Properties

Label 1323.4.a.be.1.3
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 40x^{4} + 453x^{2} - 1278 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.05936\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.05936 q^{2} -3.75905 q^{4} +14.5041 q^{5} +24.2161 q^{8} +O(q^{10})\) \(q-2.05936 q^{2} -3.75905 q^{4} +14.5041 q^{5} +24.2161 q^{8} -29.8691 q^{10} -29.8094 q^{11} +13.3320 q^{13} -19.7971 q^{16} -64.2830 q^{17} +110.350 q^{19} -54.5216 q^{20} +61.3881 q^{22} -19.3456 q^{23} +85.3686 q^{25} -27.4552 q^{26} +111.113 q^{29} -192.938 q^{31} -152.959 q^{32} +132.382 q^{34} -71.5214 q^{37} -227.249 q^{38} +351.232 q^{40} -277.562 q^{41} -178.522 q^{43} +112.055 q^{44} +39.8395 q^{46} -531.874 q^{47} -175.804 q^{50} -50.1155 q^{52} +310.832 q^{53} -432.357 q^{55} -228.821 q^{58} +722.023 q^{59} -663.070 q^{61} +397.328 q^{62} +473.375 q^{64} +193.368 q^{65} -608.559 q^{67} +241.643 q^{68} +976.305 q^{71} -261.148 q^{73} +147.288 q^{74} -414.810 q^{76} +1236.15 q^{79} -287.139 q^{80} +571.600 q^{82} -1225.79 q^{83} -932.367 q^{85} +367.640 q^{86} -721.866 q^{88} +791.982 q^{89} +72.7211 q^{92} +1095.32 q^{94} +1600.52 q^{95} +935.253 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 32 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 32 q^{4} + 20 q^{10} - 52 q^{13} - 148 q^{16} + 62 q^{19} - 356 q^{22} - 46 q^{25} + 82 q^{31} - 420 q^{34} - 1132 q^{37} + 444 q^{40} - 1566 q^{43} - 888 q^{46} + 72 q^{52} - 224 q^{55} + 4 q^{58} - 886 q^{61} - 924 q^{64} - 2084 q^{67} + 2398 q^{73} - 3204 q^{76} + 984 q^{79} + 3892 q^{82} - 3600 q^{85} - 5796 q^{88} - 2772 q^{94} + 682 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.05936 −0.728092 −0.364046 0.931381i \(-0.618605\pi\)
−0.364046 + 0.931381i \(0.618605\pi\)
\(3\) 0 0
\(4\) −3.75905 −0.469882
\(5\) 14.5041 1.29729 0.648643 0.761093i \(-0.275337\pi\)
0.648643 + 0.761093i \(0.275337\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 24.2161 1.07021
\(9\) 0 0
\(10\) −29.8691 −0.944543
\(11\) −29.8094 −0.817078 −0.408539 0.912741i \(-0.633962\pi\)
−0.408539 + 0.912741i \(0.633962\pi\)
\(12\) 0 0
\(13\) 13.3320 0.284432 0.142216 0.989836i \(-0.454577\pi\)
0.142216 + 0.989836i \(0.454577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −19.7971 −0.309330
\(17\) −64.2830 −0.917113 −0.458557 0.888665i \(-0.651633\pi\)
−0.458557 + 0.888665i \(0.651633\pi\)
\(18\) 0 0
\(19\) 110.350 1.33242 0.666209 0.745765i \(-0.267916\pi\)
0.666209 + 0.745765i \(0.267916\pi\)
\(20\) −54.5216 −0.609570
\(21\) 0 0
\(22\) 61.3881 0.594908
\(23\) −19.3456 −0.175384 −0.0876921 0.996148i \(-0.527949\pi\)
−0.0876921 + 0.996148i \(0.527949\pi\)
\(24\) 0 0
\(25\) 85.3686 0.682949
\(26\) −27.4552 −0.207093
\(27\) 0 0
\(28\) 0 0
\(29\) 111.113 0.711487 0.355744 0.934584i \(-0.384228\pi\)
0.355744 + 0.934584i \(0.384228\pi\)
\(30\) 0 0
\(31\) −192.938 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(32\) −152.959 −0.844989
\(33\) 0 0
\(34\) 132.382 0.667743
\(35\) 0 0
\(36\) 0 0
\(37\) −71.5214 −0.317785 −0.158892 0.987296i \(-0.550792\pi\)
−0.158892 + 0.987296i \(0.550792\pi\)
\(38\) −227.249 −0.970123
\(39\) 0 0
\(40\) 351.232 1.38837
\(41\) −277.562 −1.05727 −0.528634 0.848850i \(-0.677296\pi\)
−0.528634 + 0.848850i \(0.677296\pi\)
\(42\) 0 0
\(43\) −178.522 −0.633124 −0.316562 0.948572i \(-0.602528\pi\)
−0.316562 + 0.948572i \(0.602528\pi\)
\(44\) 112.055 0.383930
\(45\) 0 0
\(46\) 39.8395 0.127696
\(47\) −531.874 −1.65068 −0.825338 0.564638i \(-0.809016\pi\)
−0.825338 + 0.564638i \(0.809016\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −175.804 −0.497250
\(51\) 0 0
\(52\) −50.1155 −0.133649
\(53\) 310.832 0.805586 0.402793 0.915291i \(-0.368039\pi\)
0.402793 + 0.915291i \(0.368039\pi\)
\(54\) 0 0
\(55\) −432.357 −1.05998
\(56\) 0 0
\(57\) 0 0
\(58\) −228.821 −0.518029
\(59\) 722.023 1.59321 0.796605 0.604500i \(-0.206627\pi\)
0.796605 + 0.604500i \(0.206627\pi\)
\(60\) 0 0
\(61\) −663.070 −1.39176 −0.695880 0.718158i \(-0.744986\pi\)
−0.695880 + 0.718158i \(0.744986\pi\)
\(62\) 397.328 0.813882
\(63\) 0 0
\(64\) 473.375 0.924560
\(65\) 193.368 0.368990
\(66\) 0 0
\(67\) −608.559 −1.10966 −0.554830 0.831964i \(-0.687217\pi\)
−0.554830 + 0.831964i \(0.687217\pi\)
\(68\) 241.643 0.430934
\(69\) 0 0
\(70\) 0 0
\(71\) 976.305 1.63192 0.815958 0.578111i \(-0.196210\pi\)
0.815958 + 0.578111i \(0.196210\pi\)
\(72\) 0 0
\(73\) −261.148 −0.418700 −0.209350 0.977841i \(-0.567135\pi\)
−0.209350 + 0.977841i \(0.567135\pi\)
\(74\) 147.288 0.231377
\(75\) 0 0
\(76\) −414.810 −0.626078
\(77\) 0 0
\(78\) 0 0
\(79\) 1236.15 1.76048 0.880239 0.474531i \(-0.157382\pi\)
0.880239 + 0.474531i \(0.157382\pi\)
\(80\) −287.139 −0.401289
\(81\) 0 0
\(82\) 571.600 0.769789
\(83\) −1225.79 −1.62106 −0.810529 0.585699i \(-0.800820\pi\)
−0.810529 + 0.585699i \(0.800820\pi\)
\(84\) 0 0
\(85\) −932.367 −1.18976
\(86\) 367.640 0.460973
\(87\) 0 0
\(88\) −721.866 −0.874445
\(89\) 791.982 0.943257 0.471629 0.881797i \(-0.343666\pi\)
0.471629 + 0.881797i \(0.343666\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 72.7211 0.0824098
\(93\) 0 0
\(94\) 1095.32 1.20185
\(95\) 1600.52 1.72853
\(96\) 0 0
\(97\) 935.253 0.978975 0.489488 0.872010i \(-0.337184\pi\)
0.489488 + 0.872010i \(0.337184\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −320.905 −0.320905
\(101\) 442.969 0.436407 0.218203 0.975903i \(-0.429980\pi\)
0.218203 + 0.975903i \(0.429980\pi\)
\(102\) 0 0
\(103\) 699.401 0.669068 0.334534 0.942384i \(-0.391421\pi\)
0.334534 + 0.942384i \(0.391421\pi\)
\(104\) 322.848 0.304402
\(105\) 0 0
\(106\) −640.114 −0.586541
\(107\) 1911.18 1.72674 0.863369 0.504573i \(-0.168350\pi\)
0.863369 + 0.504573i \(0.168350\pi\)
\(108\) 0 0
\(109\) −2071.42 −1.82024 −0.910118 0.414349i \(-0.864009\pi\)
−0.910118 + 0.414349i \(0.864009\pi\)
\(110\) 890.378 0.771766
\(111\) 0 0
\(112\) 0 0
\(113\) −2313.34 −1.92585 −0.962926 0.269767i \(-0.913053\pi\)
−0.962926 + 0.269767i \(0.913053\pi\)
\(114\) 0 0
\(115\) −280.590 −0.227523
\(116\) −417.679 −0.334315
\(117\) 0 0
\(118\) −1486.90 −1.16000
\(119\) 0 0
\(120\) 0 0
\(121\) −442.403 −0.332384
\(122\) 1365.50 1.01333
\(123\) 0 0
\(124\) 725.263 0.525246
\(125\) −574.817 −0.411306
\(126\) 0 0
\(127\) −1317.50 −0.920542 −0.460271 0.887778i \(-0.652248\pi\)
−0.460271 + 0.887778i \(0.652248\pi\)
\(128\) 248.828 0.171824
\(129\) 0 0
\(130\) −398.213 −0.268659
\(131\) 458.841 0.306024 0.153012 0.988224i \(-0.451103\pi\)
0.153012 + 0.988224i \(0.451103\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1253.24 0.807935
\(135\) 0 0
\(136\) −1556.68 −0.981503
\(137\) 1332.76 0.831132 0.415566 0.909563i \(-0.363584\pi\)
0.415566 + 0.909563i \(0.363584\pi\)
\(138\) 0 0
\(139\) 406.835 0.248254 0.124127 0.992266i \(-0.460387\pi\)
0.124127 + 0.992266i \(0.460387\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2010.56 −1.18819
\(143\) −397.417 −0.232403
\(144\) 0 0
\(145\) 1611.59 0.923002
\(146\) 537.797 0.304852
\(147\) 0 0
\(148\) 268.853 0.149321
\(149\) −435.523 −0.239459 −0.119730 0.992807i \(-0.538203\pi\)
−0.119730 + 0.992807i \(0.538203\pi\)
\(150\) 0 0
\(151\) −1965.34 −1.05918 −0.529592 0.848253i \(-0.677655\pi\)
−0.529592 + 0.848253i \(0.677655\pi\)
\(152\) 2672.23 1.42597
\(153\) 0 0
\(154\) 0 0
\(155\) −2798.39 −1.45014
\(156\) 0 0
\(157\) −831.483 −0.422672 −0.211336 0.977413i \(-0.567781\pi\)
−0.211336 + 0.977413i \(0.567781\pi\)
\(158\) −2545.67 −1.28179
\(159\) 0 0
\(160\) −2218.54 −1.09619
\(161\) 0 0
\(162\) 0 0
\(163\) −1176.12 −0.565159 −0.282579 0.959244i \(-0.591190\pi\)
−0.282579 + 0.959244i \(0.591190\pi\)
\(164\) 1043.37 0.496791
\(165\) 0 0
\(166\) 2524.34 1.18028
\(167\) −1674.29 −0.775809 −0.387905 0.921700i \(-0.626801\pi\)
−0.387905 + 0.921700i \(0.626801\pi\)
\(168\) 0 0
\(169\) −2019.26 −0.919098
\(170\) 1920.08 0.866253
\(171\) 0 0
\(172\) 671.073 0.297493
\(173\) −1432.92 −0.629728 −0.314864 0.949137i \(-0.601959\pi\)
−0.314864 + 0.949137i \(0.601959\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 590.139 0.252747
\(177\) 0 0
\(178\) −1630.97 −0.686778
\(179\) −1194.53 −0.498790 −0.249395 0.968402i \(-0.580232\pi\)
−0.249395 + 0.968402i \(0.580232\pi\)
\(180\) 0 0
\(181\) −741.424 −0.304473 −0.152236 0.988344i \(-0.548648\pi\)
−0.152236 + 0.988344i \(0.548648\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −468.474 −0.187698
\(185\) −1037.35 −0.412258
\(186\) 0 0
\(187\) 1916.24 0.749353
\(188\) 1999.34 0.775623
\(189\) 0 0
\(190\) −3296.04 −1.25853
\(191\) −3903.98 −1.47897 −0.739483 0.673175i \(-0.764930\pi\)
−0.739483 + 0.673175i \(0.764930\pi\)
\(192\) 0 0
\(193\) 1771.25 0.660609 0.330305 0.943874i \(-0.392849\pi\)
0.330305 + 0.943874i \(0.392849\pi\)
\(194\) −1926.02 −0.712784
\(195\) 0 0
\(196\) 0 0
\(197\) 830.366 0.300310 0.150155 0.988662i \(-0.452023\pi\)
0.150155 + 0.988662i \(0.452023\pi\)
\(198\) 0 0
\(199\) −1062.51 −0.378487 −0.189244 0.981930i \(-0.560604\pi\)
−0.189244 + 0.981930i \(0.560604\pi\)
\(200\) 2067.29 0.730898
\(201\) 0 0
\(202\) −912.232 −0.317745
\(203\) 0 0
\(204\) 0 0
\(205\) −4025.79 −1.37158
\(206\) −1440.32 −0.487143
\(207\) 0 0
\(208\) −263.934 −0.0879834
\(209\) −3289.45 −1.08869
\(210\) 0 0
\(211\) −3848.67 −1.25570 −0.627851 0.778333i \(-0.716065\pi\)
−0.627851 + 0.778333i \(0.716065\pi\)
\(212\) −1168.43 −0.378530
\(213\) 0 0
\(214\) −3935.81 −1.25722
\(215\) −2589.30 −0.821342
\(216\) 0 0
\(217\) 0 0
\(218\) 4265.79 1.32530
\(219\) 0 0
\(220\) 1625.25 0.498066
\(221\) −857.018 −0.260856
\(222\) 0 0
\(223\) −5482.75 −1.64642 −0.823211 0.567736i \(-0.807819\pi\)
−0.823211 + 0.567736i \(0.807819\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4764.00 1.40220
\(227\) −394.837 −0.115446 −0.0577230 0.998333i \(-0.518384\pi\)
−0.0577230 + 0.998333i \(0.518384\pi\)
\(228\) 0 0
\(229\) 3823.57 1.10336 0.551678 0.834057i \(-0.313988\pi\)
0.551678 + 0.834057i \(0.313988\pi\)
\(230\) 577.835 0.165658
\(231\) 0 0
\(232\) 2690.72 0.761441
\(233\) −2537.54 −0.713475 −0.356738 0.934205i \(-0.616111\pi\)
−0.356738 + 0.934205i \(0.616111\pi\)
\(234\) 0 0
\(235\) −7714.35 −2.14140
\(236\) −2714.12 −0.748620
\(237\) 0 0
\(238\) 0 0
\(239\) 5368.81 1.45305 0.726526 0.687139i \(-0.241134\pi\)
0.726526 + 0.687139i \(0.241134\pi\)
\(240\) 0 0
\(241\) −2108.02 −0.563442 −0.281721 0.959496i \(-0.590905\pi\)
−0.281721 + 0.959496i \(0.590905\pi\)
\(242\) 911.064 0.242006
\(243\) 0 0
\(244\) 2492.51 0.653962
\(245\) 0 0
\(246\) 0 0
\(247\) 1471.18 0.378982
\(248\) −4672.20 −1.19631
\(249\) 0 0
\(250\) 1183.75 0.299469
\(251\) 5717.94 1.43790 0.718951 0.695061i \(-0.244623\pi\)
0.718951 + 0.695061i \(0.244623\pi\)
\(252\) 0 0
\(253\) 576.680 0.143303
\(254\) 2713.19 0.670240
\(255\) 0 0
\(256\) −4299.42 −1.04966
\(257\) −4987.47 −1.21054 −0.605272 0.796019i \(-0.706936\pi\)
−0.605272 + 0.796019i \(0.706936\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −726.880 −0.173381
\(261\) 0 0
\(262\) −944.917 −0.222814
\(263\) 615.273 0.144256 0.0721281 0.997395i \(-0.477021\pi\)
0.0721281 + 0.997395i \(0.477021\pi\)
\(264\) 0 0
\(265\) 4508.34 1.04508
\(266\) 0 0
\(267\) 0 0
\(268\) 2287.60 0.521409
\(269\) 793.962 0.179958 0.0899790 0.995944i \(-0.471320\pi\)
0.0899790 + 0.995944i \(0.471320\pi\)
\(270\) 0 0
\(271\) −3764.95 −0.843927 −0.421964 0.906613i \(-0.638659\pi\)
−0.421964 + 0.906613i \(0.638659\pi\)
\(272\) 1272.62 0.283690
\(273\) 0 0
\(274\) −2744.62 −0.605141
\(275\) −2544.78 −0.558022
\(276\) 0 0
\(277\) −3196.54 −0.693364 −0.346682 0.937983i \(-0.612692\pi\)
−0.346682 + 0.937983i \(0.612692\pi\)
\(278\) −837.817 −0.180752
\(279\) 0 0
\(280\) 0 0
\(281\) −6225.15 −1.32157 −0.660785 0.750575i \(-0.729777\pi\)
−0.660785 + 0.750575i \(0.729777\pi\)
\(282\) 0 0
\(283\) 3717.50 0.780857 0.390429 0.920633i \(-0.372327\pi\)
0.390429 + 0.920633i \(0.372327\pi\)
\(284\) −3669.98 −0.766807
\(285\) 0 0
\(286\) 818.423 0.169211
\(287\) 0 0
\(288\) 0 0
\(289\) −780.693 −0.158904
\(290\) −3318.84 −0.672031
\(291\) 0 0
\(292\) 981.669 0.196739
\(293\) 6392.56 1.27460 0.637299 0.770616i \(-0.280052\pi\)
0.637299 + 0.770616i \(0.280052\pi\)
\(294\) 0 0
\(295\) 10472.3 2.06685
\(296\) −1731.97 −0.340096
\(297\) 0 0
\(298\) 896.897 0.174348
\(299\) −257.915 −0.0498849
\(300\) 0 0
\(301\) 0 0
\(302\) 4047.33 0.771183
\(303\) 0 0
\(304\) −2184.60 −0.412156
\(305\) −9617.22 −1.80551
\(306\) 0 0
\(307\) −939.255 −0.174613 −0.0873063 0.996182i \(-0.527826\pi\)
−0.0873063 + 0.996182i \(0.527826\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5762.88 1.05584
\(311\) 2751.61 0.501703 0.250851 0.968026i \(-0.419289\pi\)
0.250851 + 0.968026i \(0.419289\pi\)
\(312\) 0 0
\(313\) 637.099 0.115051 0.0575255 0.998344i \(-0.481679\pi\)
0.0575255 + 0.998344i \(0.481679\pi\)
\(314\) 1712.32 0.307744
\(315\) 0 0
\(316\) −4646.75 −0.827216
\(317\) −2872.19 −0.508891 −0.254445 0.967087i \(-0.581893\pi\)
−0.254445 + 0.967087i \(0.581893\pi\)
\(318\) 0 0
\(319\) −3312.20 −0.581341
\(320\) 6865.87 1.19942
\(321\) 0 0
\(322\) 0 0
\(323\) −7093.60 −1.22198
\(324\) 0 0
\(325\) 1138.13 0.194253
\(326\) 2422.05 0.411488
\(327\) 0 0
\(328\) −6721.47 −1.13150
\(329\) 0 0
\(330\) 0 0
\(331\) −6393.60 −1.06170 −0.530852 0.847464i \(-0.678128\pi\)
−0.530852 + 0.847464i \(0.678128\pi\)
\(332\) 4607.80 0.761705
\(333\) 0 0
\(334\) 3447.95 0.564861
\(335\) −8826.59 −1.43955
\(336\) 0 0
\(337\) −12107.6 −1.95710 −0.978549 0.206016i \(-0.933950\pi\)
−0.978549 + 0.206016i \(0.933950\pi\)
\(338\) 4158.37 0.669188
\(339\) 0 0
\(340\) 3504.81 0.559045
\(341\) 5751.35 0.913352
\(342\) 0 0
\(343\) 0 0
\(344\) −4323.10 −0.677575
\(345\) 0 0
\(346\) 2950.89 0.458500
\(347\) 2710.14 0.419273 0.209636 0.977779i \(-0.432772\pi\)
0.209636 + 0.977779i \(0.432772\pi\)
\(348\) 0 0
\(349\) 1175.22 0.180252 0.0901261 0.995930i \(-0.471273\pi\)
0.0901261 + 0.995930i \(0.471273\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4559.62 0.690422
\(353\) −5276.41 −0.795566 −0.397783 0.917480i \(-0.630220\pi\)
−0.397783 + 0.917480i \(0.630220\pi\)
\(354\) 0 0
\(355\) 14160.4 2.11706
\(356\) −2977.10 −0.443219
\(357\) 0 0
\(358\) 2459.96 0.363165
\(359\) −11286.5 −1.65928 −0.829639 0.558300i \(-0.811454\pi\)
−0.829639 + 0.558300i \(0.811454\pi\)
\(360\) 0 0
\(361\) 5318.03 0.775336
\(362\) 1526.86 0.221684
\(363\) 0 0
\(364\) 0 0
\(365\) −3787.72 −0.543173
\(366\) 0 0
\(367\) −7567.59 −1.07636 −0.538181 0.842829i \(-0.680888\pi\)
−0.538181 + 0.842829i \(0.680888\pi\)
\(368\) 382.987 0.0542516
\(369\) 0 0
\(370\) 2136.28 0.300162
\(371\) 0 0
\(372\) 0 0
\(373\) −6503.97 −0.902850 −0.451425 0.892309i \(-0.649084\pi\)
−0.451425 + 0.892309i \(0.649084\pi\)
\(374\) −3946.21 −0.545598
\(375\) 0 0
\(376\) −12879.9 −1.76657
\(377\) 1481.35 0.202370
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730097 0.683344i \(-0.239475\pi\)
0.730097 + 0.683344i \(0.239475\pi\)
\(380\) −6016.44 −0.812202
\(381\) 0 0
\(382\) 8039.70 1.07682
\(383\) 6366.13 0.849331 0.424666 0.905350i \(-0.360392\pi\)
0.424666 + 0.905350i \(0.360392\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3647.64 −0.480985
\(387\) 0 0
\(388\) −3515.67 −0.460002
\(389\) −5903.44 −0.769450 −0.384725 0.923031i \(-0.625704\pi\)
−0.384725 + 0.923031i \(0.625704\pi\)
\(390\) 0 0
\(391\) 1243.59 0.160847
\(392\) 0 0
\(393\) 0 0
\(394\) −1710.02 −0.218654
\(395\) 17929.2 2.28384
\(396\) 0 0
\(397\) −3766.78 −0.476194 −0.238097 0.971241i \(-0.576524\pi\)
−0.238097 + 0.971241i \(0.576524\pi\)
\(398\) 2188.08 0.275574
\(399\) 0 0
\(400\) −1690.05 −0.211256
\(401\) 7252.00 0.903112 0.451556 0.892243i \(-0.350869\pi\)
0.451556 + 0.892243i \(0.350869\pi\)
\(402\) 0 0
\(403\) −2572.24 −0.317946
\(404\) −1665.15 −0.205060
\(405\) 0 0
\(406\) 0 0
\(407\) 2132.01 0.259655
\(408\) 0 0
\(409\) −12547.4 −1.51694 −0.758471 0.651707i \(-0.774053\pi\)
−0.758471 + 0.651707i \(0.774053\pi\)
\(410\) 8290.54 0.998635
\(411\) 0 0
\(412\) −2629.08 −0.314383
\(413\) 0 0
\(414\) 0 0
\(415\) −17778.9 −2.10297
\(416\) −2039.25 −0.240342
\(417\) 0 0
\(418\) 6774.15 0.792666
\(419\) 12631.5 1.47276 0.736381 0.676567i \(-0.236533\pi\)
0.736381 + 0.676567i \(0.236533\pi\)
\(420\) 0 0
\(421\) −3495.94 −0.404707 −0.202354 0.979312i \(-0.564859\pi\)
−0.202354 + 0.979312i \(0.564859\pi\)
\(422\) 7925.78 0.914267
\(423\) 0 0
\(424\) 7527.13 0.862146
\(425\) −5487.75 −0.626341
\(426\) 0 0
\(427\) 0 0
\(428\) −7184.23 −0.811362
\(429\) 0 0
\(430\) 5332.28 0.598013
\(431\) −2345.18 −0.262096 −0.131048 0.991376i \(-0.541834\pi\)
−0.131048 + 0.991376i \(0.541834\pi\)
\(432\) 0 0
\(433\) −3250.63 −0.360774 −0.180387 0.983596i \(-0.557735\pi\)
−0.180387 + 0.983596i \(0.557735\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7786.56 0.855295
\(437\) −2134.78 −0.233685
\(438\) 0 0
\(439\) −16240.5 −1.76564 −0.882820 0.469711i \(-0.844358\pi\)
−0.882820 + 0.469711i \(0.844358\pi\)
\(440\) −10470.0 −1.13440
\(441\) 0 0
\(442\) 1764.91 0.189928
\(443\) 4849.04 0.520056 0.260028 0.965601i \(-0.416268\pi\)
0.260028 + 0.965601i \(0.416268\pi\)
\(444\) 0 0
\(445\) 11487.0 1.22367
\(446\) 11290.9 1.19875
\(447\) 0 0
\(448\) 0 0
\(449\) 4139.93 0.435134 0.217567 0.976045i \(-0.430188\pi\)
0.217567 + 0.976045i \(0.430188\pi\)
\(450\) 0 0
\(451\) 8273.96 0.863870
\(452\) 8695.98 0.904922
\(453\) 0 0
\(454\) 813.110 0.0840553
\(455\) 0 0
\(456\) 0 0
\(457\) 9232.48 0.945027 0.472513 0.881323i \(-0.343347\pi\)
0.472513 + 0.881323i \(0.343347\pi\)
\(458\) −7874.08 −0.803344
\(459\) 0 0
\(460\) 1054.75 0.106909
\(461\) 1274.90 0.128803 0.0644013 0.997924i \(-0.479486\pi\)
0.0644013 + 0.997924i \(0.479486\pi\)
\(462\) 0 0
\(463\) 2061.80 0.206955 0.103477 0.994632i \(-0.467003\pi\)
0.103477 + 0.994632i \(0.467003\pi\)
\(464\) −2199.71 −0.220084
\(465\) 0 0
\(466\) 5225.70 0.519476
\(467\) −968.041 −0.0959221 −0.0479610 0.998849i \(-0.515272\pi\)
−0.0479610 + 0.998849i \(0.515272\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 15886.6 1.55914
\(471\) 0 0
\(472\) 17484.6 1.70507
\(473\) 5321.62 0.517311
\(474\) 0 0
\(475\) 9420.39 0.909973
\(476\) 0 0
\(477\) 0 0
\(478\) −11056.3 −1.05796
\(479\) 6200.05 0.591414 0.295707 0.955279i \(-0.404445\pi\)
0.295707 + 0.955279i \(0.404445\pi\)
\(480\) 0 0
\(481\) −953.519 −0.0903882
\(482\) 4341.17 0.410238
\(483\) 0 0
\(484\) 1663.01 0.156181
\(485\) 13565.0 1.27001
\(486\) 0 0
\(487\) −9829.66 −0.914629 −0.457315 0.889305i \(-0.651189\pi\)
−0.457315 + 0.889305i \(0.651189\pi\)
\(488\) −16056.9 −1.48948
\(489\) 0 0
\(490\) 0 0
\(491\) 5053.57 0.464489 0.232245 0.972657i \(-0.425393\pi\)
0.232245 + 0.972657i \(0.425393\pi\)
\(492\) 0 0
\(493\) −7142.67 −0.652514
\(494\) −3029.67 −0.275934
\(495\) 0 0
\(496\) 3819.61 0.345777
\(497\) 0 0
\(498\) 0 0
\(499\) 14061.6 1.26149 0.630747 0.775988i \(-0.282749\pi\)
0.630747 + 0.775988i \(0.282749\pi\)
\(500\) 2160.77 0.193265
\(501\) 0 0
\(502\) −11775.3 −1.04693
\(503\) 8001.67 0.709298 0.354649 0.934999i \(-0.384600\pi\)
0.354649 + 0.934999i \(0.384600\pi\)
\(504\) 0 0
\(505\) 6424.87 0.566144
\(506\) −1187.59 −0.104337
\(507\) 0 0
\(508\) 4952.53 0.432546
\(509\) −10913.8 −0.950386 −0.475193 0.879881i \(-0.657622\pi\)
−0.475193 + 0.879881i \(0.657622\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 6863.42 0.592428
\(513\) 0 0
\(514\) 10271.0 0.881388
\(515\) 10144.2 0.867972
\(516\) 0 0
\(517\) 15854.8 1.34873
\(518\) 0 0
\(519\) 0 0
\(520\) 4682.61 0.394896
\(521\) −15803.4 −1.32890 −0.664452 0.747331i \(-0.731335\pi\)
−0.664452 + 0.747331i \(0.731335\pi\)
\(522\) 0 0
\(523\) 646.094 0.0540186 0.0270093 0.999635i \(-0.491402\pi\)
0.0270093 + 0.999635i \(0.491402\pi\)
\(524\) −1724.81 −0.143795
\(525\) 0 0
\(526\) −1267.07 −0.105032
\(527\) 12402.6 1.02517
\(528\) 0 0
\(529\) −11792.7 −0.969240
\(530\) −9284.27 −0.760911
\(531\) 0 0
\(532\) 0 0
\(533\) −3700.45 −0.300721
\(534\) 0 0
\(535\) 27720.0 2.24007
\(536\) −14736.9 −1.18757
\(537\) 0 0
\(538\) −1635.05 −0.131026
\(539\) 0 0
\(540\) 0 0
\(541\) 10246.7 0.814303 0.407152 0.913361i \(-0.366522\pi\)
0.407152 + 0.913361i \(0.366522\pi\)
\(542\) 7753.37 0.614457
\(543\) 0 0
\(544\) 9832.69 0.774950
\(545\) −30044.0 −2.36137
\(546\) 0 0
\(547\) 4368.98 0.341506 0.170753 0.985314i \(-0.445380\pi\)
0.170753 + 0.985314i \(0.445380\pi\)
\(548\) −5009.90 −0.390533
\(549\) 0 0
\(550\) 5240.61 0.406292
\(551\) 12261.3 0.947998
\(552\) 0 0
\(553\) 0 0
\(554\) 6582.82 0.504833
\(555\) 0 0
\(556\) −1529.31 −0.116650
\(557\) 8396.43 0.638722 0.319361 0.947633i \(-0.396532\pi\)
0.319361 + 0.947633i \(0.396532\pi\)
\(558\) 0 0
\(559\) −2380.04 −0.180081
\(560\) 0 0
\(561\) 0 0
\(562\) 12819.8 0.962226
\(563\) 12142.3 0.908944 0.454472 0.890761i \(-0.349828\pi\)
0.454472 + 0.890761i \(0.349828\pi\)
\(564\) 0 0
\(565\) −33553.0 −2.49838
\(566\) −7655.66 −0.568536
\(567\) 0 0
\(568\) 23642.3 1.74649
\(569\) −11196.1 −0.824896 −0.412448 0.910981i \(-0.635326\pi\)
−0.412448 + 0.910981i \(0.635326\pi\)
\(570\) 0 0
\(571\) 19659.6 1.44085 0.720427 0.693531i \(-0.243946\pi\)
0.720427 + 0.693531i \(0.243946\pi\)
\(572\) 1493.91 0.109202
\(573\) 0 0
\(574\) 0 0
\(575\) −1651.51 −0.119778
\(576\) 0 0
\(577\) −8516.45 −0.614462 −0.307231 0.951635i \(-0.599402\pi\)
−0.307231 + 0.951635i \(0.599402\pi\)
\(578\) 1607.73 0.115696
\(579\) 0 0
\(580\) −6058.05 −0.433702
\(581\) 0 0
\(582\) 0 0
\(583\) −9265.70 −0.658227
\(584\) −6323.98 −0.448096
\(585\) 0 0
\(586\) −13164.6 −0.928025
\(587\) −7115.53 −0.500323 −0.250161 0.968204i \(-0.580484\pi\)
−0.250161 + 0.968204i \(0.580484\pi\)
\(588\) 0 0
\(589\) −21290.6 −1.48941
\(590\) −21566.2 −1.50486
\(591\) 0 0
\(592\) 1415.92 0.0983003
\(593\) 6144.48 0.425504 0.212752 0.977106i \(-0.431757\pi\)
0.212752 + 0.977106i \(0.431757\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1637.15 0.112517
\(597\) 0 0
\(598\) 531.138 0.0363208
\(599\) −9578.39 −0.653360 −0.326680 0.945135i \(-0.605930\pi\)
−0.326680 + 0.945135i \(0.605930\pi\)
\(600\) 0 0
\(601\) 19113.8 1.29728 0.648642 0.761094i \(-0.275337\pi\)
0.648642 + 0.761094i \(0.275337\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 7387.80 0.497691
\(605\) −6416.65 −0.431196
\(606\) 0 0
\(607\) −20442.6 −1.36695 −0.683477 0.729972i \(-0.739533\pi\)
−0.683477 + 0.729972i \(0.739533\pi\)
\(608\) −16879.0 −1.12588
\(609\) 0 0
\(610\) 19805.3 1.31458
\(611\) −7090.92 −0.469506
\(612\) 0 0
\(613\) 17422.7 1.14796 0.573978 0.818870i \(-0.305399\pi\)
0.573978 + 0.818870i \(0.305399\pi\)
\(614\) 1934.26 0.127134
\(615\) 0 0
\(616\) 0 0
\(617\) 1805.17 0.117785 0.0588926 0.998264i \(-0.481243\pi\)
0.0588926 + 0.998264i \(0.481243\pi\)
\(618\) 0 0
\(619\) −8142.23 −0.528698 −0.264349 0.964427i \(-0.585157\pi\)
−0.264349 + 0.964427i \(0.585157\pi\)
\(620\) 10519.3 0.681394
\(621\) 0 0
\(622\) −5666.55 −0.365286
\(623\) 0 0
\(624\) 0 0
\(625\) −19008.3 −1.21653
\(626\) −1312.01 −0.0837678
\(627\) 0 0
\(628\) 3125.59 0.198606
\(629\) 4597.61 0.291445
\(630\) 0 0
\(631\) 3630.07 0.229019 0.114509 0.993422i \(-0.463470\pi\)
0.114509 + 0.993422i \(0.463470\pi\)
\(632\) 29934.7 1.88408
\(633\) 0 0
\(634\) 5914.87 0.370519
\(635\) −19109.1 −1.19421
\(636\) 0 0
\(637\) 0 0
\(638\) 6821.00 0.423270
\(639\) 0 0
\(640\) 3609.02 0.222905
\(641\) −22223.6 −1.36939 −0.684696 0.728829i \(-0.740065\pi\)
−0.684696 + 0.728829i \(0.740065\pi\)
\(642\) 0 0
\(643\) 5013.00 0.307455 0.153727 0.988113i \(-0.450872\pi\)
0.153727 + 0.988113i \(0.450872\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 14608.3 0.889712
\(647\) 7716.16 0.468862 0.234431 0.972133i \(-0.424677\pi\)
0.234431 + 0.972133i \(0.424677\pi\)
\(648\) 0 0
\(649\) −21523.0 −1.30178
\(650\) −2343.82 −0.141434
\(651\) 0 0
\(652\) 4421.10 0.265558
\(653\) 5644.40 0.338258 0.169129 0.985594i \(-0.445905\pi\)
0.169129 + 0.985594i \(0.445905\pi\)
\(654\) 0 0
\(655\) 6655.07 0.397000
\(656\) 5494.94 0.327044
\(657\) 0 0
\(658\) 0 0
\(659\) −8812.27 −0.520906 −0.260453 0.965487i \(-0.583872\pi\)
−0.260453 + 0.965487i \(0.583872\pi\)
\(660\) 0 0
\(661\) 6191.02 0.364300 0.182150 0.983271i \(-0.441694\pi\)
0.182150 + 0.983271i \(0.441694\pi\)
\(662\) 13166.7 0.773019
\(663\) 0 0
\(664\) −29683.8 −1.73487
\(665\) 0 0
\(666\) 0 0
\(667\) −2149.54 −0.124784
\(668\) 6293.73 0.364538
\(669\) 0 0
\(670\) 18177.1 1.04812
\(671\) 19765.7 1.13718
\(672\) 0 0
\(673\) 29580.7 1.69428 0.847141 0.531368i \(-0.178322\pi\)
0.847141 + 0.531368i \(0.178322\pi\)
\(674\) 24933.8 1.42495
\(675\) 0 0
\(676\) 7590.50 0.431867
\(677\) 26290.0 1.49248 0.746239 0.665678i \(-0.231857\pi\)
0.746239 + 0.665678i \(0.231857\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −22578.3 −1.27329
\(681\) 0 0
\(682\) −11844.1 −0.665005
\(683\) 810.684 0.0454172 0.0227086 0.999742i \(-0.492771\pi\)
0.0227086 + 0.999742i \(0.492771\pi\)
\(684\) 0 0
\(685\) 19330.4 1.07821
\(686\) 0 0
\(687\) 0 0
\(688\) 3534.22 0.195844
\(689\) 4144.00 0.229135
\(690\) 0 0
\(691\) −1171.38 −0.0644883 −0.0322442 0.999480i \(-0.510265\pi\)
−0.0322442 + 0.999480i \(0.510265\pi\)
\(692\) 5386.42 0.295897
\(693\) 0 0
\(694\) −5581.14 −0.305269
\(695\) 5900.76 0.322056
\(696\) 0 0
\(697\) 17842.6 0.969634
\(698\) −2420.19 −0.131240
\(699\) 0 0
\(700\) 0 0
\(701\) 1057.70 0.0569885 0.0284943 0.999594i \(-0.490929\pi\)
0.0284943 + 0.999594i \(0.490929\pi\)
\(702\) 0 0
\(703\) −7892.35 −0.423422
\(704\) −14111.0 −0.755437
\(705\) 0 0
\(706\) 10866.0 0.579245
\(707\) 0 0
\(708\) 0 0
\(709\) −29243.7 −1.54904 −0.774521 0.632548i \(-0.782009\pi\)
−0.774521 + 0.632548i \(0.782009\pi\)
\(710\) −29161.3 −1.54142
\(711\) 0 0
\(712\) 19178.7 1.00948
\(713\) 3732.50 0.196049
\(714\) 0 0
\(715\) −5764.17 −0.301493
\(716\) 4490.30 0.234372
\(717\) 0 0
\(718\) 23243.0 1.20811
\(719\) 24557.7 1.27378 0.636890 0.770955i \(-0.280221\pi\)
0.636890 + 0.770955i \(0.280221\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −10951.7 −0.564516
\(723\) 0 0
\(724\) 2787.05 0.143066
\(725\) 9485.55 0.485909
\(726\) 0 0
\(727\) 23444.2 1.19601 0.598003 0.801494i \(-0.295961\pi\)
0.598003 + 0.801494i \(0.295961\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 7800.25 0.395480
\(731\) 11475.9 0.580646
\(732\) 0 0
\(733\) 35971.3 1.81259 0.906296 0.422644i \(-0.138898\pi\)
0.906296 + 0.422644i \(0.138898\pi\)
\(734\) 15584.4 0.783692
\(735\) 0 0
\(736\) 2959.09 0.148198
\(737\) 18140.7 0.906679
\(738\) 0 0
\(739\) 12068.6 0.600746 0.300373 0.953822i \(-0.402889\pi\)
0.300373 + 0.953822i \(0.402889\pi\)
\(740\) 3899.46 0.193712
\(741\) 0 0
\(742\) 0 0
\(743\) 5475.09 0.270339 0.135169 0.990823i \(-0.456842\pi\)
0.135169 + 0.990823i \(0.456842\pi\)
\(744\) 0 0
\(745\) −6316.86 −0.310647
\(746\) 13394.0 0.657358
\(747\) 0 0
\(748\) −7203.23 −0.352107
\(749\) 0 0
\(750\) 0 0
\(751\) 25274.6 1.22807 0.614036 0.789278i \(-0.289545\pi\)
0.614036 + 0.789278i \(0.289545\pi\)
\(752\) 10529.6 0.510604
\(753\) 0 0
\(754\) −3050.63 −0.147344
\(755\) −28505.4 −1.37406
\(756\) 0 0
\(757\) −23583.7 −1.13232 −0.566159 0.824296i \(-0.691571\pi\)
−0.566159 + 0.824296i \(0.691571\pi\)
\(758\) −22187.1 −1.06316
\(759\) 0 0
\(760\) 38758.3 1.84988
\(761\) −16202.7 −0.771810 −0.385905 0.922539i \(-0.626111\pi\)
−0.385905 + 0.922539i \(0.626111\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 14675.3 0.694939
\(765\) 0 0
\(766\) −13110.1 −0.618392
\(767\) 9625.98 0.453160
\(768\) 0 0
\(769\) 18603.1 0.872362 0.436181 0.899859i \(-0.356331\pi\)
0.436181 + 0.899859i \(0.356331\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6658.23 −0.310408
\(773\) 27281.3 1.26939 0.634697 0.772761i \(-0.281125\pi\)
0.634697 + 0.772761i \(0.281125\pi\)
\(774\) 0 0
\(775\) −16470.8 −0.763419
\(776\) 22648.2 1.04771
\(777\) 0 0
\(778\) 12157.3 0.560231
\(779\) −30628.9 −1.40872
\(780\) 0 0
\(781\) −29103.0 −1.33340
\(782\) −2561.00 −0.117112
\(783\) 0 0
\(784\) 0 0
\(785\) −12059.9 −0.548326
\(786\) 0 0
\(787\) −571.719 −0.0258953 −0.0129476 0.999916i \(-0.504121\pi\)
−0.0129476 + 0.999916i \(0.504121\pi\)
\(788\) −3121.39 −0.141110
\(789\) 0 0
\(790\) −36922.7 −1.66285
\(791\) 0 0
\(792\) 0 0
\(793\) −8840.01 −0.395861
\(794\) 7757.14 0.346714
\(795\) 0 0
\(796\) 3994.01 0.177844
\(797\) −33080.5 −1.47023 −0.735113 0.677944i \(-0.762871\pi\)
−0.735113 + 0.677944i \(0.762871\pi\)
\(798\) 0 0
\(799\) 34190.5 1.51386
\(800\) −13057.9 −0.577084
\(801\) 0 0
\(802\) −14934.5 −0.657549
\(803\) 7784.66 0.342110
\(804\) 0 0
\(805\) 0 0
\(806\) 5297.15 0.231494
\(807\) 0 0
\(808\) 10727.0 0.467047
\(809\) 32838.2 1.42711 0.713554 0.700601i \(-0.247085\pi\)
0.713554 + 0.700601i \(0.247085\pi\)
\(810\) 0 0
\(811\) 20453.4 0.885592 0.442796 0.896622i \(-0.353987\pi\)
0.442796 + 0.896622i \(0.353987\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4390.56 −0.189053
\(815\) −17058.6 −0.733172
\(816\) 0 0
\(817\) −19699.8 −0.843585
\(818\) 25839.6 1.10447
\(819\) 0 0
\(820\) 15133.2 0.644479
\(821\) 32462.4 1.37996 0.689980 0.723828i \(-0.257619\pi\)
0.689980 + 0.723828i \(0.257619\pi\)
\(822\) 0 0
\(823\) −47088.3 −1.99440 −0.997202 0.0747505i \(-0.976184\pi\)
−0.997202 + 0.0747505i \(0.976184\pi\)
\(824\) 16936.7 0.716043
\(825\) 0 0
\(826\) 0 0
\(827\) 17641.7 0.741792 0.370896 0.928674i \(-0.379051\pi\)
0.370896 + 0.928674i \(0.379051\pi\)
\(828\) 0 0
\(829\) 1583.53 0.0663427 0.0331714 0.999450i \(-0.489439\pi\)
0.0331714 + 0.999450i \(0.489439\pi\)
\(830\) 36613.2 1.53116
\(831\) 0 0
\(832\) 6311.01 0.262975
\(833\) 0 0
\(834\) 0 0
\(835\) −24284.0 −1.00645
\(836\) 12365.2 0.511555
\(837\) 0 0
\(838\) −26012.7 −1.07231
\(839\) 39612.3 1.63000 0.815000 0.579461i \(-0.196737\pi\)
0.815000 + 0.579461i \(0.196737\pi\)
\(840\) 0 0
\(841\) −12042.9 −0.493786
\(842\) 7199.39 0.294664
\(843\) 0 0
\(844\) 14467.3 0.590031
\(845\) −29287.5 −1.19233
\(846\) 0 0
\(847\) 0 0
\(848\) −6153.58 −0.249192
\(849\) 0 0
\(850\) 11301.2 0.456034
\(851\) 1383.62 0.0557344
\(852\) 0 0
\(853\) 9443.21 0.379049 0.189525 0.981876i \(-0.439305\pi\)
0.189525 + 0.981876i \(0.439305\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 46281.3 1.84797
\(857\) −20138.7 −0.802713 −0.401356 0.915922i \(-0.631461\pi\)
−0.401356 + 0.915922i \(0.631461\pi\)
\(858\) 0 0
\(859\) 18457.4 0.733129 0.366564 0.930393i \(-0.380534\pi\)
0.366564 + 0.930393i \(0.380534\pi\)
\(860\) 9733.30 0.385933
\(861\) 0 0
\(862\) 4829.57 0.190830
\(863\) −48840.2 −1.92646 −0.963232 0.268670i \(-0.913416\pi\)
−0.963232 + 0.268670i \(0.913416\pi\)
\(864\) 0 0
\(865\) −20783.2 −0.816936
\(866\) 6694.20 0.262677
\(867\) 0 0
\(868\) 0 0
\(869\) −36848.8 −1.43845
\(870\) 0 0
\(871\) −8113.27 −0.315623
\(872\) −50161.6 −1.94803
\(873\) 0 0
\(874\) 4396.27 0.170144
\(875\) 0 0
\(876\) 0 0
\(877\) −5584.39 −0.215019 −0.107509 0.994204i \(-0.534288\pi\)
−0.107509 + 0.994204i \(0.534288\pi\)
\(878\) 33445.0 1.28555
\(879\) 0 0
\(880\) 8559.43 0.327884
\(881\) −24753.3 −0.946606 −0.473303 0.880900i \(-0.656938\pi\)
−0.473303 + 0.880900i \(0.656938\pi\)
\(882\) 0 0
\(883\) −12368.7 −0.471394 −0.235697 0.971827i \(-0.575737\pi\)
−0.235697 + 0.971827i \(0.575737\pi\)
\(884\) 3221.58 0.122572
\(885\) 0 0
\(886\) −9985.90 −0.378649
\(887\) 738.713 0.0279634 0.0139817 0.999902i \(-0.495549\pi\)
0.0139817 + 0.999902i \(0.495549\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −23655.8 −0.890947
\(891\) 0 0
\(892\) 20609.9 0.773623
\(893\) −58692.1 −2.19939
\(894\) 0 0
\(895\) −17325.6 −0.647073
\(896\) 0 0
\(897\) 0 0
\(898\) −8525.58 −0.316818
\(899\) −21437.9 −0.795320
\(900\) 0 0
\(901\) −19981.2 −0.738814
\(902\) −17039.0 −0.628977
\(903\) 0 0
\(904\) −56020.1 −2.06106
\(905\) −10753.7 −0.394988
\(906\) 0 0
\(907\) −776.937 −0.0284430 −0.0142215 0.999899i \(-0.504527\pi\)
−0.0142215 + 0.999899i \(0.504527\pi\)
\(908\) 1484.21 0.0542459
\(909\) 0 0
\(910\) 0 0
\(911\) 31326.5 1.13929 0.569645 0.821891i \(-0.307081\pi\)
0.569645 + 0.821891i \(0.307081\pi\)
\(912\) 0 0
\(913\) 36540.0 1.32453
\(914\) −19013.0 −0.688067
\(915\) 0 0
\(916\) −14373.0 −0.518446
\(917\) 0 0
\(918\) 0 0
\(919\) 6149.72 0.220741 0.110370 0.993891i \(-0.464796\pi\)
0.110370 + 0.993891i \(0.464796\pi\)
\(920\) −6794.80 −0.243498
\(921\) 0 0
\(922\) −2625.47 −0.0937802
\(923\) 13016.1 0.464170
\(924\) 0 0
\(925\) −6105.68 −0.217031
\(926\) −4245.98 −0.150682
\(927\) 0 0
\(928\) −16995.7 −0.601199
\(929\) −31050.1 −1.09658 −0.548288 0.836289i \(-0.684720\pi\)
−0.548288 + 0.836289i \(0.684720\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9538.74 0.335249
\(933\) 0 0
\(934\) 1993.54 0.0698401
\(935\) 27793.2 0.972124
\(936\) 0 0
\(937\) −22802.9 −0.795023 −0.397512 0.917597i \(-0.630126\pi\)
−0.397512 + 0.917597i \(0.630126\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 28998.6 1.00620
\(941\) −46442.5 −1.60891 −0.804455 0.594014i \(-0.797542\pi\)
−0.804455 + 0.594014i \(0.797542\pi\)
\(942\) 0 0
\(943\) 5369.61 0.185428
\(944\) −14294.0 −0.492828
\(945\) 0 0
\(946\) −10959.1 −0.376651
\(947\) −29207.7 −1.00224 −0.501121 0.865377i \(-0.667079\pi\)
−0.501121 + 0.865377i \(0.667079\pi\)
\(948\) 0 0
\(949\) −3481.61 −0.119092
\(950\) −19399.9 −0.662544
\(951\) 0 0
\(952\) 0 0
\(953\) −6829.15 −0.232128 −0.116064 0.993242i \(-0.537028\pi\)
−0.116064 + 0.993242i \(0.537028\pi\)
\(954\) 0 0
\(955\) −56623.7 −1.91864
\(956\) −20181.6 −0.682762
\(957\) 0 0
\(958\) −12768.1 −0.430604
\(959\) 0 0
\(960\) 0 0
\(961\) 7433.99 0.249538
\(962\) 1963.64 0.0658110
\(963\) 0 0
\(964\) 7924.16 0.264751
\(965\) 25690.4 0.856999
\(966\) 0 0
\(967\) −2583.84 −0.0859263 −0.0429632 0.999077i \(-0.513680\pi\)
−0.0429632 + 0.999077i \(0.513680\pi\)
\(968\) −10713.3 −0.355720
\(969\) 0 0
\(970\) −27935.2 −0.924684
\(971\) −32515.6 −1.07464 −0.537321 0.843378i \(-0.680563\pi\)
−0.537321 + 0.843378i \(0.680563\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 20242.8 0.665935
\(975\) 0 0
\(976\) 13126.9 0.430513
\(977\) 222.043 0.00727102 0.00363551 0.999993i \(-0.498843\pi\)
0.00363551 + 0.999993i \(0.498843\pi\)
\(978\) 0 0
\(979\) −23608.5 −0.770715
\(980\) 0 0
\(981\) 0 0
\(982\) −10407.1 −0.338191
\(983\) 10916.7 0.354210 0.177105 0.984192i \(-0.443327\pi\)
0.177105 + 0.984192i \(0.443327\pi\)
\(984\) 0 0
\(985\) 12043.7 0.389588
\(986\) 14709.3 0.475091
\(987\) 0 0
\(988\) −5530.22 −0.178077
\(989\) 3453.61 0.111040
\(990\) 0 0
\(991\) 8015.59 0.256936 0.128468 0.991714i \(-0.458994\pi\)
0.128468 + 0.991714i \(0.458994\pi\)
\(992\) 29511.6 0.944552
\(993\) 0 0
\(994\) 0 0
\(995\) −15410.7 −0.491006
\(996\) 0 0
\(997\) 21833.7 0.693559 0.346780 0.937947i \(-0.387275\pi\)
0.346780 + 0.937947i \(0.387275\pi\)
\(998\) −28957.9 −0.918484
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.be.1.3 6
3.2 odd 2 inner 1323.4.a.be.1.4 6
7.3 odd 6 189.4.e.e.163.4 yes 12
7.5 odd 6 189.4.e.e.109.4 yes 12
7.6 odd 2 1323.4.a.bd.1.3 6
21.5 even 6 189.4.e.e.109.3 12
21.17 even 6 189.4.e.e.163.3 yes 12
21.20 even 2 1323.4.a.bd.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.e.109.3 12 21.5 even 6
189.4.e.e.109.4 yes 12 7.5 odd 6
189.4.e.e.163.3 yes 12 21.17 even 6
189.4.e.e.163.4 yes 12 7.3 odd 6
1323.4.a.bd.1.3 6 7.6 odd 2
1323.4.a.bd.1.4 6 21.20 even 2
1323.4.a.be.1.3 6 1.1 even 1 trivial
1323.4.a.be.1.4 6 3.2 odd 2 inner