Defining parameters
Level: | \( N \) | \(=\) | \( 1323 = 3^{3} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1323.w (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Sturm bound: | \(336\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1056 | 768 | 288 |
Cusp forms | 960 | 708 | 252 |
Eisenstein series | 96 | 60 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1323, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)