Properties

Label 1323.2.x
Level $1323$
Weight $2$
Character orbit 1323.x
Rep. character $\chi_{1323}(214,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $696$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.x (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 189 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).

Total New Old
Modular forms 1056 744 312
Cusp forms 960 696 264
Eisenstein series 96 48 48

Trace form

\( 696 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 3 q^{5} + 18 q^{6} - 12 q^{8} - 9 q^{9} + 6 q^{10} - 9 q^{11} + 3 q^{12} + 12 q^{13} - 48 q^{15} + 9 q^{16} + 54 q^{17} + 3 q^{18} + 6 q^{19} + 18 q^{20} - 24 q^{22}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)