Properties

Label 1323.4.a.ba
Level $1323$
Weight $4$
Character orbit 1323.a
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{5}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1) q^{2} + ( - \beta_{3} + 6) q^{4} + (3 \beta_{2} + 4 \beta_1) q^{5} + ( - 13 \beta_{2} - 5 \beta_1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} - \beta_1) q^{2} + ( - \beta_{3} + 6) q^{4} + (3 \beta_{2} + 4 \beta_1) q^{5} + ( - 13 \beta_{2} - 5 \beta_1) q^{8} + (3 \beta_{3} - 50) q^{10} + (11 \beta_{2} - 6 \beta_1) q^{11} + ( - 6 \beta_{3} + 14) q^{13} + ( - 5 \beta_{3} + 70) q^{16} + (2 \beta_{2} + 4 \beta_1) q^{17} + ( - 4 \beta_{3} - 45) q^{19} + (71 \beta_{2} + 39 \beta_1) q^{20} + (11 \beta_{3} - 18) q^{22} + ( - 43 \beta_{2} - 8 \beta_1) q^{23} + ( - 8 \beta_{3} + 64) q^{25} + ( - 104 \beta_{2} - 56 \beta_1) q^{26} + (28 \beta_{2} + 22 \beta_1) q^{29} + ( - 10 \beta_{3} - 107) q^{31} + ( - 41 \beta_{2} - 65 \beta_1) q^{32} + (2 \beta_{3} - 44) q^{34} + ( - 6 \beta_{3} + 327) q^{37} + ( - 15 \beta_{2} + 17 \beta_1) q^{38} + (47 \beta_{3} - 338) q^{40} + ( - 111 \beta_{2} - 22 \beta_1) q^{41} + ( - 2 \beta_{3} + 28) q^{43} + (95 \beta_{2} + 143 \beta_1) q^{44} + ( - 43 \beta_{3} + 322) q^{46} + (6 \beta_{2} - 114 \beta_1) q^{47} + ( - 184 \beta_{2} - 120 \beta_1) q^{50} + ( - 56 \beta_{3} + 960) q^{52} + (20 \beta_{2} + 148 \beta_1) q^{53} + ( - 50 \beta_{3} - 113) q^{55} + (28 \beta_{3} - 344) q^{58} + (74 \beta_{2} + 94 \beta_1) q^{59} + (8 \beta_{3} + 672) q^{61} + ( - 43 \beta_{2} + 37 \beta_1) q^{62} + ( - \beta_{3} + 206) q^{64} + (360 \beta_{2} + 146 \beta_1) q^{65} + ( - 38 \beta_{3} + 342) q^{67} + (58 \beta_{2} + 26 \beta_1) q^{68} + (61 \beta_{2} - 136 \beta_1) q^{71} + (10 \beta_{3} + 104) q^{73} + ( - 417 \beta_{2} - 369 \beta_1) q^{74} + (17 \beta_{3} + 314) q^{76} + ( - 26 \beta_{3} + 292) q^{79} + (475 \beta_{2} + 355 \beta_1) q^{80} + ( - 111 \beta_{3} + 842) q^{82} + ( - 4 \beta_{2} - 158 \beta_1) q^{83} + ( - 4 \beta_{3} + 178) q^{85} + ( - 58 \beta_{2} - 42 \beta_1) q^{86} + (7 \beta_{3} - 1570) q^{88} + ( - 87 \beta_{2} - 110 \beta_1) q^{89} + ( - 623 \beta_{2} - 559 \beta_1) q^{92} + (6 \beta_{3} + 876) q^{94} + (77 \beta_{2} - 120 \beta_1) q^{95} + ( - 8 \beta_{3} + 152) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 26 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 26 q^{4} - 206 q^{10} + 68 q^{13} + 290 q^{16} - 172 q^{19} - 94 q^{22} + 272 q^{25} - 408 q^{31} - 180 q^{34} + 1320 q^{37} - 1446 q^{40} + 116 q^{43} + 1374 q^{46} + 3952 q^{52} - 352 q^{55} - 1432 q^{58} + 2672 q^{61} + 826 q^{64} + 1444 q^{67} + 396 q^{73} + 1222 q^{76} + 1220 q^{79} + 3590 q^{82} + 720 q^{85} - 6294 q^{88} + 3492 q^{94} + 624 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 5\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 11\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{2} - 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 14 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{2} + 11\beta_1 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.684742
2.92081
−2.92081
0.684742
−5.15688 0 18.5934 17.0220 0 0 −54.6288 0 −87.7802
1.2 −1.55133 0 −5.59339 9.81086 0 0 21.0878 0 −15.2198
1.3 1.55133 0 −5.59339 −9.81086 0 0 −21.0878 0 −15.2198
1.4 5.15688 0 18.5934 −17.0220 0 0 54.6288 0 −87.7802
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.4.a.ba 4
3.b odd 2 1 inner 1323.4.a.ba 4
7.b odd 2 1 189.4.a.l 4
21.c even 2 1 189.4.a.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.4.a.l 4 7.b odd 2 1
189.4.a.l 4 21.c even 2 1
1323.4.a.ba 4 1.a even 1 1 trivial
1323.4.a.ba 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2}^{4} - 29T_{2}^{2} + 64 \) Copy content Toggle raw display
\( T_{5}^{4} - 386T_{5}^{2} + 27889 \) Copy content Toggle raw display
\( T_{13}^{2} - 34T_{13} - 4976 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 29T^{2} + 64 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 386 T^{2} + 27889 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 5906 T^{2} + 4592449 \) Copy content Toggle raw display
$13$ \( (T^{2} - 34 T - 4976)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 180)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 86 T - 491)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 40986 T^{2} + 363016809 \) Copy content Toggle raw display
$29$ \( T^{4} - 18404 T^{2} + 2849344 \) Copy content Toggle raw display
$31$ \( (T^{2} + 204 T - 4221)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 660 T + 103635)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 15513948025 \) Copy content Toggle raw display
$43$ \( (T^{2} - 58 T + 256)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 8950673664 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 43477254144 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 8087045184 \) Copy content Toggle raw display
$61$ \( (T^{2} - 1336 T + 436864)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 722 T - 80864)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 848826 T^{2} + 68112009 \) Copy content Toggle raw display
$73$ \( (T^{2} - 198 T - 4824)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 610 T - 5840)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 43147598400 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 15083032969 \) Copy content Toggle raw display
$97$ \( (T^{2} - 312 T + 14976)^{2} \) Copy content Toggle raw display
show more
show less