) −309.718 −0.417105
\(83\) 1182.06 1.56323 0.781616 0.623759i \(-0.214396\pi\)
0.781616 + 0.623759i \(0.214396\pi\)
\(84\) 0 0
\(85\) −879.823 −1.12271
\(86\) −1359.52 −1.70467
\(87\) 0 0
\(88\) −196.713 −0.238291
\(89\) 598.651 0.712999 0.356500 0.934295i \(-0.383970\pi\)
0.356500 + 0.934295i \(0.383970\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1151.95 −1.30543
\(93\) 0 0
\(94\) −362.614 −0.397880
\(95\) 88.0867 0.0951316
\(96\) 0 0
\(97\) 1037.20 1.08569 0.542846 0.839833i \(-0.317347\pi\)
0.542846 + 0.839833i \(0.317347\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 89.2451 0.0892451
\(101\) 137.285 0.135251 0.0676254 0.997711i \(-0.478458\pi\)
0.0676254 + 0.997711i \(0.478458\pi\)
\(102\) 0 0
\(103\) 327.237 0.313045 0.156522 0.987674i \(-0.449972\pi\)
0.156522 + 0.987674i \(0.449972\pi\)
\(104\) 665.182 0.627177
\(105\) 0 0
\(106\) −1083.77 −0.993064
\(107\) −1051.42 −0.949947 −0.474973 0.880000i \(-0.657542\pi\)
−0.474973 + 0.880000i \(0.657542\pi\)
\(108\) 0 0
\(109\) 255.171 0.224229 0.112114 0.993695i \(-0.464238\pi\)
0.112114 + 0.993695i \(0.464238\pi\)
\(110\) 972.335 0.842805
\(111\) 0 0
\(112\) 0 0
\(113\) −1990.49 −1.65708 −0.828538 0.559933i \(-0.810827\pi\)
−0.828538 + 0.559933i \(0.810827\pi\)
\(114\) 0 0
\(115\) −2442.90 −1.98089
\(116\) 830.238 0.664532
\(117\) 0 0
\(118\) −1877.98 −1.46510
\(119\) 0 0
\(120\) 0 0
\(121\) −837.700 −0.629377
\(122\) 2567.97 1.90568
\(123\) 0 0
\(124\) 920.555 0.666680
\(125\) −1294.73 −0.926432
\(126\) 0 0
\(127\) 536.451 0.374822 0.187411 0.982282i \(-0.439990\pi\)
0.187411 + 0.982282i \(0.439990\pi\)
\(128\) 1082.58 0.747558
\(129\) 0 0
\(130\) −3287.94 −2.21824
\(131\) −2560.09 −1.70745 −0.853727 0.520721i \(-0.825663\pi\)
−0.853727 + 0.520721i \(0.825663\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1367.64 0.881690
\(135\) 0 0
\(136\) 656.376 0.413851
\(137\) −2266.25 −1.41327 −0.706637 0.707577i \(-0.749788\pi\)
−0.706637 + 0.707577i \(0.749788\pi\)
\(138\) 0 0
\(139\) −1837.27 −1.12112 −0.560559 0.828114i \(-0.689414\pi\)
−0.560559 + 0.828114i \(0.689414\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 448.861 0.265265
\(143\) −1668.09 −0.975472
\(144\) 0 0
\(145\) 1760.65 1.00837
\(146\) 2515.31 1.42581
\(147\) 0 0
\(148\) −1148.97 −0.638138
\(149\) 626.201 0.344298 0.172149 0.985071i \(-0.444929\pi\)
0.172149 + 0.985071i \(0.444929\pi\)
\(150\) 0 0
\(151\) −1204.68 −0.649243 −0.324621 0.945844i \(-0.605237\pi\)
−0.324621 + 0.945844i \(0.605237\pi\)
\(152\) −65.7155 −0.0350673
\(153\) 0 0
\(154\) 0 0
\(155\) 1952.19 1.01163
\(156\) 0 0
\(157\) −2976.32 −1.51297 −0.756486 0.654010i \(-0.773085\pi\)
−0.756486 + 0.654010i \(0.773085\pi\)
\(158\) −2470.49 −1.24394
\(159\) 0 0
\(160\) −2549.28 −1.25961
\(161\) 0 0
\(162\) 0 0
\(163\) 816.520 0.392360 0.196180 0.980568i \(-0.437146\pi\)
0.196180 + 0.980568i \(0.437146\pi\)
\(164\) −470.191 −0.223876
\(165\) 0 0
\(166\) 4358.95 2.03807
\(167\) 1597.72 0.740331 0.370166 0.928966i \(-0.379301\pi\)
0.370166 + 0.928966i \(0.379301\pi\)
\(168\) 0 0
\(169\) 3443.62 1.56742
\(170\) −3244.41 −1.46374
\(171\) 0 0
\(172\) −2063.93 −0.914960
\(173\) 1330.40 0.584675 0.292337 0.956315i \(-0.405567\pi\)
0.292337 + 0.956315i \(0.405567\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1720.10 −0.736689
\(177\) 0 0
\(178\) 2207.57 0.929576
\(179\) 4088.95 1.70739 0.853694 0.520775i \(-0.174357\pi\)
0.853694 + 0.520775i \(0.174357\pi\)
\(180\) 0 0
\(181\) 1223.86 0.502591 0.251295 0.967910i \(-0.419143\pi\)
0.251295 + 0.967910i \(0.419143\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1822.48 0.730192
\(185\) −2436.57 −0.968325
\(186\) 0 0
\(187\) −1646.00 −0.643677
\(188\) −550.493 −0.213558
\(189\) 0 0
\(190\) 324.826 0.124028
\(191\) 1418.72 0.537460 0.268730 0.963216i \(-0.413396\pi\)
0.268730 + 0.963216i \(0.413396\pi\)
\(192\) 0 0
\(193\) −3519.66 −1.31270 −0.656348 0.754458i \(-0.727900\pi\)
−0.656348 + 0.754458i \(0.727900\pi\)
\(194\) 3824.76 1.41547
\(195\) 0 0
\(196\) 0 0
\(197\) −689.885 −0.249504 −0.124752 0.992188i \(-0.539813\pi\)
−0.124752 + 0.992188i \(0.539813\pi\)
\(198\) 0 0
\(199\) 511.903 0.182351 0.0911754 0.995835i \(-0.470938\pi\)
0.0911754 + 0.995835i \(0.470938\pi\)
\(200\) −141.193 −0.0499192
\(201\) 0 0
\(202\) 506.248 0.176334
\(203\) 0 0
\(204\) 0 0
\(205\) −997.115 −0.339715
\(206\) 1206.71 0.408133
\(207\) 0 0
\(208\) 5816.49 1.93895
\(209\) 164.796 0.0545414
\(210\) 0 0
\(211\) −4487.25 −1.46405 −0.732027 0.681276i \(-0.761425\pi\)
−0.732027 + 0.681276i \(0.761425\pi\)
\(212\) −1645.30 −0.533016
\(213\) 0 0
\(214\) −3877.18 −1.23850
\(215\) −4376.89 −1.38838
\(216\) 0 0
\(217\) 0 0
\(218\) 940.961 0.292339
\(219\) 0 0
\(220\) 1476.13 0.452366
\(221\) 5565.94 1.69414
\(222\) 0 0
\(223\) −779.975 −0.234220 −0.117110 0.993119i \(-0.537363\pi\)
−0.117110 + 0.993119i \(0.537363\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7340.08 −2.16042
\(227\) 733.716 0.214531 0.107265 0.994230i \(-0.465791\pi\)
0.107265 + 0.994230i \(0.465791\pi\)
\(228\) 0 0
\(229\) 4774.12 1.37765 0.688827 0.724926i \(-0.258126\pi\)
0.688827 + 0.724926i \(0.258126\pi\)
\(230\) −9008.39 −2.58259
\(231\) 0 0
\(232\) −1313.50 −0.371706
\(233\) 6104.15 1.71629 0.858146 0.513406i \(-0.171617\pi\)
0.858146 + 0.513406i \(0.171617\pi\)
\(234\) 0 0
\(235\) −1167.41 −0.324057
\(236\) −2851.01 −0.786377
\(237\) 0 0
\(238\) 0 0
\(239\) 6750.43 1.82698 0.913491 0.406859i \(-0.133376\pi\)
0.913491 + 0.406859i \(0.133376\pi\)
\(240\) 0 0
\(241\) −1720.38 −0.459833 −0.229916 0.973210i \(-0.573845\pi\)
−0.229916 + 0.973210i \(0.573845\pi\)
\(242\) −3089.08 −0.820552
\(243\) 0 0
\(244\) 3898.50 1.02285
\(245\) 0 0
\(246\) 0 0
\(247\) −557.255 −0.143552
\(248\) −1456.39 −0.372907
\(249\) 0 0
\(250\) −4774.40 −1.20784
\(251\) −5719.78 −1.43836 −0.719181 0.694822i \(-0.755483\pi\)
−0.719181 + 0.694822i \(0.755483\pi\)
\(252\) 0 0
\(253\) −4570.27 −1.13569
\(254\) 1978.20 0.488675
\(255\) 0 0
\(256\) 5370.30 1.31111
\(257\) 812.156 0.197124 0.0985621 0.995131i \(-0.468576\pi\)
0.0985621 + 0.995131i \(0.468576\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4991.51 −1.19062
\(261\) 0 0
\(262\) −9440.54 −2.22610
\(263\) −6976.18 −1.63563 −0.817813 0.575484i \(-0.804814\pi\)
−0.817813 + 0.575484i \(0.804814\pi\)
\(264\) 0 0
\(265\) −3489.11 −0.808809
\(266\) 0 0
\(267\) 0 0
\(268\) 2076.26 0.473237
\(269\) 265.535 0.0601857 0.0300928 0.999547i \(-0.490420\pi\)
0.0300928 + 0.999547i \(0.490420\pi\)
\(270\) 0 0
\(271\) −8109.83 −1.81785 −0.908925 0.416960i \(-0.863096\pi\)
−0.908925 + 0.416960i \(0.863096\pi\)
\(272\) 5739.48 1.27944
\(273\) 0 0
\(274\) −8356.95 −1.84256
\(275\) 354.072 0.0776412
\(276\) 0 0
\(277\) −5941.40 −1.28875 −0.644375 0.764709i \(-0.722883\pi\)
−0.644375 + 0.764709i \(0.722883\pi\)
\(278\) −6775.08 −1.46166
\(279\) 0 0
\(280\) 0 0
\(281\) 5686.26 1.20717 0.603584 0.797300i \(-0.293739\pi\)
0.603584 + 0.797300i \(0.293739\pi\)
\(282\) 0 0
\(283\) 3582.77 0.752558 0.376279 0.926506i \(-0.377203\pi\)
0.376279 + 0.926506i \(0.377203\pi\)
\(284\) 681.428 0.142378
\(285\) 0 0
\(286\) −6151.19 −1.27178
\(287\) 0 0
\(288\) 0 0
\(289\) 579.254 0.117902
\(290\) 6492.54 1.31467
\(291\) 0 0
\(292\) 3818.55 0.765287
\(293\) 140.120 0.0279382 0.0139691 0.999902i \(-0.495553\pi\)
0.0139691 + 0.999902i \(0.495553\pi\)
\(294\) 0 0
\(295\) −6046.03 −1.19327
\(296\) 1817.76 0.356943
\(297\) 0 0
\(298\) 2309.16 0.448880
\(299\) 15454.3 2.98912
\(300\) 0 0
\(301\) 0 0
\(302\) −4442.35 −0.846453
\(303\) 0 0
\(304\) −574.630 −0.108412
\(305\) 8267.39 1.55210
\(306\) 0 0
\(307\) −2318.11 −0.430949 −0.215475 0.976509i \(-0.569130\pi\)
−0.215475 + 0.976509i \(0.569130\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 7198.83 1.31892
\(311\) 5860.43 1.06853 0.534267 0.845316i \(-0.320588\pi\)
0.534267 + 0.845316i \(0.320588\pi\)
\(312\) 0 0
\(313\) −401.620 −0.0725268 −0.0362634 0.999342i \(-0.511546\pi\)
−0.0362634 + 0.999342i \(0.511546\pi\)
\(314\) −10975.4 −1.97254
\(315\) 0 0
\(316\) −3750.52 −0.667668
\(317\) 9058.74 1.60501 0.802507 0.596643i \(-0.203499\pi\)
0.802507 + 0.596643i \(0.203499\pi\)
\(318\) 0 0
\(319\) 3293.89 0.578127
\(320\) −2045.24 −0.357289
\(321\) 0 0
\(322\) 0 0
\(323\) −549.877 −0.0947244
\(324\) 0 0
\(325\) −1197.29 −0.204350
\(326\) 3010.98 0.511542
\(327\) 0 0
\(328\) 743.879 0.125225
\(329\) 0 0
\(330\) 0 0
\(331\) −2357.68 −0.391510 −0.195755 0.980653i \(-0.562716\pi\)
−0.195755 + 0.980653i \(0.562716\pi\)
\(332\) 6617.43 1.09391
\(333\) 0 0
\(334\) 5891.71 0.965210
\(335\) 4403.03 0.718100
\(336\) 0 0
\(337\) 4774.30 0.771729 0.385865 0.922555i \(-0.373903\pi\)
0.385865 + 0.922555i \(0.373903\pi\)
\(338\) 12698.6 2.04353
\(339\) 0 0
\(340\) −4925.43 −0.785643
\(341\) 3652.22 0.579996
\(342\) 0 0
\(343\) 0 0
\(344\) 3265.30 0.511783
\(345\) 0 0
\(346\) 4905.96 0.762272
\(347\) 7684.47 1.18883 0.594415 0.804159i \(-0.297384\pi\)
0.594415 + 0.804159i \(0.297384\pi\)
\(348\) 0 0
\(349\) 3771.66 0.578488 0.289244 0.957255i \(-0.406596\pi\)
0.289244 + 0.957255i \(0.406596\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4769.28 −0.722170
\(353\) −7924.16 −1.19479 −0.597394 0.801948i \(-0.703797\pi\)
−0.597394 + 0.801948i \(0.703797\pi\)
\(354\) 0 0
\(355\) 1445.08 0.216047
\(356\) 3351.37 0.498939
\(357\) 0 0
\(358\) 15078.3 2.22601
\(359\) −9078.25 −1.33463 −0.667314 0.744776i \(-0.732556\pi\)
−0.667314 + 0.744776i \(0.732556\pi\)
\(360\) 0 0
\(361\) −6803.95 −0.991974
\(362\) 4513.08 0.655255
\(363\) 0 0
\(364\) 0 0
\(365\) 8097.85 1.16126
\(366\) 0 0
\(367\) 2091.98 0.297549 0.148775 0.988871i \(-0.452467\pi\)
0.148775 + 0.988871i \(0.452467\pi\)
\(368\) 15936.2 2.25742
\(369\) 0 0
\(370\) −8985.03 −1.26246
\(371\) 0 0
\(372\) 0 0
\(373\) −9157.84 −1.27125 −0.635623 0.771999i \(-0.719257\pi\)
−0.635623 + 0.771999i \(0.719257\pi\)
\(374\) −6069.76 −0.839197
\(375\) 0 0
\(376\) 870.925 0.119453
\(377\) −11138.3 −1.52162
\(378\) 0 0
\(379\) −604.558 −0.0819368 −0.0409684 0.999160i \(-0.513044\pi\)
−0.0409684 + 0.999160i \(0.513044\pi\)
\(380\) 493.127 0.0665708
\(381\) 0 0
\(382\) 5231.63 0.700716
\(383\) 2872.17 0.383188 0.191594 0.981474i \(-0.438634\pi\)
0.191594 + 0.981474i \(0.438634\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −12979.0 −1.71143
\(387\) 0 0
\(388\) 5806.47 0.759740
\(389\) −2832.57 −0.369196 −0.184598 0.982814i \(-0.559098\pi\)
−0.184598 + 0.982814i \(0.559098\pi\)
\(390\) 0 0
\(391\) 15249.7 1.97241
\(392\) 0 0
\(393\) 0 0
\(394\) −2544.00 −0.325292
\(395\) −7953.58 −1.01313
\(396\) 0 0
\(397\) 1788.13 0.226055 0.113027 0.993592i \(-0.463945\pi\)
0.113027 + 0.993592i \(0.463945\pi\)
\(398\) 1887.68 0.237741
\(399\) 0 0
\(400\) −1234.62 −0.154328
\(401\) 6715.05 0.836243 0.418122 0.908391i \(-0.362689\pi\)
0.418122 + 0.908391i \(0.362689\pi\)
\(402\) 0 0
\(403\) −12349.9 −1.52654
\(404\) 768.548 0.0946452
\(405\) 0 0
\(406\) 0 0
\(407\) −4558.42 −0.555166
\(408\) 0 0
\(409\) 14483.0 1.75095 0.875477 0.483259i \(-0.160547\pi\)
0.875477 + 0.483259i \(0.160547\pi\)
\(410\) −3676.93 −0.442904
\(411\) 0 0
\(412\) 1831.94 0.219061
\(413\) 0 0
\(414\) 0 0
\(415\) 14033.3 1.65992
\(416\) 16127.3 1.90073
\(417\) 0 0
\(418\) 607.696 0.0711086
\(419\) 4513.58 0.526260 0.263130 0.964760i \(-0.415245\pi\)
0.263130 + 0.964760i \(0.415245\pi\)
\(420\) 0 0
\(421\) 8684.07 1.00531 0.502655 0.864487i \(-0.332357\pi\)
0.502655 + 0.864487i \(0.332357\pi\)
\(422\) −16547.1 −1.90877
\(423\) 0 0
\(424\) 2602.99 0.298142
\(425\) −1181.44 −0.134843
\(426\) 0 0
\(427\) 0 0
\(428\) −5886.04 −0.664749
\(429\) 0 0
\(430\) −16140.1 −1.81011
\(431\) −10770.7 −1.20373 −0.601863 0.798599i \(-0.705575\pi\)
−0.601863 + 0.798599i \(0.705575\pi\)
\(432\) 0 0
\(433\) −1704.52 −0.189178 −0.0945890 0.995516i \(-0.530154\pi\)
−0.0945890 + 0.995516i \(0.530154\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1428.50 0.156910
\(437\) −1526.78 −0.167130
\(438\) 0 0
\(439\) −4516.83 −0.491063 −0.245531 0.969389i \(-0.578962\pi\)
−0.245531 + 0.969389i \(0.578962\pi\)
\(440\) −2335.35 −0.253031
\(441\) 0 0
\(442\) 20524.8 2.20875
\(443\) 13103.6 1.40536 0.702678 0.711508i \(-0.251987\pi\)
0.702678 + 0.711508i \(0.251987\pi\)
\(444\) 0 0
\(445\) 7107.12 0.757101
\(446\) −2876.22 −0.305365
\(447\) 0 0
\(448\) 0 0
\(449\) 1429.10 0.150208 0.0751040 0.997176i \(-0.476071\pi\)
0.0751040 + 0.997176i \(0.476071\pi\)
\(450\) 0 0
\(451\) −1865.44 −0.194767
\(452\) −11143.2 −1.15958
\(453\) 0 0
\(454\) 2705.63 0.279695
\(455\) 0 0
\(456\) 0 0
\(457\) −16338.3 −1.67237 −0.836186 0.548447i \(-0.815219\pi\)
−0.836186 + 0.548447i \(0.815219\pi\)
\(458\) 17604.9 1.79612
\(459\) 0 0
\(460\) −13675.9 −1.38618
\(461\) 13542.4 1.36818 0.684089 0.729398i \(-0.260200\pi\)
0.684089 + 0.729398i \(0.260200\pi\)
\(462\) 0 0
\(463\) 1851.49 0.185844 0.0929222 0.995673i \(-0.470379\pi\)
0.0929222 + 0.995673i \(0.470379\pi\)
\(464\) −11485.5 −1.14914
\(465\) 0 0
\(466\) 22509.5 2.23762
\(467\) 79.3624 0.00786393 0.00393196 0.999992i \(-0.498748\pi\)
0.00393196 + 0.999992i \(0.498748\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4304.91 −0.422491
\(471\) 0 0
\(472\) 4510.53 0.439860
\(473\) −8188.45 −0.795994
\(474\) 0 0
\(475\) 118.284 0.0114258
\(476\) 0 0
\(477\) 0 0
\(478\) 24892.7 2.38194
\(479\) 1895.96 0.180853 0.0904263 0.995903i \(-0.471177\pi\)
0.0904263 + 0.995903i \(0.471177\pi\)
\(480\) 0 0
\(481\) 15414.2 1.46118
\(482\) −6344.04 −0.599509
\(483\) 0 0
\(484\) −4689.62 −0.440422
\(485\) 12313.6 1.15285
\(486\) 0 0
\(487\) 3897.51 0.362655 0.181327 0.983423i \(-0.441961\pi\)
0.181327 + 0.983423i \(0.441961\pi\)
\(488\) −6167.74 −0.572132
\(489\) 0 0
\(490\) 0 0
\(491\) 13409.7 1.23253 0.616266 0.787538i \(-0.288645\pi\)
0.616266 + 0.787538i \(0.288645\pi\)
\(492\) 0 0
\(493\) −10990.8 −1.00406
\(494\) −2054.92 −0.187156
\(495\) 0 0
\(496\) −12735.0 −1.15286
\(497\) 0 0
\(498\) 0 0
\(499\) 4044.94 0.362878 0.181439 0.983402i \(-0.441924\pi\)
0.181439 + 0.983402i \(0.441924\pi\)
\(500\) −7248.15 −0.648294
\(501\) 0 0
\(502\) −21092.1 −1.87527
\(503\) 15977.7 1.41632 0.708160 0.706052i \(-0.249526\pi\)
0.708160 + 0.706052i \(0.249526\pi\)
\(504\) 0 0
\(505\) 1629.83 0.143617
\(506\) −16853.2 −1.48067
\(507\) 0 0
\(508\) 3003.16 0.262291
\(509\) −3949.42 −0.343919 −0.171960 0.985104i \(-0.555010\pi\)
−0.171960 + 0.985104i \(0.555010\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11142.7 0.961805
\(513\) 0 0
\(514\) 2994.89 0.257002
\(515\) 3884.92 0.332408
\(516\) 0 0
\(517\) −2184.03 −0.185790
\(518\) 0 0
\(519\) 0 0
\(520\) 7896.97 0.665971
\(521\) −19894.6 −1.67294 −0.836468 0.548016i \(-0.815383\pi\)
−0.836468 + 0.548016i \(0.815383\pi\)
\(522\) 0 0
\(523\) −20668.8 −1.72807 −0.864037 0.503428i \(-0.832072\pi\)
−0.864037 + 0.503428i \(0.832072\pi\)
\(524\) −14331.9 −1.19483
\(525\) 0 0
\(526\) −25725.2 −2.13245
\(527\) −12186.4 −1.00730
\(528\) 0 0
\(529\) 30175.2 2.48008
\(530\) −12866.4 −1.05449
\(531\) 0 0
\(532\) 0 0
\(533\) 6307.95 0.512623
\(534\) 0 0
\(535\) −12482.3 −1.00870
\(536\) −3284.80 −0.264705
\(537\) 0 0
\(538\) 979.179 0.0784673
\(539\) 0 0
\(540\) 0 0
\(541\) −9452.74 −0.751211 −0.375605 0.926780i \(-0.622565\pi\)
−0.375605 + 0.926780i \(0.622565\pi\)
\(542\) −29905.6 −2.37003
\(543\) 0 0
\(544\) 15913.8 1.25422
\(545\) 3029.36 0.238098
\(546\) 0 0
\(547\) 15550.8 1.21555 0.607773 0.794111i \(-0.292063\pi\)
0.607773 + 0.794111i \(0.292063\pi\)
\(548\) −12686.9 −0.988974
\(549\) 0 0
\(550\) 1305.67 0.101225
\(551\) 1100.38 0.0850780
\(552\) 0 0
\(553\) 0 0
\(554\) −21909.3 −1.68021
\(555\) 0 0
\(556\) −10285.4 −0.784531
\(557\) −15865.0 −1.20686 −0.603432 0.797414i \(-0.706201\pi\)
−0.603432 + 0.797414i \(0.706201\pi\)
\(558\) 0 0
\(559\) 27689.1 2.09504
\(560\) 0 0
\(561\) 0 0
\(562\) 20968.5 1.57385
\(563\) −198.200 −0.0148369 −0.00741843 0.999972i \(-0.502361\pi\)
−0.00741843 + 0.999972i \(0.502361\pi\)
\(564\) 0 0
\(565\) −23630.9 −1.75957
\(566\) 13211.7 0.981150
\(567\) 0 0
\(568\) −1078.07 −0.0796390
\(569\) −18915.2 −1.39361 −0.696807 0.717259i \(-0.745396\pi\)
−0.696807 + 0.717259i \(0.745396\pi\)
\(570\) 0 0
\(571\) 1678.21 0.122996 0.0614981 0.998107i \(-0.480412\pi\)
0.0614981 + 0.998107i \(0.480412\pi\)
\(572\) −9338.29 −0.682611
\(573\) 0 0
\(574\) 0 0
\(575\) −3280.37 −0.237914
\(576\) 0 0
\(577\) −9694.82 −0.699481 −0.349741 0.936847i \(-0.613730\pi\)
−0.349741 + 0.936847i \(0.613730\pi\)
\(578\) 2136.04 0.153716
\(579\) 0 0
\(580\) 9856.49 0.705636
\(581\) 0 0
\(582\) 0 0
\(583\) −6527.56 −0.463711
\(584\) −6041.25 −0.428063
\(585\) 0 0
\(586\) 516.702 0.0364245
\(587\) 19044.8 1.33912 0.669559 0.742759i \(-0.266483\pi\)
0.669559 + 0.742759i \(0.266483\pi\)
\(588\) 0 0
\(589\) 1220.09 0.0853530
\(590\) −22295.2 −1.55572
\(591\) 0 0
\(592\) 15894.9 1.10350
\(593\) −6298.22 −0.436150 −0.218075 0.975932i \(-0.569978\pi\)
−0.218075 + 0.975932i \(0.569978\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3505.60 0.240931
\(597\) 0 0
\(598\) 56988.9 3.89708
\(599\) 987.205 0.0673391 0.0336695 0.999433i \(-0.489281\pi\)
0.0336695 + 0.999433i \(0.489281\pi\)
\(600\) 0 0
\(601\) 20530.0 1.39341 0.696703 0.717360i \(-0.254650\pi\)
0.696703 + 0.717360i \(0.254650\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −6744.05 −0.454324
\(605\) −9945.08 −0.668306
\(606\) 0 0
\(607\) −2185.99 −0.146172 −0.0730861 0.997326i \(-0.523285\pi\)
−0.0730861 + 0.997326i \(0.523285\pi\)
\(608\) −1593.27 −0.106275
\(609\) 0 0
\(610\) 30486.6 2.02355
\(611\) 7385.28 0.488996
\(612\) 0 0
\(613\) −14150.3 −0.932343 −0.466172 0.884694i \(-0.654367\pi\)
−0.466172 + 0.884694i \(0.654367\pi\)
\(614\) −8548.19 −0.561852
\(615\) 0 0
\(616\) 0 0
\(617\) 1478.16 0.0964478 0.0482239 0.998837i \(-0.484644\pi\)
0.0482239 + 0.998837i \(0.484644\pi\)
\(618\) 0 0
\(619\) 6480.22 0.420779 0.210389 0.977618i \(-0.432527\pi\)
0.210389 + 0.977618i \(0.432527\pi\)
\(620\) 10928.7 0.707917
\(621\) 0 0
\(622\) 21610.8 1.39311
\(623\) 0 0
\(624\) 0 0
\(625\) −17363.6 −1.11127
\(626\) −1481.00 −0.0945571
\(627\) 0 0
\(628\) −16662.1 −1.05874
\(629\) 15210.2 0.964180
\(630\) 0 0
\(631\) −1844.94 −0.116396 −0.0581979 0.998305i \(-0.518535\pi\)
−0.0581979 + 0.998305i \(0.518535\pi\)
\(632\) 5933.62 0.373460
\(633\) 0 0
\(634\) 33404.8 2.09254
\(635\) 6368.69 0.398006
\(636\) 0 0
\(637\) 0 0
\(638\) 12146.5 0.753736
\(639\) 0 0
\(640\) 12852.3 0.793797
\(641\) −13064.2 −0.804997 −0.402498 0.915421i \(-0.631858\pi\)
−0.402498 + 0.915421i \(0.631858\pi\)
\(642\) 0 0
\(643\) 10753.3 0.659518 0.329759 0.944065i \(-0.393032\pi\)
0.329759 + 0.944065i \(0.393032\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2027.71 −0.123497
\(647\) 1836.66 0.111602 0.0558010 0.998442i \(-0.482229\pi\)
0.0558010 + 0.998442i \(0.482229\pi\)
\(648\) 0 0
\(649\) −11311.1 −0.684130
\(650\) −4415.09 −0.266422
\(651\) 0 0
\(652\) 4571.04 0.274564
\(653\) −9412.50 −0.564073 −0.282037 0.959404i \(-0.591010\pi\)
−0.282037 + 0.959404i \(0.591010\pi\)
\(654\) 0 0
\(655\) −30393.2 −1.81307
\(656\) 6504.63 0.387139
\(657\) 0 0
\(658\) 0 0
\(659\) 1425.12 0.0842408 0.0421204 0.999113i \(-0.486589\pi\)
0.0421204 + 0.999113i \(0.486589\pi\)
\(660\) 0 0
\(661\) −13381.3 −0.787403 −0.393701 0.919238i \(-0.628806\pi\)
−0.393701 + 0.919238i \(0.628806\pi\)
\(662\) −8694.12 −0.510433
\(663\) 0 0
\(664\) −10469.3 −0.611879
\(665\) 0 0
\(666\) 0 0
\(667\) −30516.9 −1.77154
\(668\) 8944.36 0.518066
\(669\) 0 0
\(670\) 16236.5 0.936226
\(671\) 15466.9 0.889857
\(672\) 0 0
\(673\) −14806.5 −0.848069 −0.424035 0.905646i \(-0.639387\pi\)
−0.424035 + 0.905646i \(0.639387\pi\)
\(674\) 17605.6 1.00615
\(675\) 0 0
\(676\) 19278.1 1.09684
\(677\) −15282.0 −0.867555 −0.433777 0.901020i \(-0.642820\pi\)
−0.433777 + 0.901020i \(0.642820\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 7792.42 0.439449
\(681\) 0 0
\(682\) 13467.8 0.756172
\(683\) −7166.26 −0.401478 −0.200739 0.979645i \(-0.564334\pi\)
−0.200739 + 0.979645i \(0.564334\pi\)
\(684\) 0 0
\(685\) −26904.6 −1.50069
\(686\) 0 0
\(687\) 0 0
\(688\) 28552.5 1.58220
\(689\) 22072.9 1.22048
\(690\) 0 0
\(691\) 11758.4 0.647339 0.323669 0.946170i \(-0.395083\pi\)
0.323669 + 0.946170i \(0.395083\pi\)
\(692\) 7447.87 0.409141
\(693\) 0 0
\(694\) 28337.0 1.54994
\(695\) −21811.9 −1.19046
\(696\) 0 0
\(697\) 6224.44 0.338261
\(698\) 13908.3 0.754207
\(699\) 0 0
\(700\) 0 0
\(701\) −3610.56 −0.194535 −0.0972674 0.995258i \(-0.531010\pi\)
−0.0972674 + 0.995258i \(0.531010\pi\)
\(702\) 0 0
\(703\) −1522.82 −0.0816989
\(704\) −3826.31 −0.204843
\(705\) 0 0
\(706\) −29220.9 −1.55771
\(707\) 0 0
\(708\) 0 0
\(709\) 13816.1 0.731842 0.365921 0.930646i \(-0.380754\pi\)
0.365921 + 0.930646i \(0.380754\pi\)
\(710\) 5328.83 0.281672
\(711\) 0 0
\(712\) −5302.14 −0.279082
\(713\) −33836.7 −1.77727
\(714\) 0 0
\(715\) −19803.3 −1.03581
\(716\) 22890.8 1.19479
\(717\) 0 0
\(718\) −33476.7 −1.74003
\(719\) −382.174 −0.0198229 −0.00991147 0.999951i \(-0.503155\pi\)
−0.00991147 + 0.999951i \(0.503155\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −25090.1 −1.29329
\(723\) 0 0
\(724\) 6851.43 0.351701
\(725\) 2364.23 0.121111
\(726\) 0 0
\(727\) −3909.70 −0.199453 −0.0997267 0.995015i \(-0.531797\pi\)
−0.0997267 + 0.995015i \(0.531797\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 29861.4 1.51400
\(731\) 27322.6 1.38244
\(732\) 0 0
\(733\) −1365.99 −0.0688320 −0.0344160 0.999408i \(-0.510957\pi\)
−0.0344160 + 0.999408i \(0.510957\pi\)
\(734\) 7714.34 0.387931
\(735\) 0 0
\(736\) 44186.0 2.21293
\(737\) 8237.35 0.411705
\(738\) 0 0
\(739\) 17222.5 0.857293 0.428647 0.903472i \(-0.358991\pi\)
0.428647 + 0.903472i \(0.358991\pi\)
\(740\) −13640.4 −0.677610
\(741\) 0 0
\(742\) 0 0
\(743\) −524.887 −0.0259168 −0.0129584 0.999916i \(-0.504125\pi\)
−0.0129584 + 0.999916i \(0.504125\pi\)
\(744\) 0 0
\(745\) 7434.19 0.365594
\(746\) −33770.2 −1.65739
\(747\) 0 0
\(748\) −9214.66 −0.450430
\(749\) 0 0
\(750\) 0 0
\(751\) 13190.1 0.640898 0.320449 0.947266i \(-0.396166\pi\)
0.320449 + 0.947266i \(0.396166\pi\)
\(752\) 7615.55 0.369296
\(753\) 0 0
\(754\) −41073.2 −1.98381
\(755\) −14301.8 −0.689401
\(756\) 0 0
\(757\) −24776.1 −1.18957 −0.594784 0.803885i \(-0.702763\pi\)
−0.594784 + 0.803885i \(0.702763\pi\)
\(758\) −2229.35 −0.106825
\(759\) 0 0
\(760\) −780.167 −0.0372363
\(761\) −7116.89 −0.339010 −0.169505 0.985529i \(-0.554217\pi\)
−0.169505 + 0.985529i \(0.554217\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7942.27 0.376101
\(765\) 0 0
\(766\) 10591.3 0.499584
\(767\) 38248.4 1.80061
\(768\) 0 0
\(769\) 17.4695 0.000819200 0 0.000409600 1.00000i \(-0.499870\pi\)
0.000409600 1.00000i \(0.499870\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −19703.8 −0.918593
\(773\) −34872.0 −1.62258 −0.811292 0.584640i \(-0.801236\pi\)
−0.811292 + 0.584640i \(0.801236\pi\)
\(774\) 0 0
\(775\) 2621.42 0.121502
\(776\) −9186.31 −0.424960
\(777\) 0 0
\(778\) −10445.3 −0.481341
\(779\) −623.183 −0.0286622
\(780\) 0 0
\(781\) 2703.50 0.123865
\(782\) 56234.5 2.57154
\(783\) 0 0
\(784\) 0 0
\(785\) −35334.6 −1.60656
\(786\) 0 0
\(787\) −2978.09 −0.134889 −0.0674443 0.997723i \(-0.521485\pi\)
−0.0674443 + 0.997723i \(0.521485\pi\)
\(788\) −3862.11 −0.174597
\(789\) 0 0
\(790\) −29329.4 −1.32088
\(791\) 0 0
\(792\) 0 0
\(793\) −52301.2 −2.34208
\(794\) 6593.87 0.294720
\(795\) 0 0
\(796\) 2865.74 0.127605
\(797\) 2764.97 0.122886 0.0614431 0.998111i \(-0.480430\pi\)
0.0614431 + 0.998111i \(0.480430\pi\)
\(798\) 0 0
\(799\) 7287.50 0.322670
\(800\) −3423.21 −0.151286
\(801\) 0 0
\(802\) 24762.2 1.09026
\(803\) 15149.7 0.665782
\(804\) 0 0
\(805\) 0 0
\(806\) −45541.3 −1.99023
\(807\) 0 0
\(808\) −1215.90 −0.0529398
\(809\) 18307.8 0.795633 0.397817 0.917465i \(-0.369768\pi\)
0.397817 + 0.917465i \(0.369768\pi\)
\(810\) 0 0
\(811\) 21748.4 0.941664 0.470832 0.882223i \(-0.343954\pi\)
0.470832 + 0.882223i \(0.343954\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16809.5 −0.723800
\(815\) 9693.63 0.416630
\(816\) 0 0
\(817\) −2735.50 −0.117140
\(818\) 53407.3 2.28281
\(819\) 0 0
\(820\) −5582.05 −0.237724
\(821\) −10998.9 −0.467557 −0.233778 0.972290i \(-0.575109\pi\)
−0.233778 + 0.972290i \(0.575109\pi\)
\(822\) 0 0
\(823\) 7773.89 0.329260 0.164630 0.986355i \(-0.447357\pi\)
0.164630 + 0.986355i \(0.447357\pi\)
\(824\) −2898.27 −0.122532
\(825\) 0 0
\(826\) 0 0
\(827\) 29154.8 1.22589 0.612946 0.790125i \(-0.289984\pi\)
0.612946 + 0.790125i \(0.289984\pi\)
\(828\) 0 0
\(829\) −22928.6 −0.960607 −0.480303 0.877102i \(-0.659473\pi\)
−0.480303 + 0.877102i \(0.659473\pi\)
\(830\) 51748.9 2.16413
\(831\) 0 0
\(832\) 12938.6 0.539142
\(833\) 0 0
\(834\) 0 0
\(835\) 18968.0 0.786124
\(836\) 922.560 0.0381667
\(837\) 0 0
\(838\) 16644.2 0.686114
\(839\) −37893.1 −1.55925 −0.779627 0.626244i \(-0.784591\pi\)
−0.779627 + 0.626244i \(0.784591\pi\)
\(840\) 0 0
\(841\) −2394.81 −0.0981922
\(842\) 32023.2 1.31068
\(843\) 0 0
\(844\) −25120.6 −1.02451
\(845\) 40882.2 1.66437
\(846\) 0 0
\(847\) 0 0
\(848\) 22761.1 0.921720
\(849\) 0 0
\(850\) −4356.64 −0.175802
\(851\) 42232.4 1.70118
\(852\) 0 0
\(853\) −11927.9 −0.478783 −0.239392 0.970923i \(-0.576948\pi\)
−0.239392 + 0.970923i \(0.576948\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9312.19 0.371827
\(857\) −34449.4 −1.37312 −0.686562 0.727071i \(-0.740881\pi\)
−0.686562 + 0.727071i \(0.740881\pi\)
\(858\) 0 0
\(859\) −19600.3 −0.778528 −0.389264 0.921126i \(-0.627271\pi\)
−0.389264 + 0.921126i \(0.627271\pi\)
\(860\) −24502.7 −0.971554
\(861\) 0 0
\(862\) −39717.8 −1.56936
\(863\) 14606.4 0.576140 0.288070 0.957609i \(-0.406986\pi\)
0.288070 + 0.957609i \(0.406986\pi\)
\(864\) 0 0
\(865\) 15794.4 0.620839
\(866\) −6285.55 −0.246642
\(867\) 0 0
\(868\) 0 0
\(869\) −14879.8 −0.580856
\(870\) 0 0
\(871\) −27854.5 −1.08360
\(872\) −2260.00 −0.0877674
\(873\) 0 0
\(874\) −5630.12 −0.217897
\(875\) 0 0
\(876\) 0 0
\(877\) 1509.83 0.0581337 0.0290669 0.999577i \(-0.490746\pi\)
0.0290669 + 0.999577i \(0.490746\pi\)
\(878\) −16656.1 −0.640225
\(879\) 0 0
\(880\) −20420.8 −0.782256
\(881\) −38219.1 −1.46156 −0.730779 0.682614i \(-0.760843\pi\)
−0.730779 + 0.682614i \(0.760843\pi\)
\(882\) 0 0
\(883\) 40698.0 1.55107 0.775535 0.631304i \(-0.217480\pi\)
0.775535 + 0.631304i \(0.217480\pi\)
\(884\) 31159.3 1.18552
\(885\) 0 0
\(886\) 48320.7 1.83224
\(887\) −10228.5 −0.387193 −0.193597 0.981081i \(-0.562015\pi\)
−0.193597 + 0.981081i \(0.562015\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 26208.0 0.987074
\(891\) 0 0
\(892\) −4366.46 −0.163901
\(893\) −729.615 −0.0273411
\(894\) 0 0
\(895\) 48543.5 1.81300
\(896\) 0 0
\(897\) 0 0
\(898\) 5269.91 0.195834
\(899\) 24386.8 0.904723
\(900\) 0 0
\(901\) 21780.6 0.805347
\(902\) −6878.94 −0.253929
\(903\) 0 0
\(904\) 17629.4 0.648611
\(905\) 14529.6 0.533678
\(906\) 0 0
\(907\) −36302.2 −1.32899 −0.664496 0.747292i \(-0.731354\pi\)
−0.664496 + 0.747292i \(0.731354\pi\)
\(908\) 4107.49 0.150123
\(909\) 0 0
\(910\) 0 0
\(911\) 23768.0 0.864401 0.432201 0.901777i \(-0.357737\pi\)
0.432201 + 0.901777i \(0.357737\pi\)
\(912\) 0 0
\(913\) 26254.0 0.951678
\(914\) −60248.7 −2.18036
\(915\) 0 0
\(916\) 26726.5 0.964048
\(917\) 0 0
\(918\) 0 0
\(919\) −1364.96 −0.0489944 −0.0244972 0.999700i \(-0.507798\pi\)
−0.0244972 + 0.999700i \(0.507798\pi\)
\(920\) 21636.3 0.775357
\(921\) 0 0
\(922\) 49938.4 1.78377
\(923\) −9141.86 −0.326011
\(924\) 0 0
\(925\) −3271.86 −0.116301
\(926\) 6827.50 0.242296
\(927\) 0 0
\(928\) −31845.8 −1.12650
\(929\) −18850.3 −0.665725 −0.332862 0.942975i \(-0.608014\pi\)
−0.332862 + 0.942975i \(0.608014\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 34172.2 1.20102
\(933\) 0 0
\(934\) 292.655 0.0102526
\(935\) −19541.2 −0.683492
\(936\) 0 0
\(937\) 31404.8 1.09493 0.547465 0.836828i \(-0.315593\pi\)
0.547465 + 0.836828i \(0.315593\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −6535.40 −0.226767
\(941\) 31589.8 1.09437 0.547184 0.837013i \(-0.315700\pi\)
0.547184 + 0.837013i \(0.315700\pi\)
\(942\) 0 0
\(943\) 17282.7 0.596821
\(944\) 39441.0 1.35985
\(945\) 0 0
\(946\) −30195.5 −1.03778
\(947\) 12062.2 0.413907 0.206954 0.978351i \(-0.433645\pi\)
0.206954 + 0.978351i \(0.433645\pi\)
\(948\) 0 0
\(949\) −51228.7 −1.75232
\(950\) 436.181 0.0148964
\(951\) 0 0
\(952\) 0 0
\(953\) 2655.82 0.0902733 0.0451366 0.998981i \(-0.485628\pi\)
0.0451366 + 0.998981i \(0.485628\pi\)
\(954\) 0 0
\(955\) 16842.9 0.570704
\(956\) 37790.3 1.27848
\(957\) 0 0
\(958\) 6991.48 0.235787
\(959\) 0 0
\(960\) 0 0
\(961\) −2751.27 −0.0923524
\(962\) 56841.2 1.90502
\(963\) 0 0
\(964\) −9631.06 −0.321779
\(965\) −41785.0 −1.39389
\(966\) 0 0
\(967\) −57274.5 −1.90468 −0.952339 0.305041i \(-0.901330\pi\)
−0.952339 + 0.305041i \(0.901330\pi\)
\(968\) 7419.35 0.246350
\(969\) 0 0
\(970\) 45407.2 1.50303
\(971\) −25867.0 −0.854904 −0.427452 0.904038i \(-0.640589\pi\)
−0.427452 + 0.904038i \(0.640589\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 14372.3 0.472813
\(975\) 0 0
\(976\) −53932.0 −1.76877
\(977\) −14650.4 −0.479741 −0.239870 0.970805i \(-0.577105\pi\)
−0.239870 + 0.970805i \(0.577105\pi\)
\(978\) 0 0
\(979\) 13296.3 0.434066
\(980\) 0 0
\(981\) 0 0
\(982\) 49449.4 1.60692
\(983\) 4533.90 0.147110 0.0735548 0.997291i \(-0.476566\pi\)
0.0735548 + 0.997291i \(0.476566\pi\)
\(984\) 0 0
\(985\) −8190.23 −0.264937
\(986\) −40529.4 −1.30905
\(987\) 0 0
\(988\) −3119.62 −0.100454
\(989\) 75863.5 2.43915
\(990\) 0 0
\(991\) −4375.14 −0.140243 −0.0701216 0.997538i \(-0.522339\pi\)
−0.0701216 + 0.997538i \(0.522339\pi\)
\(992\) −35310.1 −1.13014
\(993\) 0 0
\(994\) 0 0
\(995\) 6077.25 0.193630
\(996\) 0 0
\(997\) −10801.8 −0.343124 −0.171562 0.985173i \(-0.554881\pi\)
−0.171562 + 0.985173i \(0.554881\pi\)
\(998\) 14916.0 0.473104
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.be.1.5 6
3.2 odd 2 inner 1323.4.a.be.1.2 6
7.3 odd 6 189.4.e.e.163.2 yes 12
7.5 odd 6 189.4.e.e.109.2 12
7.6 odd 2 1323.4.a.bd.1.5 6
21.5 even 6 189.4.e.e.109.5 yes 12
21.17 even 6 189.4.e.e.163.5 yes 12
21.20 even 2 1323.4.a.bd.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.e.109.2 12 7.5 odd 6
189.4.e.e.109.5 yes 12 21.5 even 6
189.4.e.e.163.2 yes 12 7.3 odd 6
189.4.e.e.163.5 yes 12 21.17 even 6
1323.4.a.bd.1.2 6 21.20 even 2
1323.4.a.bd.1.5 6 7.6 odd 2
1323.4.a.be.1.2 6 3.2 odd 2 inner
1323.4.a.be.1.5 6 1.1 even 1 trivial