Properties

Label 1323.4.a.be.1.4
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 40x^{4} + 453x^{2} - 1278 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.05936\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05936 q^{2} -3.75905 q^{4} -14.5041 q^{5} -24.2161 q^{8} +O(q^{10})\) \(q+2.05936 q^{2} -3.75905 q^{4} -14.5041 q^{5} -24.2161 q^{8} -29.8691 q^{10} +29.8094 q^{11} +13.3320 q^{13} -19.7971 q^{16} +64.2830 q^{17} +110.350 q^{19} +54.5216 q^{20} +61.3881 q^{22} +19.3456 q^{23} +85.3686 q^{25} +27.4552 q^{26} -111.113 q^{29} -192.938 q^{31} +152.959 q^{32} +132.382 q^{34} -71.5214 q^{37} +227.249 q^{38} +351.232 q^{40} +277.562 q^{41} -178.522 q^{43} -112.055 q^{44} +39.8395 q^{46} +531.874 q^{47} +175.804 q^{50} -50.1155 q^{52} -310.832 q^{53} -432.357 q^{55} -228.821 q^{58} -722.023 q^{59} -663.070 q^{61} -397.328 q^{62} +473.375 q^{64} -193.368 q^{65} -608.559 q^{67} -241.643 q^{68} -976.305 q^{71} -261.148 q^{73} -147.288 q^{74} -414.810 q^{76} +1236.15 q^{79} +287.139 q^{80} +571.600 q^{82} +1225.79 q^{83} -932.367 q^{85} -367.640 q^{86} -721.866 q^{88} -791.982 q^{89} -72.7211 q^{92} +1095.32 q^{94} -1600.52 q^{95} +935.253 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 32 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 32 q^{4} + 20 q^{10} - 52 q^{13} - 148 q^{16} + 62 q^{19} - 356 q^{22} - 46 q^{25} + 82 q^{31} - 420 q^{34} - 1132 q^{37} + 444 q^{40} - 1566 q^{43} - 888 q^{46} + 72 q^{52} - 224 q^{55} + 4 q^{58} - 886 q^{61} - 924 q^{64} - 2084 q^{67} + 2398 q^{73} - 3204 q^{76} + 984 q^{79} + 3892 q^{82} - 3600 q^{85} - 5796 q^{88} - 2772 q^{94} + 682 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.05936 0.728092 0.364046 0.931381i \(-0.381395\pi\)
0.364046 + 0.931381i \(0.381395\pi\)
\(3\) 0 0
\(4\) −3.75905 −0.469882
\(5\) −14.5041 −1.29729 −0.648643 0.761093i \(-0.724663\pi\)
−0.648643 + 0.761093i \(0.724663\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −24.2161 −1.07021
\(9\) 0 0
\(10\) −29.8691 −0.944543
\(11\) 29.8094 0.817078 0.408539 0.912741i \(-0.366038\pi\)
0.408539 + 0.912741i \(0.366038\pi\)
\(12\) 0 0
\(13\) 13.3320 0.284432 0.142216 0.989836i \(-0.454577\pi\)
0.142216 + 0.989836i \(0.454577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −19.7971 −0.309330
\(17\) 64.2830 0.917113 0.458557 0.888665i \(-0.348367\pi\)
0.458557 + 0.888665i \(0.348367\pi\)
\(18\) 0 0
\(19\) 110.350 1.33242 0.666209 0.745765i \(-0.267916\pi\)
0.666209 + 0.745765i \(0.267916\pi\)
\(20\) 54.5216 0.609570
\(21\) 0 0
\(22\) 61.3881 0.594908
\(23\) 19.3456 0.175384 0.0876921 0.996148i \(-0.472051\pi\)
0.0876921 + 0.996148i \(0.472051\pi\)
\(24\) 0 0
\(25\) 85.3686 0.682949
\(26\) 27.4552 0.207093
\(27\) 0 0
\(28\) 0 0
\(29\) −111.113 −0.711487 −0.355744 0.934584i \(-0.615772\pi\)
−0.355744 + 0.934584i \(0.615772\pi\)
\(30\) 0 0
\(31\) −192.938 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(32\) 152.959 0.844989
\(33\) 0 0
\(34\) 132.382 0.667743
\(35\) 0 0
\(36\) 0 0
\(37\) −71.5214 −0.317785 −0.158892 0.987296i \(-0.550792\pi\)
−0.158892 + 0.987296i \(0.550792\pi\)
\(38\) 227.249 0.970123
\(39\) 0 0
\(40\) 351.232 1.38837
\(41\) 277.562 1.05727 0.528634 0.848850i \(-0.322704\pi\)
0.528634 + 0.848850i \(0.322704\pi\)
\(42\) 0 0
\(43\) −178.522 −0.633124 −0.316562 0.948572i \(-0.602528\pi\)
−0.316562 + 0.948572i \(0.602528\pi\)
\(44\) −112.055 −0.383930
\(45\) 0 0
\(46\) 39.8395 0.127696
\(47\) 531.874 1.65068 0.825338 0.564638i \(-0.190984\pi\)
0.825338 + 0.564638i \(0.190984\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 175.804 0.497250
\(51\) 0 0
\(52\) −50.1155 −0.133649
\(53\) −310.832 −0.805586 −0.402793 0.915291i \(-0.631961\pi\)
−0.402793 + 0.915291i \(0.631961\pi\)
\(54\) 0 0
\(55\) −432.357 −1.05998
\(56\) 0 0
\(57\) 0 0
\(58\) −228.821 −0.518029
\(59\) −722.023 −1.59321 −0.796605 0.604500i \(-0.793373\pi\)
−0.796605 + 0.604500i \(0.793373\pi\)
\(60\) 0 0
\(61\) −663.070 −1.39176 −0.695880 0.718158i \(-0.744986\pi\)
−0.695880 + 0.718158i \(0.744986\pi\)
\(62\) −397.328 −0.813882
\(63\) 0 0
\(64\) 473.375 0.924560
\(65\) −193.368 −0.368990
\(66\) 0 0
\(67\) −608.559 −1.10966 −0.554830 0.831964i \(-0.687217\pi\)
−0.554830 + 0.831964i \(0.687217\pi\)
\(68\) −241.643 −0.430934
\(69\) 0 0
\(70\) 0 0
\(71\) −976.305 −1.63192 −0.815958 0.578111i \(-0.803790\pi\)
−0.815958 + 0.578111i \(0.803790\pi\)
\(72\) 0 0
\(73\) −261.148 −0.418700 −0.209350 0.977841i \(-0.567135\pi\)
−0.209350 + 0.977841i \(0.567135\pi\)
\(74\) −147.288 −0.231377
\(75\) 0 0
\(76\) −414.810 −0.626078
\(77\) 0 0
\(78\) 0 0
\(79\) 1236.15 1.76048 0.880239 0.474531i \(-0.157382\pi\)
0.880239 + 0.474531i \(0.157382\pi\)
\(80\) 287.139 0.401289
\(81\) 0 0
\(82\) 571.600 0.769789
\(83\) 1225.79 1.62106 0.810529 0.585699i \(-0.199180\pi\)
0.810529 + 0.585699i \(0.199180\pi\)
\(84\) 0 0
\(85\) −932.367 −1.18976
\(86\) −367.640 −0.460973
\(87\) 0 0
\(88\) −721.866 −0.874445
\(89\) −791.982 −0.943257 −0.471629 0.881797i \(-0.656334\pi\)
−0.471629 + 0.881797i \(0.656334\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −72.7211 −0.0824098
\(93\) 0 0
\(94\) 1095.32 1.20185
\(95\) −1600.52 −1.72853
\(96\) 0 0
\(97\) 935.253 0.978975 0.489488 0.872010i \(-0.337184\pi\)
0.489488 + 0.872010i \(0.337184\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −320.905 −0.320905
\(101\) −442.969 −0.436407 −0.218203 0.975903i \(-0.570020\pi\)
−0.218203 + 0.975903i \(0.570020\pi\)
\(102\) 0 0
\(103\) 699.401 0.669068 0.334534 0.942384i \(-0.391421\pi\)
0.334534 + 0.942384i \(0.391421\pi\)
\(104\) −322.848 −0.304402
\(105\) 0 0
\(106\) −640.114 −0.586541
\(107\) −1911.18 −1.72674 −0.863369 0.504573i \(-0.831650\pi\)
−0.863369 + 0.504573i \(0.831650\pi\)
\(108\) 0 0
\(109\) −2071.42 −1.82024 −0.910118 0.414349i \(-0.864009\pi\)
−0.910118 + 0.414349i \(0.864009\pi\)
\(110\) −890.378 −0.771766
\(111\) 0 0
\(112\) 0 0
\(113\) 2313.34 1.92585 0.962926 0.269767i \(-0.0869467\pi\)
0.962926 + 0.269767i \(0.0869467\pi\)
\(114\) 0 0
\(115\) −280.590 −0.227523
\(116\) 417.679 0.334315
\(117\) 0 0
\(118\) −1486.90 −1.16000
\(119\) 0 0
\(120\) 0 0
\(121\) −442.403 −0.332384
\(122\) −1365.50 −1.01333
\(123\) 0 0
\(124\) 725.263 0.525246
\(125\) 574.817 0.411306
\(126\) 0 0
\(127\) −1317.50 −0.920542 −0.460271 0.887778i \(-0.652248\pi\)
−0.460271 + 0.887778i \(0.652248\pi\)
\(128\) −248.828 −0.171824
\(129\) 0 0
\(130\) −398.213 −0.268659
\(131\) −458.841 −0.306024 −0.153012 0.988224i \(-0.548897\pi\)
−0.153012 + 0.988224i \(0.548897\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1253.24 −0.807935
\(135\) 0 0
\(136\) −1556.68 −0.981503
\(137\) −1332.76 −0.831132 −0.415566 0.909563i \(-0.636416\pi\)
−0.415566 + 0.909563i \(0.636416\pi\)
\(138\) 0 0
\(139\) 406.835 0.248254 0.124127 0.992266i \(-0.460387\pi\)
0.124127 + 0.992266i \(0.460387\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2010.56 −1.18819
\(143\) 397.417 0.232403
\(144\) 0 0
\(145\) 1611.59 0.923002
\(146\) −537.797 −0.304852
\(147\) 0 0
\(148\) 268.853 0.149321
\(149\) 435.523 0.239459 0.119730 0.992807i \(-0.461797\pi\)
0.119730 + 0.992807i \(0.461797\pi\)
\(150\) 0 0
\(151\) −1965.34 −1.05918 −0.529592 0.848253i \(-0.677655\pi\)
−0.529592 + 0.848253i \(0.677655\pi\)
\(152\) −2672.23 −1.42597
\(153\) 0 0
\(154\) 0 0
\(155\) 2798.39 1.45014
\(156\) 0 0
\(157\) −831.483 −0.422672 −0.211336 0.977413i \(-0.567781\pi\)
−0.211336 + 0.977413i \(0.567781\pi\)
\(158\) 2545.67 1.28179
\(159\) 0 0
\(160\) −2218.54 −1.09619
\(161\) 0 0
\(162\) 0 0
\(163\) −1176.12 −0.565159 −0.282579 0.959244i \(-0.591190\pi\)
−0.282579 + 0.959244i \(0.591190\pi\)
\(164\) −1043.37 −0.496791
\(165\) 0 0
\(166\) 2524.34 1.18028
\(167\) 1674.29 0.775809 0.387905 0.921700i \(-0.373199\pi\)
0.387905 + 0.921700i \(0.373199\pi\)
\(168\) 0 0
\(169\) −2019.26 −0.919098
\(170\) −1920.08 −0.866253
\(171\) 0 0
\(172\) 671.073 0.297493
\(173\) 1432.92 0.629728 0.314864 0.949137i \(-0.398041\pi\)
0.314864 + 0.949137i \(0.398041\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −590.139 −0.252747
\(177\) 0 0
\(178\) −1630.97 −0.686778
\(179\) 1194.53 0.498790 0.249395 0.968402i \(-0.419768\pi\)
0.249395 + 0.968402i \(0.419768\pi\)
\(180\) 0 0
\(181\) −741.424 −0.304473 −0.152236 0.988344i \(-0.548648\pi\)
−0.152236 + 0.988344i \(0.548648\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −468.474 −0.187698
\(185\) 1037.35 0.412258
\(186\) 0 0
\(187\) 1916.24 0.749353
\(188\) −1999.34 −0.775623
\(189\) 0 0
\(190\) −3296.04 −1.25853
\(191\) 3903.98 1.47897 0.739483 0.673175i \(-0.235070\pi\)
0.739483 + 0.673175i \(0.235070\pi\)
\(192\) 0 0
\(193\) 1771.25 0.660609 0.330305 0.943874i \(-0.392849\pi\)
0.330305 + 0.943874i \(0.392849\pi\)
\(194\) 1926.02 0.712784
\(195\) 0 0
\(196\) 0 0
\(197\) −830.366 −0.300310 −0.150155 0.988662i \(-0.547977\pi\)
−0.150155 + 0.988662i \(0.547977\pi\)
\(198\) 0 0
\(199\) −1062.51 −0.378487 −0.189244 0.981930i \(-0.560604\pi\)
−0.189244 + 0.981930i \(0.560604\pi\)
\(200\) −2067.29 −0.730898
\(201\) 0 0
\(202\) −912.232 −0.317745
\(203\) 0 0
\(204\) 0 0
\(205\) −4025.79 −1.37158
\(206\) 1440.32 0.487143
\(207\) 0 0
\(208\) −263.934 −0.0879834
\(209\) 3289.45 1.08869
\(210\) 0 0
\(211\) −3848.67 −1.25570 −0.627851 0.778333i \(-0.716065\pi\)
−0.627851 + 0.778333i \(0.716065\pi\)
\(212\) 1168.43 0.378530
\(213\) 0 0
\(214\) −3935.81 −1.25722
\(215\) 2589.30 0.821342
\(216\) 0 0
\(217\) 0 0
\(218\) −4265.79 −1.32530
\(219\) 0 0
\(220\) 1625.25 0.498066
\(221\) 857.018 0.260856
\(222\) 0 0
\(223\) −5482.75 −1.64642 −0.823211 0.567736i \(-0.807819\pi\)
−0.823211 + 0.567736i \(0.807819\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4764.00 1.40220
\(227\) 394.837 0.115446 0.0577230 0.998333i \(-0.481616\pi\)
0.0577230 + 0.998333i \(0.481616\pi\)
\(228\) 0 0
\(229\) 3823.57 1.10336 0.551678 0.834057i \(-0.313988\pi\)
0.551678 + 0.834057i \(0.313988\pi\)
\(230\) −577.835 −0.165658
\(231\) 0 0
\(232\) 2690.72 0.761441
\(233\) 2537.54 0.713475 0.356738 0.934205i \(-0.383889\pi\)
0.356738 + 0.934205i \(0.383889\pi\)
\(234\) 0 0
\(235\) −7714.35 −2.14140
\(236\) 2714.12 0.748620
\(237\) 0 0
\(238\) 0 0
\(239\) −5368.81 −1.45305 −0.726526 0.687139i \(-0.758866\pi\)
−0.726526 + 0.687139i \(0.758866\pi\)
\(240\) 0 0
\(241\) −2108.02 −0.563442 −0.281721 0.959496i \(-0.590905\pi\)
−0.281721 + 0.959496i \(0.590905\pi\)
\(242\) −911.064 −0.242006
\(243\) 0 0
\(244\) 2492.51 0.653962
\(245\) 0 0
\(246\) 0 0
\(247\) 1471.18 0.378982
\(248\) 4672.20 1.19631
\(249\) 0 0
\(250\) 1183.75 0.299469
\(251\) −5717.94 −1.43790 −0.718951 0.695061i \(-0.755377\pi\)
−0.718951 + 0.695061i \(0.755377\pi\)
\(252\) 0 0
\(253\) 576.680 0.143303
\(254\) −2713.19 −0.670240
\(255\) 0 0
\(256\) −4299.42 −1.04966
\(257\) 4987.47 1.21054 0.605272 0.796019i \(-0.293064\pi\)
0.605272 + 0.796019i \(0.293064\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 726.880 0.173381
\(261\) 0 0
\(262\) −944.917 −0.222814
\(263\) −615.273 −0.144256 −0.0721281 0.997395i \(-0.522979\pi\)
−0.0721281 + 0.997395i \(0.522979\pi\)
\(264\) 0 0
\(265\) 4508.34 1.04508
\(266\) 0 0
\(267\) 0 0
\(268\) 2287.60 0.521409
\(269\) −793.962 −0.179958 −0.0899790 0.995944i \(-0.528680\pi\)
−0.0899790 + 0.995944i \(0.528680\pi\)
\(270\) 0 0
\(271\) −3764.95 −0.843927 −0.421964 0.906613i \(-0.638659\pi\)
−0.421964 + 0.906613i \(0.638659\pi\)
\(272\) −1272.62 −0.283690
\(273\) 0 0
\(274\) −2744.62 −0.605141
\(275\) 2544.78 0.558022
\(276\) 0 0
\(277\) −3196.54 −0.693364 −0.346682 0.937983i \(-0.612692\pi\)
−0.346682 + 0.937983i \(0.612692\pi\)
\(278\) 837.817 0.180752
\(279\) 0 0
\(280\) 0 0
\(281\) 6225.15 1.32157 0.660785 0.750575i \(-0.270223\pi\)
0.660785 + 0.750575i \(0.270223\pi\)
\(282\) 0 0
\(283\) 3717.50 0.780857 0.390429 0.920633i \(-0.372327\pi\)
0.390429 + 0.920633i \(0.372327\pi\)
\(284\) 3669.98 0.766807
\(285\) 0 0
\(286\) 818.423 0.169211
\(287\) 0 0
\(288\) 0 0
\(289\) −780.693 −0.158904
\(290\) 3318.84 0.672031
\(291\) 0 0
\(292\) 981.669 0.196739
\(293\) −6392.56 −1.27460 −0.637299 0.770616i \(-0.719948\pi\)
−0.637299 + 0.770616i \(0.719948\pi\)
\(294\) 0 0
\(295\) 10472.3 2.06685
\(296\) 1731.97 0.340096
\(297\) 0 0
\(298\) 896.897 0.174348
\(299\) 257.915 0.0498849
\(300\) 0 0
\(301\) 0 0
\(302\) −4047.33 −0.771183
\(303\) 0 0
\(304\) −2184.60 −0.412156
\(305\) 9617.22 1.80551
\(306\) 0 0
\(307\) −939.255 −0.174613 −0.0873063 0.996182i \(-0.527826\pi\)
−0.0873063 + 0.996182i \(0.527826\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5762.88 1.05584
\(311\) −2751.61 −0.501703 −0.250851 0.968026i \(-0.580711\pi\)
−0.250851 + 0.968026i \(0.580711\pi\)
\(312\) 0 0
\(313\) 637.099 0.115051 0.0575255 0.998344i \(-0.481679\pi\)
0.0575255 + 0.998344i \(0.481679\pi\)
\(314\) −1712.32 −0.307744
\(315\) 0 0
\(316\) −4646.75 −0.827216
\(317\) 2872.19 0.508891 0.254445 0.967087i \(-0.418107\pi\)
0.254445 + 0.967087i \(0.418107\pi\)
\(318\) 0 0
\(319\) −3312.20 −0.581341
\(320\) −6865.87 −1.19942
\(321\) 0 0
\(322\) 0 0
\(323\) 7093.60 1.22198
\(324\) 0 0
\(325\) 1138.13 0.194253
\(326\) −2422.05 −0.411488
\(327\) 0 0
\(328\) −6721.47 −1.13150
\(329\) 0 0
\(330\) 0 0
\(331\) −6393.60 −1.06170 −0.530852 0.847464i \(-0.678128\pi\)
−0.530852 + 0.847464i \(0.678128\pi\)
\(332\) −4607.80 −0.761705
\(333\) 0 0
\(334\) 3447.95 0.564861
\(335\) 8826.59 1.43955
\(336\) 0 0
\(337\) −12107.6 −1.95710 −0.978549 0.206016i \(-0.933950\pi\)
−0.978549 + 0.206016i \(0.933950\pi\)
\(338\) −4158.37 −0.669188
\(339\) 0 0
\(340\) 3504.81 0.559045
\(341\) −5751.35 −0.913352
\(342\) 0 0
\(343\) 0 0
\(344\) 4323.10 0.677575
\(345\) 0 0
\(346\) 2950.89 0.458500
\(347\) −2710.14 −0.419273 −0.209636 0.977779i \(-0.567228\pi\)
−0.209636 + 0.977779i \(0.567228\pi\)
\(348\) 0 0
\(349\) 1175.22 0.180252 0.0901261 0.995930i \(-0.471273\pi\)
0.0901261 + 0.995930i \(0.471273\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4559.62 0.690422
\(353\) 5276.41 0.795566 0.397783 0.917480i \(-0.369780\pi\)
0.397783 + 0.917480i \(0.369780\pi\)
\(354\) 0 0
\(355\) 14160.4 2.11706
\(356\) 2977.10 0.443219
\(357\) 0 0
\(358\) 2459.96 0.363165
\(359\) 11286.5 1.65928 0.829639 0.558300i \(-0.188546\pi\)
0.829639 + 0.558300i \(0.188546\pi\)
\(360\) 0 0
\(361\) 5318.03 0.775336
\(362\) −1526.86 −0.221684
\(363\) 0 0
\(364\) 0 0
\(365\) 3787.72 0.543173
\(366\) 0 0
\(367\) −7567.59 −1.07636 −0.538181 0.842829i \(-0.680888\pi\)
−0.538181 + 0.842829i \(0.680888\pi\)
\(368\) −382.987 −0.0542516
\(369\) 0 0
\(370\) 2136.28 0.300162
\(371\) 0 0
\(372\) 0 0
\(373\) −6503.97 −0.902850 −0.451425 0.892309i \(-0.649084\pi\)
−0.451425 + 0.892309i \(0.649084\pi\)
\(374\) 3946.21 0.545598
\(375\) 0 0
\(376\) −12879.9 −1.76657
\(377\) −1481.35 −0.202370
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730097 0.683344i \(-0.239475\pi\)
0.730097 + 0.683344i \(0.239475\pi\)
\(380\) 6016.44 0.812202
\(381\) 0 0
\(382\) 8039.70 1.07682
\(383\) −6366.13 −0.849331 −0.424666 0.905350i \(-0.639608\pi\)
−0.424666 + 0.905350i \(0.639608\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3647.64 0.480985
\(387\) 0 0
\(388\) −3515.67 −0.460002
\(389\) 5903.44 0.769450 0.384725 0.923031i \(-0.374296\pi\)
0.384725 + 0.923031i \(0.374296\pi\)
\(390\) 0 0
\(391\) 1243.59 0.160847
\(392\) 0 0
\(393\) 0 0
\(394\) −1710.02 −0.218654
\(395\) −17929.2 −2.28384
\(396\) 0 0
\(397\) −3766.78 −0.476194 −0.238097 0.971241i \(-0.576524\pi\)
−0.238097 + 0.971241i \(0.576524\pi\)
\(398\) −2188.08 −0.275574
\(399\) 0 0
\(400\) −1690.05 −0.211256
\(401\) −7252.00 −0.903112 −0.451556 0.892243i \(-0.649131\pi\)
−0.451556 + 0.892243i \(0.649131\pi\)
\(402\) 0 0
\(403\) −2572.24 −0.317946
\(404\) 1665.15 0.205060
\(405\) 0 0
\(406\) 0 0
\(407\) −2132.01 −0.259655
\(408\) 0 0
\(409\) −12547.4 −1.51694 −0.758471 0.651707i \(-0.774053\pi\)
−0.758471 + 0.651707i \(0.774053\pi\)
\(410\) −8290.54 −0.998635
\(411\) 0 0
\(412\) −2629.08 −0.314383
\(413\) 0 0
\(414\) 0 0
\(415\) −17778.9 −2.10297
\(416\) 2039.25 0.240342
\(417\) 0 0
\(418\) 6774.15 0.792666
\(419\) −12631.5 −1.47276 −0.736381 0.676567i \(-0.763467\pi\)
−0.736381 + 0.676567i \(0.763467\pi\)
\(420\) 0 0
\(421\) −3495.94 −0.404707 −0.202354 0.979312i \(-0.564859\pi\)
−0.202354 + 0.979312i \(0.564859\pi\)
\(422\) −7925.78 −0.914267
\(423\) 0 0
\(424\) 7527.13 0.862146
\(425\) 5487.75 0.626341
\(426\) 0 0
\(427\) 0 0
\(428\) 7184.23 0.811362
\(429\) 0 0
\(430\) 5332.28 0.598013
\(431\) 2345.18 0.262096 0.131048 0.991376i \(-0.458166\pi\)
0.131048 + 0.991376i \(0.458166\pi\)
\(432\) 0 0
\(433\) −3250.63 −0.360774 −0.180387 0.983596i \(-0.557735\pi\)
−0.180387 + 0.983596i \(0.557735\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7786.56 0.855295
\(437\) 2134.78 0.233685
\(438\) 0 0
\(439\) −16240.5 −1.76564 −0.882820 0.469711i \(-0.844358\pi\)
−0.882820 + 0.469711i \(0.844358\pi\)
\(440\) 10470.0 1.13440
\(441\) 0 0
\(442\) 1764.91 0.189928
\(443\) −4849.04 −0.520056 −0.260028 0.965601i \(-0.583732\pi\)
−0.260028 + 0.965601i \(0.583732\pi\)
\(444\) 0 0
\(445\) 11487.0 1.22367
\(446\) −11290.9 −1.19875
\(447\) 0 0
\(448\) 0 0
\(449\) −4139.93 −0.435134 −0.217567 0.976045i \(-0.569812\pi\)
−0.217567 + 0.976045i \(0.569812\pi\)
\(450\) 0 0
\(451\) 8273.96 0.863870
\(452\) −8695.98 −0.904922
\(453\) 0 0
\(454\) 813.110 0.0840553
\(455\) 0 0
\(456\) 0 0
\(457\) 9232.48 0.945027 0.472513 0.881323i \(-0.343347\pi\)
0.472513 + 0.881323i \(0.343347\pi\)
\(458\) 7874.08 0.803344
\(459\) 0 0
\(460\) 1054.75 0.106909
\(461\) −1274.90 −0.128803 −0.0644013 0.997924i \(-0.520514\pi\)
−0.0644013 + 0.997924i \(0.520514\pi\)
\(462\) 0 0
\(463\) 2061.80 0.206955 0.103477 0.994632i \(-0.467003\pi\)
0.103477 + 0.994632i \(0.467003\pi\)
\(464\) 2199.71 0.220084
\(465\) 0 0
\(466\) 5225.70 0.519476
\(467\) 968.041 0.0959221 0.0479610 0.998849i \(-0.484728\pi\)
0.0479610 + 0.998849i \(0.484728\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −15886.6 −1.55914
\(471\) 0 0
\(472\) 17484.6 1.70507
\(473\) −5321.62 −0.517311
\(474\) 0 0
\(475\) 9420.39 0.909973
\(476\) 0 0
\(477\) 0 0
\(478\) −11056.3 −1.05796
\(479\) −6200.05 −0.591414 −0.295707 0.955279i \(-0.595555\pi\)
−0.295707 + 0.955279i \(0.595555\pi\)
\(480\) 0 0
\(481\) −953.519 −0.0903882
\(482\) −4341.17 −0.410238
\(483\) 0 0
\(484\) 1663.01 0.156181
\(485\) −13565.0 −1.27001
\(486\) 0 0
\(487\) −9829.66 −0.914629 −0.457315 0.889305i \(-0.651189\pi\)
−0.457315 + 0.889305i \(0.651189\pi\)
\(488\) 16056.9 1.48948
\(489\) 0 0
\(490\) 0 0
\(491\) −5053.57 −0.464489 −0.232245 0.972657i \(-0.574607\pi\)
−0.232245 + 0.972657i \(0.574607\pi\)
\(492\) 0 0
\(493\) −7142.67 −0.652514
\(494\) 3029.67 0.275934
\(495\) 0 0
\(496\) 3819.61 0.345777
\(497\) 0 0
\(498\) 0 0
\(499\) 14061.6 1.26149 0.630747 0.775988i \(-0.282749\pi\)
0.630747 + 0.775988i \(0.282749\pi\)
\(500\) −2160.77 −0.193265
\(501\) 0 0
\(502\) −11775.3 −1.04693
\(503\) −8001.67 −0.709298 −0.354649 0.934999i \(-0.615400\pi\)
−0.354649 + 0.934999i \(0.615400\pi\)
\(504\) 0 0
\(505\) 6424.87 0.566144
\(506\) 1187.59 0.104337
\(507\) 0 0
\(508\) 4952.53 0.432546
\(509\) 10913.8 0.950386 0.475193 0.879881i \(-0.342378\pi\)
0.475193 + 0.879881i \(0.342378\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −6863.42 −0.592428
\(513\) 0 0
\(514\) 10271.0 0.881388
\(515\) −10144.2 −0.867972
\(516\) 0 0
\(517\) 15854.8 1.34873
\(518\) 0 0
\(519\) 0 0
\(520\) 4682.61 0.394896
\(521\) 15803.4 1.32890 0.664452 0.747331i \(-0.268665\pi\)
0.664452 + 0.747331i \(0.268665\pi\)
\(522\) 0 0
\(523\) 646.094 0.0540186 0.0270093 0.999635i \(-0.491402\pi\)
0.0270093 + 0.999635i \(0.491402\pi\)
\(524\) 1724.81 0.143795
\(525\) 0 0
\(526\) −1267.07 −0.105032
\(527\) −12402.6 −1.02517
\(528\) 0 0
\(529\) −11792.7 −0.969240
\(530\) 9284.27 0.760911
\(531\) 0 0
\(532\) 0 0
\(533\) 3700.45 0.300721
\(534\) 0 0
\(535\) 27720.0 2.24007
\(536\) 14736.9 1.18757
\(537\) 0 0
\(538\) −1635.05 −0.131026
\(539\) 0 0
\(540\) 0 0
\(541\) 10246.7 0.814303 0.407152 0.913361i \(-0.366522\pi\)
0.407152 + 0.913361i \(0.366522\pi\)
\(542\) −7753.37 −0.614457
\(543\) 0 0
\(544\) 9832.69 0.774950
\(545\) 30044.0 2.36137
\(546\) 0 0
\(547\) 4368.98 0.341506 0.170753 0.985314i \(-0.445380\pi\)
0.170753 + 0.985314i \(0.445380\pi\)
\(548\) 5009.90 0.390533
\(549\) 0 0
\(550\) 5240.61 0.406292
\(551\) −12261.3 −0.947998
\(552\) 0 0
\(553\) 0 0
\(554\) −6582.82 −0.504833
\(555\) 0 0
\(556\) −1529.31 −0.116650
\(557\) −8396.43 −0.638722 −0.319361 0.947633i \(-0.603468\pi\)
−0.319361 + 0.947633i \(0.603468\pi\)
\(558\) 0 0
\(559\) −2380.04 −0.180081
\(560\) 0 0
\(561\) 0 0
\(562\) 12819.8 0.962226
\(563\) −12142.3 −0.908944 −0.454472 0.890761i \(-0.650172\pi\)
−0.454472 + 0.890761i \(0.650172\pi\)
\(564\) 0 0
\(565\) −33553.0 −2.49838
\(566\) 7655.66 0.568536
\(567\) 0 0
\(568\) 23642.3 1.74649
\(569\) 11196.1 0.824896 0.412448 0.910981i \(-0.364674\pi\)
0.412448 + 0.910981i \(0.364674\pi\)
\(570\) 0 0
\(571\) 19659.6 1.44085 0.720427 0.693531i \(-0.243946\pi\)
0.720427 + 0.693531i \(0.243946\pi\)
\(572\) −1493.91 −0.109202
\(573\) 0 0
\(574\) 0 0
\(575\) 1651.51 0.119778
\(576\) 0 0
\(577\) −8516.45 −0.614462 −0.307231 0.951635i \(-0.599402\pi\)
−0.307231 + 0.951635i \(0.599402\pi\)
\(578\) −1607.73 −0.115696
\(579\) 0 0
\(580\) −6058.05 −0.433702
\(581\) 0 0
\(582\) 0 0
\(583\) −9265.70 −0.658227
\(584\) 6323.98 0.448096
\(585\) 0 0
\(586\) −13164.6 −0.928025
\(587\) 7115.53 0.500323 0.250161 0.968204i \(-0.419516\pi\)
0.250161 + 0.968204i \(0.419516\pi\)
\(588\) 0 0
\(589\) −21290.6 −1.48941
\(590\) 21566.2 1.50486
\(591\) 0 0
\(592\) 1415.92 0.0983003
\(593\) −6144.48 −0.425504 −0.212752 0.977106i \(-0.568243\pi\)
−0.212752 + 0.977106i \(0.568243\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1637.15 −0.112517
\(597\) 0 0
\(598\) 531.138 0.0363208
\(599\) 9578.39 0.653360 0.326680 0.945135i \(-0.394070\pi\)
0.326680 + 0.945135i \(0.394070\pi\)
\(600\) 0 0
\(601\) 19113.8 1.29728 0.648642 0.761094i \(-0.275337\pi\)
0.648642 + 0.761094i \(0.275337\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 7387.80 0.497691
\(605\) 6416.65 0.431196
\(606\) 0 0
\(607\) −20442.6 −1.36695 −0.683477 0.729972i \(-0.739533\pi\)
−0.683477 + 0.729972i \(0.739533\pi\)
\(608\) 16879.0 1.12588
\(609\) 0 0
\(610\) 19805.3 1.31458
\(611\) 7090.92 0.469506
\(612\) 0 0
\(613\) 17422.7 1.14796 0.573978 0.818870i \(-0.305399\pi\)
0.573978 + 0.818870i \(0.305399\pi\)
\(614\) −1934.26 −0.127134
\(615\) 0 0
\(616\) 0 0
\(617\) −1805.17 −0.117785 −0.0588926 0.998264i \(-0.518757\pi\)
−0.0588926 + 0.998264i \(0.518757\pi\)
\(618\) 0 0
\(619\) −8142.23 −0.528698 −0.264349 0.964427i \(-0.585157\pi\)
−0.264349 + 0.964427i \(0.585157\pi\)
\(620\) −10519.3 −0.681394
\(621\) 0 0
\(622\) −5666.55 −0.365286
\(623\) 0 0
\(624\) 0 0
\(625\) −19008.3 −1.21653
\(626\) 1312.01 0.0837678
\(627\) 0 0
\(628\) 3125.59 0.198606
\(629\) −4597.61 −0.291445
\(630\) 0 0
\(631\) 3630.07 0.229019 0.114509 0.993422i \(-0.463470\pi\)
0.114509 + 0.993422i \(0.463470\pi\)
\(632\) −29934.7 −1.88408
\(633\) 0 0
\(634\) 5914.87 0.370519
\(635\) 19109.1 1.19421
\(636\) 0 0
\(637\) 0 0
\(638\) −6821.00 −0.423270
\(639\) 0 0
\(640\) 3609.02 0.222905
\(641\) 22223.6 1.36939 0.684696 0.728829i \(-0.259935\pi\)
0.684696 + 0.728829i \(0.259935\pi\)
\(642\) 0 0
\(643\) 5013.00 0.307455 0.153727 0.988113i \(-0.450872\pi\)
0.153727 + 0.988113i \(0.450872\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 14608.3 0.889712
\(647\) −7716.16 −0.468862 −0.234431 0.972133i \(-0.575323\pi\)
−0.234431 + 0.972133i \(0.575323\pi\)
\(648\) 0 0
\(649\) −21523.0 −1.30178
\(650\) 2343.82 0.141434
\(651\) 0 0
\(652\) 4421.10 0.265558
\(653\) −5644.40 −0.338258 −0.169129 0.985594i \(-0.554095\pi\)
−0.169129 + 0.985594i \(0.554095\pi\)
\(654\) 0 0
\(655\) 6655.07 0.397000
\(656\) −5494.94 −0.327044
\(657\) 0 0
\(658\) 0 0
\(659\) 8812.27 0.520906 0.260453 0.965487i \(-0.416128\pi\)
0.260453 + 0.965487i \(0.416128\pi\)
\(660\) 0 0
\(661\) 6191.02 0.364300 0.182150 0.983271i \(-0.441694\pi\)
0.182150 + 0.983271i \(0.441694\pi\)
\(662\) −13166.7 −0.773019
\(663\) 0 0
\(664\) −29683.8 −1.73487
\(665\) 0 0
\(666\) 0 0
\(667\) −2149.54 −0.124784
\(668\) −6293.73 −0.364538
\(669\) 0 0
\(670\) 18177.1 1.04812
\(671\) −19765.7 −1.13718
\(672\) 0 0
\(673\) 29580.7 1.69428 0.847141 0.531368i \(-0.178322\pi\)
0.847141 + 0.531368i \(0.178322\pi\)
\(674\) −24933.8 −1.42495
\(675\) 0 0
\(676\) 7590.50 0.431867
\(677\) −26290.0 −1.49248 −0.746239 0.665678i \(-0.768143\pi\)
−0.746239 + 0.665678i \(0.768143\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 22578.3 1.27329
\(681\) 0 0
\(682\) −11844.1 −0.665005
\(683\) −810.684 −0.0454172 −0.0227086 0.999742i \(-0.507229\pi\)
−0.0227086 + 0.999742i \(0.507229\pi\)
\(684\) 0 0
\(685\) 19330.4 1.07821
\(686\) 0 0
\(687\) 0 0
\(688\) 3534.22 0.195844
\(689\) −4144.00 −0.229135
\(690\) 0 0
\(691\) −1171.38 −0.0644883 −0.0322442 0.999480i \(-0.510265\pi\)
−0.0322442 + 0.999480i \(0.510265\pi\)
\(692\) −5386.42 −0.295897
\(693\) 0 0
\(694\) −5581.14 −0.305269
\(695\) −5900.76 −0.322056
\(696\) 0 0
\(697\) 17842.6 0.969634
\(698\) 2420.19 0.131240
\(699\) 0 0
\(700\) 0 0
\(701\) −1057.70 −0.0569885 −0.0284943 0.999594i \(-0.509071\pi\)
−0.0284943 + 0.999594i \(0.509071\pi\)
\(702\) 0 0
\(703\) −7892.35 −0.423422
\(704\) 14111.0 0.755437
\(705\) 0 0
\(706\) 10866.0 0.579245
\(707\) 0 0
\(708\) 0 0
\(709\) −29243.7 −1.54904 −0.774521 0.632548i \(-0.782009\pi\)
−0.774521 + 0.632548i \(0.782009\pi\)
\(710\) 29161.3 1.54142
\(711\) 0 0
\(712\) 19178.7 1.00948
\(713\) −3732.50 −0.196049
\(714\) 0 0
\(715\) −5764.17 −0.301493
\(716\) −4490.30 −0.234372
\(717\) 0 0
\(718\) 23243.0 1.20811
\(719\) −24557.7 −1.27378 −0.636890 0.770955i \(-0.719779\pi\)
−0.636890 + 0.770955i \(0.719779\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 10951.7 0.564516
\(723\) 0 0
\(724\) 2787.05 0.143066
\(725\) −9485.55 −0.485909
\(726\) 0 0
\(727\) 23444.2 1.19601 0.598003 0.801494i \(-0.295961\pi\)
0.598003 + 0.801494i \(0.295961\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 7800.25 0.395480
\(731\) −11475.9 −0.580646
\(732\) 0 0
\(733\) 35971.3 1.81259 0.906296 0.422644i \(-0.138898\pi\)
0.906296 + 0.422644i \(0.138898\pi\)
\(734\) −15584.4 −0.783692
\(735\) 0 0
\(736\) 2959.09 0.148198
\(737\) −18140.7 −0.906679
\(738\) 0 0
\(739\) 12068.6 0.600746 0.300373 0.953822i \(-0.402889\pi\)
0.300373 + 0.953822i \(0.402889\pi\)
\(740\) −3899.46 −0.193712
\(741\) 0 0
\(742\) 0 0
\(743\) −5475.09 −0.270339 −0.135169 0.990823i \(-0.543158\pi\)
−0.135169 + 0.990823i \(0.543158\pi\)
\(744\) 0 0
\(745\) −6316.86 −0.310647
\(746\) −13394.0 −0.657358
\(747\) 0 0
\(748\) −7203.23 −0.352107
\(749\) 0 0
\(750\) 0 0
\(751\) 25274.6 1.22807 0.614036 0.789278i \(-0.289545\pi\)
0.614036 + 0.789278i \(0.289545\pi\)
\(752\) −10529.6 −0.510604
\(753\) 0 0
\(754\) −3050.63 −0.147344
\(755\) 28505.4 1.37406
\(756\) 0 0
\(757\) −23583.7 −1.13232 −0.566159 0.824296i \(-0.691571\pi\)
−0.566159 + 0.824296i \(0.691571\pi\)
\(758\) 22187.1 1.06316
\(759\) 0 0
\(760\) 38758.3 1.84988
\(761\) 16202.7 0.771810 0.385905 0.922539i \(-0.373889\pi\)
0.385905 + 0.922539i \(0.373889\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −14675.3 −0.694939
\(765\) 0 0
\(766\) −13110.1 −0.618392
\(767\) −9625.98 −0.453160
\(768\) 0 0
\(769\) 18603.1 0.872362 0.436181 0.899859i \(-0.356331\pi\)
0.436181 + 0.899859i \(0.356331\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6658.23 −0.310408
\(773\) −27281.3 −1.26939 −0.634697 0.772761i \(-0.718875\pi\)
−0.634697 + 0.772761i \(0.718875\pi\)
\(774\) 0 0
\(775\) −16470.8 −0.763419
\(776\) −22648.2 −1.04771
\(777\) 0 0
\(778\) 12157.3 0.560231
\(779\) 30628.9 1.40872
\(780\) 0 0
\(781\) −29103.0 −1.33340
\(782\) 2561.00 0.117112
\(783\) 0 0
\(784\) 0 0
\(785\) 12059.9 0.548326
\(786\) 0 0
\(787\) −571.719 −0.0258953 −0.0129476 0.999916i \(-0.504121\pi\)
−0.0129476 + 0.999916i \(0.504121\pi\)
\(788\) 3121.39 0.141110
\(789\) 0 0
\(790\) −36922.7 −1.66285
\(791\) 0 0
\(792\) 0 0
\(793\) −8840.01 −0.395861
\(794\) −7757.14 −0.346714
\(795\) 0 0
\(796\) 3994.01 0.177844
\(797\) 33080.5 1.47023 0.735113 0.677944i \(-0.237129\pi\)
0.735113 + 0.677944i \(0.237129\pi\)
\(798\) 0 0
\(799\) 34190.5 1.51386
\(800\) 13057.9 0.577084
\(801\) 0 0
\(802\) −14934.5 −0.657549
\(803\) −7784.66 −0.342110
\(804\) 0 0
\(805\) 0 0
\(806\) −5297.15 −0.231494
\(807\) 0 0
\(808\) 10727.0 0.467047
\(809\) −32838.2 −1.42711 −0.713554 0.700601i \(-0.752915\pi\)
−0.713554 + 0.700601i \(0.752915\pi\)
\(810\) 0 0
\(811\) 20453.4 0.885592 0.442796 0.896622i \(-0.353987\pi\)
0.442796 + 0.896622i \(0.353987\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4390.56 −0.189053
\(815\) 17058.6 0.733172
\(816\) 0 0
\(817\) −19699.8 −0.843585
\(818\) −25839.6 −1.10447
\(819\) 0 0
\(820\) 15133.2 0.644479
\(821\) −32462.4 −1.37996 −0.689980 0.723828i \(-0.742381\pi\)
−0.689980 + 0.723828i \(0.742381\pi\)
\(822\) 0 0
\(823\) −47088.3 −1.99440 −0.997202 0.0747505i \(-0.976184\pi\)
−0.997202 + 0.0747505i \(0.976184\pi\)
\(824\) −16936.7 −0.716043
\(825\) 0 0
\(826\) 0 0
\(827\) −17641.7 −0.741792 −0.370896 0.928674i \(-0.620949\pi\)
−0.370896 + 0.928674i \(0.620949\pi\)
\(828\) 0 0
\(829\) 1583.53 0.0663427 0.0331714 0.999450i \(-0.489439\pi\)
0.0331714 + 0.999450i \(0.489439\pi\)
\(830\) −36613.2 −1.53116
\(831\) 0 0
\(832\) 6311.01 0.262975
\(833\) 0 0
\(834\) 0 0
\(835\) −24284.0 −1.00645
\(836\) −12365.2 −0.511555
\(837\) 0 0
\(838\) −26012.7 −1.07231
\(839\) −39612.3 −1.63000 −0.815000 0.579461i \(-0.803263\pi\)
−0.815000 + 0.579461i \(0.803263\pi\)
\(840\) 0 0
\(841\) −12042.9 −0.493786
\(842\) −7199.39 −0.294664
\(843\) 0 0
\(844\) 14467.3 0.590031
\(845\) 29287.5 1.19233
\(846\) 0 0
\(847\) 0 0
\(848\) 6153.58 0.249192
\(849\) 0 0
\(850\) 11301.2 0.456034
\(851\) −1383.62 −0.0557344
\(852\) 0 0
\(853\) 9443.21 0.379049 0.189525 0.981876i \(-0.439305\pi\)
0.189525 + 0.981876i \(0.439305\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 46281.3 1.84797
\(857\) 20138.7 0.802713 0.401356 0.915922i \(-0.368539\pi\)
0.401356 + 0.915922i \(0.368539\pi\)
\(858\) 0 0
\(859\) 18457.4 0.733129 0.366564 0.930393i \(-0.380534\pi\)
0.366564 + 0.930393i \(0.380534\pi\)
\(860\) −9733.30 −0.385933
\(861\) 0 0
\(862\) 4829.57 0.190830
\(863\) 48840.2 1.92646 0.963232 0.268670i \(-0.0865840\pi\)
0.963232 + 0.268670i \(0.0865840\pi\)
\(864\) 0 0
\(865\) −20783.2 −0.816936
\(866\) −6694.20 −0.262677
\(867\) 0 0
\(868\) 0 0
\(869\) 36848.8 1.43845
\(870\) 0 0
\(871\) −8113.27 −0.315623
\(872\) 50161.6 1.94803
\(873\) 0 0
\(874\) 4396.27 0.170144
\(875\) 0 0
\(876\) 0 0
\(877\) −5584.39 −0.215019 −0.107509 0.994204i \(-0.534288\pi\)
−0.107509 + 0.994204i \(0.534288\pi\)
\(878\) −33445.0 −1.28555
\(879\) 0 0
\(880\) 8559.43 0.327884
\(881\) 24753.3 0.946606 0.473303 0.880900i \(-0.343062\pi\)
0.473303 + 0.880900i \(0.343062\pi\)
\(882\) 0 0
\(883\) −12368.7 −0.471394 −0.235697 0.971827i \(-0.575737\pi\)
−0.235697 + 0.971827i \(0.575737\pi\)
\(884\) −3221.58 −0.122572
\(885\) 0 0
\(886\) −9985.90 −0.378649
\(887\) −738.713 −0.0279634 −0.0139817 0.999902i \(-0.504451\pi\)
−0.0139817 + 0.999902i \(0.504451\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 23655.8 0.890947
\(891\) 0 0
\(892\) 20609.9 0.773623
\(893\) 58692.1 2.19939
\(894\) 0 0
\(895\) −17325.6 −0.647073
\(896\) 0 0
\(897\) 0 0
\(898\) −8525.58 −0.316818
\(899\) 21437.9 0.795320
\(900\) 0 0
\(901\) −19981.2 −0.738814
\(902\) 17039.0 0.628977
\(903\) 0 0
\(904\) −56020.1 −2.06106
\(905\) 10753.7 0.394988
\(906\) 0 0
\(907\) −776.937 −0.0284430 −0.0142215 0.999899i \(-0.504527\pi\)
−0.0142215 + 0.999899i \(0.504527\pi\)
\(908\) −1484.21 −0.0542459
\(909\) 0 0
\(910\) 0 0
\(911\) −31326.5 −1.13929 −0.569645 0.821891i \(-0.692919\pi\)
−0.569645 + 0.821891i \(0.692919\pi\)
\(912\) 0 0
\(913\) 36540.0 1.32453
\(914\) 19013.0 0.688067
\(915\) 0 0
\(916\) −14373.0 −0.518446
\(917\) 0 0
\(918\) 0 0
\(919\) 6149.72 0.220741 0.110370 0.993891i \(-0.464796\pi\)
0.110370 + 0.993891i \(0.464796\pi\)
\(920\) 6794.80 0.243498
\(921\) 0 0
\(922\) −2625.47 −0.0937802
\(923\) −13016.1 −0.464170
\(924\) 0 0
\(925\) −6105.68 −0.217031
\(926\) 4245.98 0.150682
\(927\) 0 0
\(928\) −16995.7 −0.601199
\(929\) 31050.1 1.09658 0.548288 0.836289i \(-0.315280\pi\)
0.548288 + 0.836289i \(0.315280\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −9538.74 −0.335249
\(933\) 0 0
\(934\) 1993.54 0.0698401
\(935\) −27793.2 −0.972124
\(936\) 0 0
\(937\) −22802.9 −0.795023 −0.397512 0.917597i \(-0.630126\pi\)
−0.397512 + 0.917597i \(0.630126\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 28998.6 1.00620
\(941\) 46442.5 1.60891 0.804455 0.594014i \(-0.202458\pi\)
0.804455 + 0.594014i \(0.202458\pi\)
\(942\) 0 0
\(943\) 5369.61 0.185428
\(944\) 14294.0 0.492828
\(945\) 0 0
\(946\) −10959.1 −0.376651
\(947\) 29207.7 1.00224 0.501121 0.865377i \(-0.332921\pi\)
0.501121 + 0.865377i \(0.332921\pi\)
\(948\) 0 0
\(949\) −3481.61 −0.119092
\(950\) 19399.9 0.662544
\(951\) 0 0
\(952\) 0 0
\(953\) 6829.15 0.232128 0.116064 0.993242i \(-0.462972\pi\)
0.116064 + 0.993242i \(0.462972\pi\)
\(954\) 0 0
\(955\) −56623.7 −1.91864
\(956\) 20181.6 0.682762
\(957\) 0 0
\(958\) −12768.1 −0.430604
\(959\) 0 0
\(960\) 0 0
\(961\) 7433.99 0.249538
\(962\) −1963.64 −0.0658110
\(963\) 0 0
\(964\) 7924.16 0.264751
\(965\) −25690.4 −0.856999
\(966\) 0 0
\(967\) −2583.84 −0.0859263 −0.0429632 0.999077i \(-0.513680\pi\)
−0.0429632 + 0.999077i \(0.513680\pi\)
\(968\) 10713.3 0.355720
\(969\) 0 0
\(970\) −27935.2 −0.924684
\(971\) 32515.6 1.07464 0.537321 0.843378i \(-0.319437\pi\)
0.537321 + 0.843378i \(0.319437\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −20242.8 −0.665935
\(975\) 0 0
\(976\) 13126.9 0.430513
\(977\) −222.043 −0.00727102 −0.00363551 0.999993i \(-0.501157\pi\)
−0.00363551 + 0.999993i \(0.501157\pi\)
\(978\) 0 0
\(979\) −23608.5 −0.770715
\(980\) 0 0
\(981\) 0 0
\(982\) −10407.1 −0.338191
\(983\) −10916.7 −0.354210 −0.177105 0.984192i \(-0.556673\pi\)
−0.177105 + 0.984192i \(0.556673\pi\)
\(984\) 0 0
\(985\) 12043.7 0.389588
\(986\) −14709.3 −0.475091
\(987\) 0 0
\(988\) −5530.22 −0.178077
\(989\) −3453.61 −0.111040
\(990\) 0 0
\(991\) 8015.59 0.256936 0.128468 0.991714i \(-0.458994\pi\)
0.128468 + 0.991714i \(0.458994\pi\)
\(992\) −29511.6 −0.944552
\(993\) 0 0
\(994\) 0 0
\(995\) 15410.7 0.491006
\(996\) 0 0
\(997\) 21833.7 0.693559 0.346780 0.937947i \(-0.387275\pi\)
0.346780 + 0.937947i \(0.387275\pi\)
\(998\) 28957.9 0.918484
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.be.1.4 6
3.2 odd 2 inner 1323.4.a.be.1.3 6
7.3 odd 6 189.4.e.e.163.3 yes 12
7.5 odd 6 189.4.e.e.109.3 12
7.6 odd 2 1323.4.a.bd.1.4 6
21.5 even 6 189.4.e.e.109.4 yes 12
21.17 even 6 189.4.e.e.163.4 yes 12
21.20 even 2 1323.4.a.bd.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.e.109.3 12 7.5 odd 6
189.4.e.e.109.4 yes 12 21.5 even 6
189.4.e.e.163.3 yes 12 7.3 odd 6
189.4.e.e.163.4 yes 12 21.17 even 6
1323.4.a.bd.1.3 6 21.20 even 2
1323.4.a.bd.1.4 6 7.6 odd 2
1323.4.a.be.1.3 6 3.2 odd 2 inner
1323.4.a.be.1.4 6 1.1 even 1 trivial