Properties

Label 1323.2.o.e.440.14
Level $1323$
Weight $2$
Character 1323.440
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 440.14
Character \(\chi\) \(=\) 1323.440
Dual form 1323.2.o.e.881.14

$q$-expansion

\(f(q)\) \(=\) \(q+(0.367369 + 0.212101i) q^{2} +(-0.910027 - 1.57621i) q^{4} +(-1.80381 - 3.12430i) q^{5} -1.62047i q^{8} +O(q^{10})\) \(q+(0.367369 + 0.212101i) q^{2} +(-0.910027 - 1.57621i) q^{4} +(-1.80381 - 3.12430i) q^{5} -1.62047i q^{8} -1.53036i q^{10} +(-3.20952 - 1.85302i) q^{11} +(5.23479 - 3.02231i) q^{13} +(-1.47635 + 2.55711i) q^{16} +1.06422 q^{17} -3.65191i q^{19} +(-3.28304 + 5.68639i) q^{20} +(-0.786052 - 1.36148i) q^{22} +(-0.314574 + 0.181620i) q^{23} +(-4.00749 + 6.94117i) q^{25} +2.56413 q^{26} +(0.857560 + 0.495112i) q^{29} +(0.939786 - 0.542586i) q^{31} +(-3.89147 + 2.24674i) q^{32} +(0.390960 + 0.225721i) q^{34} -8.00373 q^{37} +(0.774573 - 1.34160i) q^{38} +(-5.06283 + 2.92303i) q^{40} +(2.09005 + 3.62007i) q^{41} +(-1.89758 + 3.28670i) q^{43} +6.74518i q^{44} -0.154086 q^{46} +(-2.83849 + 4.91640i) q^{47} +(-2.94445 + 1.69998i) q^{50} +(-9.52760 - 5.50076i) q^{52} -4.53177i q^{53} +13.3700i q^{55} +(0.210027 + 0.363778i) q^{58} +(-5.62746 - 9.74705i) q^{59} +(0.0238258 + 0.0137558i) q^{61} +0.460331 q^{62} +3.99926 q^{64} +(-18.8852 - 10.9034i) q^{65} +(4.86489 + 8.42624i) q^{67} +(-0.968464 - 1.67743i) q^{68} +5.55775i q^{71} +2.25814i q^{73} +(-2.94032 - 1.69759i) q^{74} +(-5.75619 + 3.32334i) q^{76} +(-3.26604 + 5.65694i) q^{79} +10.6522 q^{80} +1.77320i q^{82} +(-1.52977 + 2.64964i) q^{83} +(-1.91965 - 3.32492i) q^{85} +(-1.39422 + 0.804954i) q^{86} +(-3.00276 + 5.20093i) q^{88} +14.9590 q^{89} +(0.572542 + 0.330557i) q^{92} +(-2.08554 + 1.20409i) q^{94} +(-11.4097 + 6.58737i) q^{95} +(1.67018 + 0.964277i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{4} + O(q^{10}) \) \( 48q + 24q^{4} + 24q^{11} - 24q^{16} + 48q^{23} - 24q^{25} - 120q^{32} - 48q^{50} - 48q^{64} - 120q^{65} + 168q^{74} - 24q^{79} - 24q^{85} - 24q^{86} + 144q^{92} - 96q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.367369 + 0.212101i 0.259769 + 0.149978i 0.624229 0.781241i \(-0.285413\pi\)
−0.364460 + 0.931219i \(0.618746\pi\)
\(3\) 0 0
\(4\) −0.910027 1.57621i −0.455013 0.788106i
\(5\) −1.80381 3.12430i −0.806690 1.39723i −0.915144 0.403126i \(-0.867923\pi\)
0.108454 0.994101i \(-0.465410\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.62047i 0.572923i
\(9\) 0 0
\(10\) 1.53036i 0.483942i
\(11\) −3.20952 1.85302i −0.967706 0.558705i −0.0691700 0.997605i \(-0.522035\pi\)
−0.898536 + 0.438899i \(0.855368\pi\)
\(12\) 0 0
\(13\) 5.23479 3.02231i 1.45187 0.838238i 0.453283 0.891367i \(-0.350253\pi\)
0.998588 + 0.0531292i \(0.0169195\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.47635 + 2.55711i −0.369088 + 0.639279i
\(17\) 1.06422 0.258110 0.129055 0.991637i \(-0.458806\pi\)
0.129055 + 0.991637i \(0.458806\pi\)
\(18\) 0 0
\(19\) 3.65191i 0.837806i −0.908031 0.418903i \(-0.862415\pi\)
0.908031 0.418903i \(-0.137585\pi\)
\(20\) −3.28304 + 5.68639i −0.734109 + 1.27151i
\(21\) 0 0
\(22\) −0.786052 1.36148i −0.167587 0.290269i
\(23\) −0.314574 + 0.181620i −0.0655933 + 0.0378703i −0.532438 0.846469i \(-0.678724\pi\)
0.466845 + 0.884339i \(0.345391\pi\)
\(24\) 0 0
\(25\) −4.00749 + 6.94117i −0.801497 + 1.38823i
\(26\) 2.56413 0.502868
\(27\) 0 0
\(28\) 0 0
\(29\) 0.857560 + 0.495112i 0.159245 + 0.0919401i 0.577505 0.816387i \(-0.304027\pi\)
−0.418260 + 0.908327i \(0.637360\pi\)
\(30\) 0 0
\(31\) 0.939786 0.542586i 0.168791 0.0974513i −0.413225 0.910629i \(-0.635598\pi\)
0.582015 + 0.813178i \(0.302264\pi\)
\(32\) −3.89147 + 2.24674i −0.687921 + 0.397171i
\(33\) 0 0
\(34\) 0.390960 + 0.225721i 0.0670490 + 0.0387108i
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00373 −1.31580 −0.657902 0.753103i \(-0.728556\pi\)
−0.657902 + 0.753103i \(0.728556\pi\)
\(38\) 0.774573 1.34160i 0.125652 0.217636i
\(39\) 0 0
\(40\) −5.06283 + 2.92303i −0.800504 + 0.462171i
\(41\) 2.09005 + 3.62007i 0.326411 + 0.565360i 0.981797 0.189934i \(-0.0608275\pi\)
−0.655386 + 0.755294i \(0.727494\pi\)
\(42\) 0 0
\(43\) −1.89758 + 3.28670i −0.289378 + 0.501217i −0.973661 0.227999i \(-0.926782\pi\)
0.684284 + 0.729216i \(0.260115\pi\)
\(44\) 6.74518i 1.01687i
\(45\) 0 0
\(46\) −0.154086 −0.0227188
\(47\) −2.83849 + 4.91640i −0.414036 + 0.717131i −0.995327 0.0965648i \(-0.969215\pi\)
0.581291 + 0.813696i \(0.302548\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.94445 + 1.69998i −0.416408 + 0.240413i
\(51\) 0 0
\(52\) −9.52760 5.50076i −1.32124 0.762819i
\(53\) 4.53177i 0.622487i −0.950330 0.311243i \(-0.899255\pi\)
0.950330 0.311243i \(-0.100745\pi\)
\(54\) 0 0
\(55\) 13.3700i 1.80281i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.210027 + 0.363778i 0.0275779 + 0.0477664i
\(59\) −5.62746 9.74705i −0.732633 1.26896i −0.955754 0.294167i \(-0.904958\pi\)
0.223121 0.974791i \(-0.428376\pi\)
\(60\) 0 0
\(61\) 0.0238258 + 0.0137558i 0.00305058 + 0.00176126i 0.501525 0.865143i \(-0.332773\pi\)
−0.498474 + 0.866905i \(0.666106\pi\)
\(62\) 0.460331 0.0584621
\(63\) 0 0
\(64\) 3.99926 0.499908
\(65\) −18.8852 10.9034i −2.34242 1.35240i
\(66\) 0 0
\(67\) 4.86489 + 8.42624i 0.594341 + 1.02943i 0.993640 + 0.112608i \(0.0359204\pi\)
−0.399298 + 0.916821i \(0.630746\pi\)
\(68\) −0.968464 1.67743i −0.117444 0.203418i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.55775i 0.659584i 0.944054 + 0.329792i \(0.106979\pi\)
−0.944054 + 0.329792i \(0.893021\pi\)
\(72\) 0 0
\(73\) 2.25814i 0.264296i 0.991230 + 0.132148i \(0.0421874\pi\)
−0.991230 + 0.132148i \(0.957813\pi\)
\(74\) −2.94032 1.69759i −0.341805 0.197341i
\(75\) 0 0
\(76\) −5.75619 + 3.32334i −0.660280 + 0.381213i
\(77\) 0 0
\(78\) 0 0
\(79\) −3.26604 + 5.65694i −0.367458 + 0.636456i −0.989167 0.146792i \(-0.953105\pi\)
0.621710 + 0.783248i \(0.286438\pi\)
\(80\) 10.6522 1.19096
\(81\) 0 0
\(82\) 1.77320i 0.195817i
\(83\) −1.52977 + 2.64964i −0.167914 + 0.290836i −0.937686 0.347483i \(-0.887036\pi\)
0.769772 + 0.638319i \(0.220370\pi\)
\(84\) 0 0
\(85\) −1.91965 3.32492i −0.208215 0.360639i
\(86\) −1.39422 + 0.804954i −0.150343 + 0.0868004i
\(87\) 0 0
\(88\) −3.00276 + 5.20093i −0.320095 + 0.554421i
\(89\) 14.9590 1.58565 0.792827 0.609446i \(-0.208608\pi\)
0.792827 + 0.609446i \(0.208608\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.572542 + 0.330557i 0.0596916 + 0.0344630i
\(93\) 0 0
\(94\) −2.08554 + 1.20409i −0.215107 + 0.124192i
\(95\) −11.4097 + 6.58737i −1.17061 + 0.675850i
\(96\) 0 0
\(97\) 1.67018 + 0.964277i 0.169581 + 0.0979075i 0.582388 0.812911i \(-0.302118\pi\)
−0.412807 + 0.910818i \(0.635452\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 14.5877 1.45877
\(101\) 3.21811 5.57394i 0.320214 0.554627i −0.660318 0.750986i \(-0.729578\pi\)
0.980532 + 0.196359i \(0.0629117\pi\)
\(102\) 0 0
\(103\) 8.41917 4.86081i 0.829565 0.478950i −0.0241385 0.999709i \(-0.507684\pi\)
0.853704 + 0.520759i \(0.174351\pi\)
\(104\) −4.89756 8.48283i −0.480246 0.831810i
\(105\) 0 0
\(106\) 0.961191 1.66483i 0.0933591 0.161703i
\(107\) 3.96223i 0.383043i −0.981488 0.191522i \(-0.938658\pi\)
0.981488 0.191522i \(-0.0613422\pi\)
\(108\) 0 0
\(109\) −17.3253 −1.65946 −0.829729 0.558166i \(-0.811505\pi\)
−0.829729 + 0.558166i \(0.811505\pi\)
\(110\) −2.83578 + 4.91172i −0.270381 + 0.468314i
\(111\) 0 0
\(112\) 0 0
\(113\) 8.50273 4.90905i 0.799869 0.461805i −0.0435562 0.999051i \(-0.513869\pi\)
0.843425 + 0.537246i \(0.180535\pi\)
\(114\) 0 0
\(115\) 1.13487 + 0.655216i 0.105827 + 0.0610992i
\(116\) 1.80226i 0.167336i
\(117\) 0 0
\(118\) 4.77435i 0.439515i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.36734 + 2.36830i 0.124303 + 0.215300i
\(122\) 0.00583524 + 0.0101069i 0.000528298 + 0.000915039i
\(123\) 0 0
\(124\) −1.71046 0.987535i −0.153604 0.0886833i
\(125\) 10.8769 0.972858
\(126\) 0 0
\(127\) −11.7328 −1.04112 −0.520560 0.853825i \(-0.674277\pi\)
−0.520560 + 0.853825i \(0.674277\pi\)
\(128\) 9.25214 + 5.34173i 0.817782 + 0.472146i
\(129\) 0 0
\(130\) −4.62522 8.01111i −0.405659 0.702621i
\(131\) −10.5013 18.1888i −0.917502 1.58916i −0.803197 0.595714i \(-0.796869\pi\)
−0.114305 0.993446i \(-0.536464\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.12738i 0.356552i
\(135\) 0 0
\(136\) 1.72453i 0.147877i
\(137\) 9.76185 + 5.63600i 0.834011 + 0.481516i 0.855224 0.518259i \(-0.173420\pi\)
−0.0212131 + 0.999775i \(0.506753\pi\)
\(138\) 0 0
\(139\) 2.80312 1.61838i 0.237758 0.137269i −0.376388 0.926462i \(-0.622834\pi\)
0.614146 + 0.789193i \(0.289501\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.17880 + 2.04175i −0.0989229 + 0.171340i
\(143\) −22.4015 −1.87331
\(144\) 0 0
\(145\) 3.57236i 0.296668i
\(146\) −0.478954 + 0.829572i −0.0396385 + 0.0686559i
\(147\) 0 0
\(148\) 7.28360 + 12.6156i 0.598709 + 1.03699i
\(149\) 15.5066 8.95277i 1.27035 0.733439i 0.295299 0.955405i \(-0.404581\pi\)
0.975055 + 0.221966i \(0.0712472\pi\)
\(150\) 0 0
\(151\) 9.29945 16.1071i 0.756778 1.31078i −0.187707 0.982225i \(-0.560106\pi\)
0.944485 0.328553i \(-0.106561\pi\)
\(152\) −5.91782 −0.479998
\(153\) 0 0
\(154\) 0 0
\(155\) −3.39040 1.95745i −0.272323 0.157226i
\(156\) 0 0
\(157\) −6.64220 + 3.83488i −0.530106 + 0.306057i −0.741059 0.671439i \(-0.765676\pi\)
0.210954 + 0.977496i \(0.432343\pi\)
\(158\) −2.39968 + 1.38546i −0.190908 + 0.110221i
\(159\) 0 0
\(160\) 14.0390 + 8.10540i 1.10988 + 0.640788i
\(161\) 0 0
\(162\) 0 0
\(163\) −3.99313 −0.312766 −0.156383 0.987696i \(-0.549983\pi\)
−0.156383 + 0.987696i \(0.549983\pi\)
\(164\) 3.80400 6.58872i 0.297042 0.514492i
\(165\) 0 0
\(166\) −1.12398 + 0.648930i −0.0872377 + 0.0503667i
\(167\) −4.26254 7.38293i −0.329845 0.571308i 0.652636 0.757672i \(-0.273663\pi\)
−0.982481 + 0.186363i \(0.940330\pi\)
\(168\) 0 0
\(169\) 11.7687 20.3840i 0.905285 1.56800i
\(170\) 1.62863i 0.124910i
\(171\) 0 0
\(172\) 6.90738 0.526683
\(173\) 0.217445 0.376626i 0.0165320 0.0286343i −0.857641 0.514249i \(-0.828071\pi\)
0.874173 + 0.485615i \(0.161404\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.47675 5.47140i 0.714337 0.412423i
\(177\) 0 0
\(178\) 5.49549 + 3.17282i 0.411904 + 0.237813i
\(179\) 17.4172i 1.30183i −0.759153 0.650913i \(-0.774386\pi\)
0.759153 0.650913i \(-0.225614\pi\)
\(180\) 0 0
\(181\) 17.7421i 1.31876i −0.751809 0.659381i \(-0.770818\pi\)
0.751809 0.659381i \(-0.229182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.294309 + 0.509759i 0.0216968 + 0.0375799i
\(185\) 14.4372 + 25.0060i 1.06145 + 1.83848i
\(186\) 0 0
\(187\) −3.41562 1.97201i −0.249775 0.144208i
\(188\) 10.3324 0.753567
\(189\) 0 0
\(190\) −5.58874 −0.405450
\(191\) −0.215525 0.124433i −0.0155948 0.00900367i 0.492182 0.870492i \(-0.336199\pi\)
−0.507777 + 0.861488i \(0.669533\pi\)
\(192\) 0 0
\(193\) 4.14876 + 7.18586i 0.298634 + 0.517250i 0.975824 0.218559i \(-0.0701356\pi\)
−0.677190 + 0.735809i \(0.736802\pi\)
\(194\) 0.409047 + 0.708491i 0.0293679 + 0.0508667i
\(195\) 0 0
\(196\) 0 0
\(197\) 22.5819i 1.60889i −0.594026 0.804446i \(-0.702462\pi\)
0.594026 0.804446i \(-0.297538\pi\)
\(198\) 0 0
\(199\) 6.12003i 0.433837i −0.976190 0.216919i \(-0.930399\pi\)
0.976190 0.216919i \(-0.0696007\pi\)
\(200\) 11.2480 + 6.49401i 0.795351 + 0.459196i
\(201\) 0 0
\(202\) 2.36447 1.36513i 0.166364 0.0960500i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.54011 13.0599i 0.526624 0.912140i
\(206\) 4.12392 0.287327
\(207\) 0 0
\(208\) 17.8479i 1.23753i
\(209\) −6.76705 + 11.7209i −0.468087 + 0.810750i
\(210\) 0 0
\(211\) 1.95472 + 3.38567i 0.134568 + 0.233079i 0.925432 0.378913i \(-0.123702\pi\)
−0.790864 + 0.611992i \(0.790369\pi\)
\(212\) −7.14303 + 4.12403i −0.490586 + 0.283240i
\(213\) 0 0
\(214\) 0.840392 1.45560i 0.0574480 0.0995029i
\(215\) 13.6915 0.933752
\(216\) 0 0
\(217\) 0 0
\(218\) −6.36476 3.67470i −0.431076 0.248882i
\(219\) 0 0
\(220\) 21.0739 12.1670i 1.42080 0.820302i
\(221\) 5.57095 3.21639i 0.374742 0.216358i
\(222\) 0 0
\(223\) −22.3165 12.8845i −1.49443 0.862807i −0.494446 0.869209i \(-0.664629\pi\)
−0.999980 + 0.00640186i \(0.997962\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4.16485 0.277042
\(227\) −12.3051 + 21.3130i −0.816718 + 1.41460i 0.0913703 + 0.995817i \(0.470875\pi\)
−0.908088 + 0.418779i \(0.862458\pi\)
\(228\) 0 0
\(229\) −3.94267 + 2.27630i −0.260539 + 0.150422i −0.624580 0.780961i \(-0.714730\pi\)
0.364042 + 0.931383i \(0.381397\pi\)
\(230\) 0.277943 + 0.481412i 0.0183270 + 0.0317433i
\(231\) 0 0
\(232\) 0.802315 1.38965i 0.0526746 0.0912351i
\(233\) 26.1353i 1.71218i 0.516826 + 0.856090i \(0.327113\pi\)
−0.516826 + 0.856090i \(0.672887\pi\)
\(234\) 0 0
\(235\) 20.4804 1.33599
\(236\) −10.2423 + 17.7402i −0.666716 + 1.15479i
\(237\) 0 0
\(238\) 0 0
\(239\) −14.8933 + 8.59865i −0.963367 + 0.556200i −0.897208 0.441609i \(-0.854408\pi\)
−0.0661594 + 0.997809i \(0.521075\pi\)
\(240\) 0 0
\(241\) 14.4927 + 8.36738i 0.933559 + 0.538991i 0.887935 0.459968i \(-0.152139\pi\)
0.0456237 + 0.998959i \(0.485472\pi\)
\(242\) 1.16005i 0.0745710i
\(243\) 0 0
\(244\) 0.0500727i 0.00320558i
\(245\) 0 0
\(246\) 0 0
\(247\) −11.0372 19.1170i −0.702281 1.21639i
\(248\) −0.879245 1.52290i −0.0558321 0.0967040i
\(249\) 0 0
\(250\) 3.99583 + 2.30699i 0.252719 + 0.145907i
\(251\) −5.33468 −0.336722 −0.168361 0.985725i \(-0.553847\pi\)
−0.168361 + 0.985725i \(0.553847\pi\)
\(252\) 0 0
\(253\) 1.34618 0.0846334
\(254\) −4.31028 2.48854i −0.270451 0.156145i
\(255\) 0 0
\(256\) −1.73330 3.00216i −0.108331 0.187635i
\(257\) 12.3100 + 21.3216i 0.767878 + 1.33000i 0.938712 + 0.344703i \(0.112021\pi\)
−0.170834 + 0.985300i \(0.554646\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 39.6894i 2.46143i
\(261\) 0 0
\(262\) 8.90932i 0.550419i
\(263\) 26.6568 + 15.3903i 1.64373 + 0.949006i 0.979492 + 0.201482i \(0.0645757\pi\)
0.664235 + 0.747524i \(0.268758\pi\)
\(264\) 0 0
\(265\) −14.1586 + 8.17447i −0.869756 + 0.502154i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.85436 15.3362i 0.540866 0.936808i
\(269\) −13.9809 −0.852432 −0.426216 0.904622i \(-0.640154\pi\)
−0.426216 + 0.904622i \(0.640154\pi\)
\(270\) 0 0
\(271\) 6.46262i 0.392576i 0.980546 + 0.196288i \(0.0628888\pi\)
−0.980546 + 0.196288i \(0.937111\pi\)
\(272\) −1.57115 + 2.72132i −0.0952652 + 0.165004i
\(273\) 0 0
\(274\) 2.39080 + 4.14099i 0.144433 + 0.250166i
\(275\) 25.7242 14.8519i 1.55123 0.895601i
\(276\) 0 0
\(277\) 9.55984 16.5581i 0.574395 0.994881i −0.421712 0.906730i \(-0.638571\pi\)
0.996107 0.0881515i \(-0.0280960\pi\)
\(278\) 1.37304 0.0823494
\(279\) 0 0
\(280\) 0 0
\(281\) −20.0611 11.5823i −1.19674 0.690940i −0.236915 0.971530i \(-0.576136\pi\)
−0.959828 + 0.280591i \(0.909470\pi\)
\(282\) 0 0
\(283\) −13.8239 + 7.98126i −0.821748 + 0.474436i −0.851019 0.525135i \(-0.824015\pi\)
0.0292708 + 0.999572i \(0.490681\pi\)
\(284\) 8.76020 5.05770i 0.519822 0.300120i
\(285\) 0 0
\(286\) −8.22963 4.75138i −0.486628 0.280955i
\(287\) 0 0
\(288\) 0 0
\(289\) −15.8674 −0.933379
\(290\) 0.757700 1.31237i 0.0444937 0.0770653i
\(291\) 0 0
\(292\) 3.55931 2.05497i 0.208293 0.120258i
\(293\) −3.34849 5.79975i −0.195621 0.338825i 0.751483 0.659752i \(-0.229339\pi\)
−0.947104 + 0.320927i \(0.896005\pi\)
\(294\) 0 0
\(295\) −20.3018 + 35.1637i −1.18202 + 2.04731i
\(296\) 12.9698i 0.753855i
\(297\) 0 0
\(298\) 7.59555 0.439998
\(299\) −1.09782 + 1.90148i −0.0634886 + 0.109966i
\(300\) 0 0
\(301\) 0 0
\(302\) 6.83266 3.94484i 0.393175 0.227000i
\(303\) 0 0
\(304\) 9.33836 + 5.39150i 0.535591 + 0.309224i
\(305\) 0.0992519i 0.00568315i
\(306\) 0 0
\(307\) 8.59068i 0.490296i −0.969486 0.245148i \(-0.921163\pi\)
0.969486 0.245148i \(-0.0788365\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.830352 1.43821i −0.0471608 0.0816849i
\(311\) 2.11723 + 3.66714i 0.120057 + 0.207945i 0.919790 0.392411i \(-0.128359\pi\)
−0.799733 + 0.600356i \(0.795026\pi\)
\(312\) 0 0
\(313\) −3.10288 1.79145i −0.175385 0.101259i 0.409737 0.912204i \(-0.365620\pi\)
−0.585123 + 0.810945i \(0.698954\pi\)
\(314\) −3.25352 −0.183607
\(315\) 0 0
\(316\) 11.8887 0.668793
\(317\) 7.69566 + 4.44309i 0.432231 + 0.249549i 0.700297 0.713852i \(-0.253051\pi\)
−0.268065 + 0.963401i \(0.586384\pi\)
\(318\) 0 0
\(319\) −1.83490 3.17814i −0.102735 0.177942i
\(320\) −7.21392 12.4949i −0.403271 0.698485i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.88642i 0.216246i
\(324\) 0 0
\(325\) 48.4474i 2.68738i
\(326\) −1.46695 0.846946i −0.0812470 0.0469080i
\(327\) 0 0
\(328\) 5.86622 3.38686i 0.323908 0.187008i
\(329\) 0 0
\(330\) 0 0
\(331\) −7.89126 + 13.6681i −0.433743 + 0.751265i −0.997192 0.0748861i \(-0.976141\pi\)
0.563449 + 0.826151i \(0.309474\pi\)
\(332\) 5.56852 0.305612
\(333\) 0 0
\(334\) 3.61635i 0.197878i
\(335\) 17.5507 30.3987i 0.958898 1.66086i
\(336\) 0 0
\(337\) −6.79951 11.7771i −0.370393 0.641539i 0.619233 0.785207i \(-0.287444\pi\)
−0.989626 + 0.143668i \(0.954110\pi\)
\(338\) 8.64691 4.99230i 0.470330 0.271545i
\(339\) 0 0
\(340\) −3.49386 + 6.05154i −0.189481 + 0.328191i
\(341\) −4.02168 −0.217786
\(342\) 0 0
\(343\) 0 0
\(344\) 5.32600 + 3.07497i 0.287159 + 0.165791i
\(345\) 0 0
\(346\) 0.159765 0.0922404i 0.00858902 0.00495887i
\(347\) −12.0065 + 6.93198i −0.644545 + 0.372128i −0.786363 0.617765i \(-0.788038\pi\)
0.141818 + 0.989893i \(0.454705\pi\)
\(348\) 0 0
\(349\) −1.55204 0.896072i −0.0830789 0.0479656i 0.457885 0.889011i \(-0.348607\pi\)
−0.540964 + 0.841046i \(0.681940\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 16.6530 0.887607
\(353\) 3.88049 6.72121i 0.206538 0.357734i −0.744084 0.668086i \(-0.767114\pi\)
0.950622 + 0.310352i \(0.100447\pi\)
\(354\) 0 0
\(355\) 17.3641 10.0252i 0.921589 0.532080i
\(356\) −13.6131 23.5786i −0.721494 1.24966i
\(357\) 0 0
\(358\) 3.69421 6.39855i 0.195245 0.338174i
\(359\) 22.5810i 1.19178i −0.803066 0.595890i \(-0.796799\pi\)
0.803066 0.595890i \(-0.203201\pi\)
\(360\) 0 0
\(361\) 5.66354 0.298081
\(362\) 3.76312 6.51791i 0.197785 0.342574i
\(363\) 0 0
\(364\) 0 0
\(365\) 7.05511 4.07327i 0.369281 0.213205i
\(366\) 0 0
\(367\) −13.5263 7.80942i −0.706068 0.407648i 0.103536 0.994626i \(-0.466984\pi\)
−0.809603 + 0.586977i \(0.800318\pi\)
\(368\) 1.07254i 0.0559098i
\(369\) 0 0
\(370\) 12.2486i 0.636773i
\(371\) 0 0
\(372\) 0 0
\(373\) 12.6229 + 21.8635i 0.653589 + 1.13205i 0.982246 + 0.187600i \(0.0600709\pi\)
−0.328656 + 0.944450i \(0.606596\pi\)
\(374\) −0.836528 1.44891i −0.0432558 0.0749213i
\(375\) 0 0
\(376\) 7.96689 + 4.59969i 0.410861 + 0.237211i
\(377\) 5.98553 0.308271
\(378\) 0 0
\(379\) 14.7721 0.758792 0.379396 0.925234i \(-0.376132\pi\)
0.379396 + 0.925234i \(0.376132\pi\)
\(380\) 20.7662 + 11.9894i 1.06528 + 0.615041i
\(381\) 0 0
\(382\) −0.0527847 0.0914258i −0.00270070 0.00467775i
\(383\) −5.29503 9.17127i −0.270564 0.468630i 0.698443 0.715666i \(-0.253877\pi\)
−0.969006 + 0.247036i \(0.920543\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.51982i 0.179154i
\(387\) 0 0
\(388\) 3.51007i 0.178197i
\(389\) 11.7642 + 6.79207i 0.596469 + 0.344371i 0.767651 0.640868i \(-0.221425\pi\)
−0.171182 + 0.985239i \(0.554759\pi\)
\(390\) 0 0
\(391\) −0.334775 + 0.193282i −0.0169303 + 0.00977471i
\(392\) 0 0
\(393\) 0 0
\(394\) 4.78963 8.29588i 0.241298 0.417940i
\(395\) 23.5653 1.18570
\(396\) 0 0
\(397\) 38.9108i 1.95287i −0.215801 0.976437i \(-0.569236\pi\)
0.215801 0.976437i \(-0.430764\pi\)
\(398\) 1.29806 2.24831i 0.0650660 0.112698i
\(399\) 0 0
\(400\) −11.8329 20.4952i −0.591645 1.02476i
\(401\) −24.8956 + 14.3735i −1.24323 + 0.717778i −0.969750 0.244101i \(-0.921507\pi\)
−0.273477 + 0.961878i \(0.588174\pi\)
\(402\) 0 0
\(403\) 3.27972 5.68065i 0.163375 0.282973i
\(404\) −11.7143 −0.582807
\(405\) 0 0
\(406\) 0 0
\(407\) 25.6881 + 14.8310i 1.27331 + 0.735147i
\(408\) 0 0
\(409\) 16.3485 9.43879i 0.808379 0.466718i −0.0380133 0.999277i \(-0.512103\pi\)
0.846393 + 0.532559i \(0.178770\pi\)
\(410\) 5.54001 3.19852i 0.273601 0.157964i
\(411\) 0 0
\(412\) −15.3233 8.84693i −0.754927 0.435857i
\(413\) 0 0
\(414\) 0 0
\(415\) 11.0377 0.541818
\(416\) −13.5807 + 23.5224i −0.665848 + 1.15328i
\(417\) 0 0
\(418\) −4.97201 + 2.87059i −0.243189 + 0.140405i
\(419\) −3.31895 5.74860i −0.162142 0.280837i 0.773495 0.633802i \(-0.218507\pi\)
−0.935636 + 0.352965i \(0.885173\pi\)
\(420\) 0 0
\(421\) −9.70574 + 16.8108i −0.473029 + 0.819310i −0.999523 0.0308686i \(-0.990173\pi\)
0.526495 + 0.850178i \(0.323506\pi\)
\(422\) 1.65839i 0.0807290i
\(423\) 0 0
\(424\) −7.34360 −0.356637
\(425\) −4.26483 + 7.38690i −0.206874 + 0.358317i
\(426\) 0 0
\(427\) 0 0
\(428\) −6.24532 + 3.60574i −0.301879 + 0.174290i
\(429\) 0 0
\(430\) 5.02983 + 2.90397i 0.242560 + 0.140042i
\(431\) 24.3185i 1.17138i 0.810535 + 0.585690i \(0.199176\pi\)
−0.810535 + 0.585690i \(0.800824\pi\)
\(432\) 0 0
\(433\) 3.32148i 0.159620i −0.996810 0.0798101i \(-0.974569\pi\)
0.996810 0.0798101i \(-0.0254314\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 15.7664 + 27.3083i 0.755076 + 1.30783i
\(437\) 0.663259 + 1.14880i 0.0317280 + 0.0549544i
\(438\) 0 0
\(439\) 23.3126 + 13.4595i 1.11265 + 0.642389i 0.939515 0.342509i \(-0.111277\pi\)
0.173136 + 0.984898i \(0.444610\pi\)
\(440\) 21.6657 1.03287
\(441\) 0 0
\(442\) 2.72879 0.129795
\(443\) −22.8837 13.2119i −1.08724 0.627717i −0.154397 0.988009i \(-0.549344\pi\)
−0.932839 + 0.360292i \(0.882677\pi\)
\(444\) 0 0
\(445\) −26.9833 46.7365i −1.27913 2.21552i
\(446\) −5.46560 9.46670i −0.258804 0.448261i
\(447\) 0 0
\(448\) 0 0
\(449\) 19.6314i 0.926464i −0.886237 0.463232i \(-0.846690\pi\)
0.886237 0.463232i \(-0.153310\pi\)
\(450\) 0 0
\(451\) 15.4916i 0.729470i
\(452\) −15.4754 8.93474i −0.727902 0.420255i
\(453\) 0 0
\(454\) −9.04102 + 5.21983i −0.424316 + 0.244979i
\(455\) 0 0
\(456\) 0 0
\(457\) 12.6244 21.8660i 0.590543 1.02285i −0.403617 0.914928i \(-0.632247\pi\)
0.994159 0.107922i \(-0.0344196\pi\)
\(458\) −1.93122 −0.0902399
\(459\) 0 0
\(460\) 2.38505i 0.111204i
\(461\) 7.23618 12.5334i 0.337023 0.583740i −0.646849 0.762618i \(-0.723913\pi\)
0.983871 + 0.178878i \(0.0572468\pi\)
\(462\) 0 0
\(463\) −10.0168 17.3495i −0.465519 0.806302i 0.533706 0.845670i \(-0.320799\pi\)
−0.999225 + 0.0393681i \(0.987466\pi\)
\(464\) −2.53212 + 1.46192i −0.117551 + 0.0678679i
\(465\) 0 0
\(466\) −5.54331 + 9.60130i −0.256789 + 0.444772i
\(467\) 23.5630 1.09037 0.545183 0.838317i \(-0.316460\pi\)
0.545183 + 0.838317i \(0.316460\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 7.52386 + 4.34390i 0.347050 + 0.200369i
\(471\) 0 0
\(472\) −15.7948 + 9.11914i −0.727015 + 0.419742i
\(473\) 12.1806 7.03248i 0.560065 0.323354i
\(474\) 0 0
\(475\) 25.3485 + 14.6350i 1.16307 + 0.671499i
\(476\) 0 0
\(477\) 0 0
\(478\) −7.29511 −0.333671
\(479\) 12.4674 21.5941i 0.569648 0.986660i −0.426952 0.904274i \(-0.640413\pi\)
0.996601 0.0823855i \(-0.0262539\pi\)
\(480\) 0 0
\(481\) −41.8978 + 24.1897i −1.91038 + 1.10296i
\(482\) 3.54945 + 6.14783i 0.161673 + 0.280026i
\(483\) 0 0
\(484\) 2.48863 4.31043i 0.113119 0.195929i
\(485\) 6.95750i 0.315924i
\(486\) 0 0
\(487\) −5.00662 −0.226871 −0.113436 0.993545i \(-0.536186\pi\)
−0.113436 + 0.993545i \(0.536186\pi\)
\(488\) 0.0222909 0.0386090i 0.00100906 0.00174775i
\(489\) 0 0
\(490\) 0 0
\(491\) −18.6960 + 10.7942i −0.843740 + 0.487134i −0.858534 0.512757i \(-0.828624\pi\)
0.0147936 + 0.999891i \(0.495291\pi\)
\(492\) 0 0
\(493\) 0.912628 + 0.526906i 0.0411027 + 0.0237307i
\(494\) 9.36399i 0.421306i
\(495\) 0 0
\(496\) 3.20419i 0.143872i
\(497\) 0 0
\(498\) 0 0
\(499\) −17.9065 31.0149i −0.801604 1.38842i −0.918560 0.395282i \(-0.870647\pi\)
0.116956 0.993137i \(-0.462686\pi\)
\(500\) −9.89826 17.1443i −0.442664 0.766716i
\(501\) 0 0
\(502\) −1.95979 1.13149i −0.0874699 0.0505008i
\(503\) −23.9969 −1.06997 −0.534984 0.844862i \(-0.679682\pi\)
−0.534984 + 0.844862i \(0.679682\pi\)
\(504\) 0 0
\(505\) −23.2195 −1.03325
\(506\) 0.494543 + 0.285525i 0.0219851 + 0.0126931i
\(507\) 0 0
\(508\) 10.6772 + 18.4934i 0.473724 + 0.820514i
\(509\) −9.07094 15.7113i −0.402062 0.696392i 0.591912 0.806002i \(-0.298373\pi\)
−0.993975 + 0.109610i \(0.965040\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.8374i 1.00928i
\(513\) 0 0
\(514\) 10.4438i 0.460658i
\(515\) −30.3732 17.5360i −1.33840 0.772728i
\(516\) 0 0
\(517\) 18.2203 10.5195i 0.801330 0.462648i
\(518\) 0 0
\(519\) 0 0
\(520\) −17.6686 + 30.6029i −0.774819 + 1.34203i
\(521\) −0.839387 −0.0367742 −0.0183871 0.999831i \(-0.505853\pi\)
−0.0183871 + 0.999831i \(0.505853\pi\)
\(522\) 0 0
\(523\) 16.2832i 0.712015i 0.934483 + 0.356008i \(0.115862\pi\)
−0.934483 + 0.356008i \(0.884138\pi\)
\(524\) −19.1129 + 33.1045i −0.834951 + 1.44618i
\(525\) 0 0
\(526\) 6.52858 + 11.3078i 0.284660 + 0.493045i
\(527\) 1.00014 0.577428i 0.0435666 0.0251532i
\(528\) 0 0
\(529\) −11.4340 + 19.8043i −0.497132 + 0.861057i
\(530\) −6.93524 −0.301247
\(531\) 0 0
\(532\) 0 0
\(533\) 21.8819 + 12.6335i 0.947812 + 0.547219i
\(534\) 0 0
\(535\) −12.3792 + 7.14713i −0.535199 + 0.308997i
\(536\) 13.6545 7.88342i 0.589784 0.340512i
\(537\) 0 0
\(538\) −5.13615 2.96536i −0.221435 0.127846i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.86693 −0.0802657 −0.0401328 0.999194i \(-0.512778\pi\)
−0.0401328 + 0.999194i \(0.512778\pi\)
\(542\) −1.37072 + 2.37417i −0.0588777 + 0.101979i
\(543\) 0 0
\(544\) −4.14136 + 2.39102i −0.177559 + 0.102514i
\(545\) 31.2515 + 54.1292i 1.33867 + 2.31864i
\(546\) 0 0
\(547\) 7.55792 13.0907i 0.323153 0.559718i −0.657984 0.753032i \(-0.728590\pi\)
0.981137 + 0.193315i \(0.0619238\pi\)
\(548\) 20.5157i 0.876386i
\(549\) 0 0
\(550\) 12.6004 0.537281
\(551\) 1.80811 3.13173i 0.0770279 0.133416i
\(552\) 0 0
\(553\) 0 0
\(554\) 7.02398 4.05529i 0.298420 0.172293i
\(555\) 0 0
\(556\) −5.10183 2.94554i −0.216366 0.124919i
\(557\) 6.32176i 0.267862i −0.990991 0.133931i \(-0.957240\pi\)
0.990991 0.133931i \(-0.0427600\pi\)
\(558\) 0 0
\(559\) 22.9402i 0.970269i
\(560\) 0 0
\(561\) 0 0
\(562\) −4.91321 8.50992i −0.207251 0.358970i
\(563\) −4.82545 8.35793i −0.203369 0.352245i 0.746243 0.665673i \(-0.231856\pi\)
−0.949612 + 0.313429i \(0.898522\pi\)
\(564\) 0 0
\(565\) −30.6747 17.7100i −1.29049 0.745066i
\(566\) −6.77132 −0.284620
\(567\) 0 0
\(568\) 9.00618 0.377891
\(569\) −13.4785 7.78184i −0.565050 0.326232i 0.190120 0.981761i \(-0.439112\pi\)
−0.755170 + 0.655529i \(0.772446\pi\)
\(570\) 0 0
\(571\) 20.9434 + 36.2750i 0.876454 + 1.51806i 0.855206 + 0.518288i \(0.173431\pi\)
0.0212481 + 0.999774i \(0.493236\pi\)
\(572\) 20.3860 + 35.3096i 0.852382 + 1.47637i
\(573\) 0 0
\(574\) 0 0
\(575\) 2.91135i 0.121412i
\(576\) 0 0
\(577\) 40.3472i 1.67968i −0.542837 0.839838i \(-0.682650\pi\)
0.542837 0.839838i \(-0.317350\pi\)
\(578\) −5.82921 3.36549i −0.242463 0.139986i
\(579\) 0 0
\(580\) −5.63080 + 3.25094i −0.233806 + 0.134988i
\(581\) 0 0
\(582\) 0 0
\(583\) −8.39744 + 14.5448i −0.347787 + 0.602384i
\(584\) 3.65926 0.151421
\(585\) 0 0
\(586\) 2.84086i 0.117355i
\(587\) 1.91520 3.31723i 0.0790490 0.136917i −0.823791 0.566894i \(-0.808145\pi\)
0.902840 + 0.429977i \(0.141478\pi\)
\(588\) 0 0
\(589\) −1.98148 3.43202i −0.0816453 0.141414i
\(590\) −14.9165 + 8.61204i −0.614102 + 0.354552i
\(591\) 0 0
\(592\) 11.8163 20.4664i 0.485647 0.841166i
\(593\) −12.5143 −0.513902 −0.256951 0.966424i \(-0.582718\pi\)
−0.256951 + 0.966424i \(0.582718\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −28.2229 16.2945i −1.15606 0.667449i
\(597\) 0 0
\(598\) −0.806611 + 0.465697i −0.0329848 + 0.0190438i
\(599\) −6.62258 + 3.82355i −0.270591 + 0.156226i −0.629156 0.777279i \(-0.716599\pi\)
0.358565 + 0.933505i \(0.383266\pi\)
\(600\) 0 0
\(601\) 29.8513 + 17.2346i 1.21766 + 0.703015i 0.964416 0.264388i \(-0.0851698\pi\)
0.253242 + 0.967403i \(0.418503\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −33.8510 −1.37738
\(605\) 4.93285 8.54394i 0.200549 0.347361i
\(606\) 0 0
\(607\) 10.7472 6.20488i 0.436214 0.251848i −0.265776 0.964035i \(-0.585628\pi\)
0.701990 + 0.712186i \(0.252295\pi\)
\(608\) 8.20490 + 14.2113i 0.332753 + 0.576344i
\(609\) 0 0
\(610\) 0.0210514 0.0364621i 0.000852346 0.00147631i
\(611\) 34.3151i 1.38824i
\(612\) 0 0
\(613\) −1.66896 −0.0674088 −0.0337044 0.999432i \(-0.510730\pi\)
−0.0337044 + 0.999432i \(0.510730\pi\)
\(614\) 1.82209 3.15595i 0.0735335 0.127364i
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5698 7.83453i 0.546300 0.315406i −0.201329 0.979524i \(-0.564526\pi\)
0.747628 + 0.664118i \(0.231193\pi\)
\(618\) 0 0
\(619\) −3.10436 1.79230i −0.124775 0.0720387i 0.436314 0.899795i \(-0.356284\pi\)
−0.561088 + 0.827756i \(0.689617\pi\)
\(620\) 7.12532i 0.286160i
\(621\) 0 0
\(622\) 1.79626i 0.0720234i
\(623\) 0 0
\(624\) 0 0
\(625\) 0.417550 + 0.723218i 0.0167020 + 0.0289287i
\(626\) −0.759935 1.31625i −0.0303731 0.0526078i
\(627\) 0 0
\(628\) 12.0892 + 6.97968i 0.482410 + 0.278520i
\(629\) −8.51769 −0.339622
\(630\) 0 0
\(631\) 23.1493 0.921557 0.460779 0.887515i \(-0.347570\pi\)
0.460779 + 0.887515i \(0.347570\pi\)
\(632\) 9.16691 + 5.29252i 0.364640 + 0.210525i
\(633\) 0 0
\(634\) 1.88476 + 3.26451i 0.0748536 + 0.129650i
\(635\) 21.1638 + 36.6568i 0.839861 + 1.45468i
\(636\) 0 0
\(637\) 0 0
\(638\) 1.55674i 0.0616318i
\(639\) 0 0
\(640\) 38.5419i 1.52350i
\(641\) −20.3567 11.7529i −0.804041 0.464213i 0.0408415 0.999166i \(-0.486996\pi\)
−0.844882 + 0.534953i \(0.820329\pi\)
\(642\) 0 0
\(643\) −4.83255 + 2.79007i −0.190577 + 0.110030i −0.592253 0.805752i \(-0.701761\pi\)
0.401676 + 0.915782i \(0.368428\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.824312 1.42775i 0.0324321 0.0561741i
\(647\) −3.90178 −0.153395 −0.0766974 0.997054i \(-0.524438\pi\)
−0.0766974 + 0.997054i \(0.524438\pi\)
\(648\) 0 0
\(649\) 41.7111i 1.63730i
\(650\) −10.2757 + 17.7981i −0.403047 + 0.698098i
\(651\) 0 0
\(652\) 3.63386 + 6.29402i 0.142313 + 0.246493i
\(653\) 5.29484 3.05698i 0.207203 0.119629i −0.392808 0.919621i \(-0.628496\pi\)
0.600011 + 0.799992i \(0.295163\pi\)
\(654\) 0 0
\(655\) −37.8847 + 65.6183i −1.48028 + 2.56392i
\(656\) −12.3426 −0.481896
\(657\) 0 0
\(658\) 0 0
\(659\) −24.7031 14.2623i −0.962296 0.555582i −0.0654174 0.997858i \(-0.520838\pi\)
−0.896879 + 0.442276i \(0.854171\pi\)
\(660\) 0 0
\(661\) 21.7672 12.5673i 0.846648 0.488812i −0.0128707 0.999917i \(-0.504097\pi\)
0.859518 + 0.511105i \(0.170764\pi\)
\(662\) −5.79801 + 3.34748i −0.225346 + 0.130104i
\(663\) 0 0
\(664\) 4.29366 + 2.47895i 0.166626 + 0.0962018i
\(665\) 0 0
\(666\) 0 0
\(667\) −0.359688 −0.0139272
\(668\) −7.75804 + 13.4373i −0.300168 + 0.519906i
\(669\) 0 0
\(670\) 12.8952 7.44503i 0.498184 0.287627i
\(671\) −0.0509796 0.0882993i −0.00196805 0.00340875i
\(672\) 0 0
\(673\) 12.5278 21.6988i 0.482912 0.836428i −0.516895 0.856049i \(-0.672912\pi\)
0.999808 + 0.0196203i \(0.00624575\pi\)
\(674\) 5.76872i 0.222203i
\(675\) 0 0
\(676\) −42.8393 −1.64767
\(677\) 16.8081 29.1126i 0.645989 1.11889i −0.338083 0.941116i \(-0.609778\pi\)
0.984072 0.177770i \(-0.0568883\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −5.38794 + 3.11073i −0.206618 + 0.119291i
\(681\) 0 0
\(682\) −1.47744 0.853001i −0.0565742 0.0326631i
\(683\) 38.5467i 1.47495i 0.675375 + 0.737475i \(0.263982\pi\)
−0.675375 + 0.737475i \(0.736018\pi\)
\(684\) 0 0
\(685\) 40.6652i 1.55374i
\(686\) 0 0
\(687\) 0 0
\(688\) −5.60297 9.70464i −0.213611 0.369986i
\(689\) −13.6964 23.7229i −0.521792 0.903770i
\(690\) 0 0
\(691\) −26.1768 15.1132i −0.995812 0.574932i −0.0888052 0.996049i \(-0.528305\pi\)
−0.907006 + 0.421117i \(0.861638\pi\)
\(692\) −0.791523 −0.0300892
\(693\) 0 0
\(694\) −5.88111 −0.223244
\(695\) −10.1126 5.83852i −0.383593 0.221468i
\(696\) 0 0
\(697\) 2.22426 + 3.85253i 0.0842499 + 0.145925i
\(698\) −0.380115 0.658378i −0.0143876 0.0249200i
\(699\) 0 0
\(700\) 0 0
\(701\) 29.6057i 1.11819i 0.829103 + 0.559096i \(0.188852\pi\)
−0.829103 + 0.559096i \(0.811148\pi\)
\(702\) 0 0
\(703\) 29.2289i 1.10239i
\(704\) −12.8357 7.41070i −0.483764 0.279301i
\(705\) 0 0
\(706\) 2.85114 1.64611i 0.107304 0.0619521i
\(707\) 0 0
\(708\) 0 0
\(709\) −1.78201 + 3.08652i −0.0669246 + 0.115917i −0.897546 0.440921i \(-0.854652\pi\)
0.830622 + 0.556837i \(0.187985\pi\)
\(710\) 8.50536 0.319200
\(711\) 0 0
\(712\) 24.2407i 0.908458i
\(713\) −0.197088 + 0.341367i −0.00738102 + 0.0127843i
\(714\) 0 0
\(715\) 40.4082 + 69.9891i 1.51118 + 2.61744i
\(716\) −27.4533 + 15.8501i −1.02598 + 0.592348i
\(717\) 0 0
\(718\) 4.78944 8.29556i 0.178740 0.309588i
\(719\) 1.61282 0.0601480 0.0300740 0.999548i \(-0.490426\pi\)
0.0300740 + 0.999548i \(0.490426\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.08061 + 1.20124i 0.0774322 + 0.0447055i
\(723\) 0 0
\(724\) −27.9654 + 16.1458i −1.03933 + 0.600055i
\(725\) −6.87332 + 3.96831i −0.255269 + 0.147379i
\(726\) 0 0
\(727\) 10.4930 + 6.05816i 0.389166 + 0.224685i 0.681799 0.731540i \(-0.261198\pi\)
−0.292633 + 0.956225i \(0.594531\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.45577 0.127904
\(731\) −2.01943 + 3.49775i −0.0746913 + 0.129369i
\(732\) 0 0
\(733\) 34.9931 20.2033i 1.29250 0.746225i 0.313403 0.949620i \(-0.398531\pi\)
0.979097 + 0.203396i \(0.0651977\pi\)
\(734\) −3.31277 5.73788i −0.122276 0.211789i
\(735\) 0 0
\(736\) 0.816104 1.41353i 0.0300820 0.0521035i
\(737\) 36.0589i 1.32825i
\(738\) 0 0
\(739\) −20.4634 −0.752760 −0.376380 0.926465i \(-0.622831\pi\)
−0.376380 + 0.926465i \(0.622831\pi\)
\(740\) 26.2765 45.5123i 0.965944 1.67306i
\(741\) 0 0
\(742\) 0 0
\(743\) −37.1209 + 21.4318i −1.36184 + 0.786256i −0.989868 0.141990i \(-0.954650\pi\)
−0.371967 + 0.928246i \(0.621317\pi\)
\(744\) 0 0
\(745\) −55.9422 32.2982i −2.04956 1.18332i
\(746\) 10.7093i 0.392095i
\(747\) 0 0
\(748\) 7.17832i 0.262465i
\(749\) 0 0
\(750\) 0 0
\(751\) 21.5028 + 37.2440i 0.784649 + 1.35905i 0.929209 + 0.369556i \(0.120490\pi\)
−0.144559 + 0.989496i \(0.546177\pi\)
\(752\) −8.38120 14.5167i −0.305631 0.529368i
\(753\) 0 0
\(754\) 2.19890 + 1.26953i 0.0800792 + 0.0462337i
\(755\) −67.0979 −2.44194
\(756\) 0 0
\(757\) −13.0766 −0.475276 −0.237638 0.971354i \(-0.576373\pi\)
−0.237638 + 0.971354i \(0.576373\pi\)
\(758\) 5.42682 + 3.13317i 0.197111 + 0.113802i
\(759\) 0 0
\(760\) 10.6746 + 18.4890i 0.387210 + 0.670667i
\(761\) −11.5916 20.0773i −0.420196 0.727801i 0.575762 0.817617i \(-0.304705\pi\)
−0.995958 + 0.0898160i \(0.971372\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.452950i 0.0163872i
\(765\) 0 0
\(766\) 4.49232i 0.162314i
\(767\) −58.9172 34.0159i −2.12738 1.22824i
\(768\) 0 0
\(769\) 11.4527 6.61219i 0.412993 0.238442i −0.279082 0.960267i \(-0.590030\pi\)
0.692075 + 0.721826i \(0.256697\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.55096 13.0787i 0.271765 0.470711i
\(773\) −19.6319 −0.706110 −0.353055 0.935603i \(-0.614857\pi\)
−0.353055 + 0.935603i \(0.614857\pi\)
\(774\) 0 0
\(775\) 8.69762i 0.312428i
\(776\) 1.56258 2.70647i 0.0560935 0.0971567i
\(777\) 0 0
\(778\) 2.88120 + 4.99039i 0.103296 + 0.178914i
\(779\) 13.2202 7.63267i 0.473662 0.273469i
\(780\) 0 0
\(781\) 10.2986 17.8377i 0.368513 0.638284i
\(782\) −0.163981 −0.00586395
\(783\) 0 0
\(784\) 0 0
\(785\) 23.9626 + 13.8348i 0.855262 + 0.493786i
\(786\) 0 0
\(787\) 14.8621 8.58063i 0.529776 0.305866i −0.211149 0.977454i \(-0.567721\pi\)
0.740925 + 0.671588i \(0.234387\pi\)
\(788\) −35.5938 + 20.5501i −1.26798 + 0.732067i
\(789\) 0 0
\(790\) 8.65715 + 4.99821i 0.308008 + 0.177828i
\(791\) 0 0
\(792\) 0 0
\(793\) 0.166298 0.00590540
\(794\) 8.25299 14.2946i 0.292888 0.507297i
\(795\) 0 0
\(796\) −9.64647 + 5.56939i